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Autologous fecal microbiota transplantation combined with healthy diets induces strain-level microbial shifts

and attenuates body weight regain
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DIRECT-PLUS aFMT Trial

The gut microbiome plays a key role in regulating metabolic health, and dietary
interventions can beneficially reshape its composition and function, contributing to
weight loss and improved metabolic outcomes. However, weight regain—often
observed after 6 months of active intervention—may be partly driven by a reversion

of the microbiome toward its baseline state. Autologous fecal microbiota
transplantation (aFMT), which uses an individual's own stool collected during a
metabolically healthier state, offers a minimal-risk strategy that may preserve diet-
induced microbial shifts and reduce weight regain.
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HDG: Healthy dietary guidance, MED: Mediterranean diet, GreenMED: Green Mediterranean diet

In

this trial, we examined the effects of randomized aFMT vs. Placebo on gut

microbiome—particularly strain-level changes—and their role in mitigating weight
regain in 90 adults. Participants who lost 23.5% of body weight during a 6-month

Weight regain % (from weight loss)

dietary intervention provided fecal samples that were processed into oral capsules.

Synergistic Effects of aFMT + GreenMED on Weight Regain
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Boundaries of Diversity: Quantifying Strain-Level Differences

Precision Strain Delineation with StrainPhlAn

Before tracking strain dynamics, we first had to define what constitutes a unique
strain—the foundational pillar of microbial dynamics research. For this purpose, we
utiized  species-specific  phylogenetic  genetic distance (nGD) cutoffs
using StrainPhlAn v4.1, a validated bioinformatics tool for strain profiling from
metagenomic data which leverages single-nucleotide polymorphisms (SNPs) in
species-specific marker genes to differentiate bacterial strains.
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« Strain cutoff = minimum of the Youden index (optimizing sensitivity/specificity) or
the 5th quantile of distances.

« Strain-level dynamic metrics: Loss, Gain, Persistence, and Swap.
+ Limitation to ambiguous scenarios (?7-?, 1-?, ?-1): StrainPhlAn cannot detect
very low abundant strains, while their species are detectable.

Diets Induce Distinct Strain Change Patterns
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aFMT+GreenMED Synergistically Preserves Strain-Level Changes

« Overall aFMT population: aFMT did not differ from placebo in preserving prior
diet-induced microbial strain-level changes.

When combined with GreenMED: aFMT effectively preserved these strain-level
changes for both succession rate and loss-persistence during the follow-up period
(Month 6-14).
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aFMT + GreenMED Enhances Key Strain Persistence

* Enhanced persistence of specific strains in aFMT, such as R. lactaris, B. longum,
and B. obeum, particularly when combined with GreenMED.

« These strains degrade dietary polyphenols — bioactive metabolites (e.g.,
SCFAs), bridging diet-host health via microbial conversion.

« Highlighting aFMT's potential to sustain key microbial converters of complex
dietary compounds.
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Left panel: Bar plots display strain counts exhibiting gain-persistence or swap-persistence, and the number of subjects
harboring the strains. Middle panel: Odds ratio for strain succession rate shows aFMT recipients were X-fold more
likely to maintain gained/swapped strains compared to Placebo. Right panel: Bubble plot displays the prevalence (%
of subjects) harboring persistent strains within overall, treatment, and each diet-treatment group.

Phylogenetic evidence of B. longum strain gain-/swap-persistence
Strain-specific intervention efficacy for aFMT and the clinical relevance of precision
microbial therapy.
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Hutlab’s Toolbox Powering This Research: MetaPhlAn
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