

Recent genetic drift in the co-diversified gut bacterial symbionts of laboratory mice

Daniel D. Sprockett¹, Brian A. Dillard¹, Abigail A. Landers¹, Jon G. Sanders¹, Andrew H. Moeller^{1,2}

- 1. Department of Ecology and Evolutionary Biology, Cornell University
- 2. Department of Ecology and Evolutionary Biology, Princeton University

Co-diversified clades

ancestral to murids

Introduction

What are the evolutionary origins of the house mouse microbiota?

wild-living conspecifics, but we don't know if they've acquired those differences from the lab environment, or if lab lineages

Methods

Results

Widespread co-diversification between gut bacterial symbionts and their rodent hosts

Significantly elevated genetic drift in lab strains

dN/dS in lab strains relative to dN/dS in individual genes car

Co-diversified wild strains out-compete related lab strains in vivo

increased genetic drift, we re-analyzed data from competition experiments in germ-free mice². Wild microbiotas were significantly

Conclusions

co-diversified with rodents, and that these elevated levels of genetic drift during the last

Altered genomic signatures of positive selection in lab strains

ancestral clades, we calculated derived MAGs. While most genes

References

- Bowerman et al. (2021) Effects of laboratory domestication on the rodent gut microbiome
- Rosshart et al. (2021) Laboratory mice born to wild mice have natural microbiota and mode human immune responses. Science. DOI: 10.1126/science.aaw43
- Images created with BioRender.com

Funding

Graduate Student & Postdoc Opportunities Available

Contact: daniel.sprockett@wakehealth.edu