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Figure 2. NMDS decomposition of Bray-Curtis distance matrix for all taxonomic pro�les analyzed, colored by 
data source (A) – same key as 1A/B – and age at collection (B). Samples distribute continuously through the 
diversity ordination, on patterns that strongly re�ect data source, but without forming isolated clusters and with 
a perceivable degree of mixture. First principal component is heavily loaded on the age of sample collection. 
PERMANOVAS (appended to both plots) show that source and age explain comparable amounts of variance.

Figure 1. Data origin, description and analysis pipeline. (A) approximate geographical sites of stool  sample 
collection. (B) normalized stacked kernel density plots of age distribution per stool sample, color-coded by data 
source. (C) simpli�ed illustration of the data analysis, from data curation, sample collection, sequence 
processing, model training, validation and interpretation.

Figure 3. Model benchmark, �gures of merit and results from Leave-One-Source-Out-Cross-Validation. (A) 
scatterplot of predicted ages versus ground truth ages at sample collection (in months) – same color key as 1A/B. 
Identity line (y=x) ±3 months added for reference. (B) cohort metrics for Leave-One-Source-Out-Cross-Validation. 
(C) Age predictions for an independent external test set (not used during training).

Figure 5. Breakdown of prevalence evolution over time for top important species considering samples from three 
di�erent data sources (Baltic countries; North America; South Africa). Y-axis was ordered based on hierarchical cluste-
ring of mean prevalence vectors. Cluster assignment illustrated on dendrogram to the side.

Figure 4. Most important species for age estimation as measured by MDI/GINI importance on Random Forest 
models, accompanied by scatterplots of prevalences and relative abundances (where present) as a function of age, 
color-coded by data source – same key as 1A/B –, for selected species.

Multiple environmental factors in�uence the development of the gut microbiome, 
which experiences dramatic changes during early infancy [1,2]. There is 
accumulating evidence that the gut microbiota and its metabolites also regulate 
various aspects of neurodevelopment, physiology and behavior [3].

Building a model that estimates age from gut-microbial taxonomic pro�les can help 
us understand typical developmental trajectories and capture temporal trends and 
deviations. Its outputs can be useful to predict other developmental outcomes.

GOAL: to develop a gut-microbiome age model
to study the e�ects of the gut microbiome

on other age-dependent development features

Global metagenomes enable
large-scale meta-analysis
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Microbiome development in the �rst years of life follows predictable normative 
trajectories, that emerge as underlying machine-learnable patterns when a large 
and diverse dataset of metagenomes is used to train an age prediction model from 
taxonomic pro�les.
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