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The main motivation behind my research has been to provide 
decision-makers with actionable information with the hope of 

saving/improving human lives using mathematical models

Water availability Natural disasters preparednessGlobal air quality modeling

Epidemic outbreaks mitigation

Climate change

Intensive Care Unite Predictive
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Areas of Applied Mathematics and Mathematical Physics 
used in my research:

• Linear Algebra
• Differential Equation
• Perturbation Theory
• Numerical Analysis
• Optimization
• Data Assimilation
• (Applied) Statistics
• Bayesian Statistics
• Signal Processing
• Time Series Analysis
• Uncertainty Quantification
• Machine Learning



Biosurveillance is a process of gathering, integrating, interpreting, and 
communicating essential information that might relate to disease activity and 

threats to human, animal, or plant health.



Over 1 billion Google searches a day

Source: IBM

30+ petabytes of  user-
generated data stored, 
accessed, and analyzed

~2 billion smartphones 
world wide

Newspaper articles, Reports, etc…

Big data

Trillions of sensors are monitoring, 
tracking, and communicating 

information from multiple locations 
in real-time

230 million tweets every day

Predictive Analytics 



Over 1 billion Google searches a day

30+ petabytes of  user-
generated data stored, 
accessed, and analyzed

Big data Weather information in 
real-time

Medicine and 
Public Health

Newspaper articles, Reports, etc…

~2 billion smartphones 
world wide

230 million tweets every day

Electronic Health 
Records (EHR)



The challenge…

Visualization borrowed from: http://reichlab.io/flusight/

Real-time monitoring of disease activity, short-term forecasting (weeks), 
long-term forecasting (months)
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The challenge…

Visualization borrowed from: http://reichlab.io/flusight/

Real-time monitoring of disease activity, short-term forecasting (weeks), 
long-term forecasting (months)

Long-term forecasting

Last 
available 
report

peak

Length of outbreak

Size of the outbreak



At what spatial resolution and time frequency?

Space: Country-level, state-level, city-level, neighborhood, hospital, patient?
Time: monthly, weekly, daily, hourly?

Country

State

City

Hospital

Patient?



Real-time tracking vs predictions of disease incidence/risk
Similarities and differences with weather prediction

What if we get it right?



Approach



Background: monitoring influenza in rich nations





Can Digital disease tracking pick up 
accurate signals earlier ?

Traditional public health
confirmed information

(lagged 2-3 weeks)
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Part 1. Previous success stories in tracking and forecasting 
Influenza in data-rich high-income countries: USA

1. Multiple spatial resolutions: National, multi-state, state, city-level

2. Multiple data sources (hybrid systems): traditional healthcare-based, EHR, 
Google, Twitter, Crowd-sourced disease surveillance.



Ebola

Cholera

• Latin America 
 (Flu, Zika, Dengue)
• South-east Asia
 (Dengue) 

• West Africa

• Middle East

Part 2. Success stories in tracking and forecasting Flu, Zika, 
Dengue, Ebola in data-poor medium- to low-income countries.

Dengue, Zika, and Flu 



GOOGLE FLU TRENDS

The promise of big data in public health

Seminal work by Google



Google Flu Trends



What is the logic behind this approach?

Searches on “bronchitis” vs Flu activity in 
South Africa

Scatter plot of searches vs flu

Google Flu Trends



Epidemiological information 
available 2-3 weeks ahead of 
traditional clinical tracking systems



Plot obtained from: http://blog.keithw.org/2013/02/q-how-accurate-is-google-flu-trends.html

What next? need to remove (not useful) terms.               Big discrepancies again!

Fixes were reported  in: Cook et al. (2011) Assessing Google flu trends performance in the U.S. 
during the 2009 influenza virus A (H1N1) pandemic. PLoS One 

Big 
discrepancy

again!

Big 
discrepancy

during H1N1 pandemic



When Google got flu wrong. 

nature.com/news/when-google-got-flu-wrong.





New model:

1. Each search term may contribute to prediction of ILI rate 
separately (multi-variate approach)

2. Relationship between search volume for each individual term 
and proportion of ill people is dynamic and should be found 
using supervised machine learning optimization techniques.

Every week the multiplicative coefficients (β’s) would be automatically 
updated by expanding the training set (labeled data) as new information 

from the CDC became available.

We proposed an alternative method and tested it using 
low quality input from Google Correlate in January 

2013.
(with D. Wendong Zhang)



We published a paper proposing 
changes to GFT’s engine (2014)

Google incorporated our proposed 
changes to GFT’s engine in Oct 2014



Google and collaborators published a 
paper improving our AJPM 2014 
methodology in August 2015

We improved last effort by 
Google team and published 
our results in PNAS in 
September 2015



Google and collaborators published a 
paper improving our AJPM 2014 
methodology in August 2015

We improved last effort by 
Google team and published 
our results in PNAS in 
September 2015





Google discontinues Flu Trends indefinitely! 





In collaboration with the CDC Influenza division, we are extending our work from National 
and Regional predictions, to state-level and city level (Boston as a pilot)

Grant: Centers for Disease Control and Prevention’s Cooperative Agreement PPHF 11797-
998G-15

Team members: Fred Lu, Leonardo C. Clemente                  
CDC liaison and collaborator: Matt Biggerstaff

Prepared by Mauricio Santillana



What are doctors searching for?

What are people tweeting? What are they 
reporting on crowd-sourced disease 
surveillance apps?

Can we use Electronic Health Records (EHR) to 
track disease incidence? What lab tests or 
medications are doctors prescribing? 

Beyond Google searches…
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Can we use Electronic Health Records (EHR) to 
track disease incidence? What lab tests or 
medications are doctors prescribing? 
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What are doctors searching for?

What are people tweeting? What are they 
reporting on crowd-sourced disease 
surveillance apps?

Can we use Electronic Health Records (EHR) to 
track disease incidence? What lab tests or 
medications are doctors prescribing? 

Beyond Google searches…

Where is Up-to-date used?



Beyond Google searches…

What are doctors searching for?

What are people tweeting? What are they 
reporting on crowd-sourced disease 
surveillance apps?

Can we use Electronic Health Records (EHR) to 
track disease incidence? What lab tests or 
medications are doctors prescribing? 



Disease: Influenza

Goal: short-term 
forecasting

Location: United States
(Data rich, wealthy 
country)

Spatial resolution: Country

Method: Machine learning

Input data sources:

• Historical flu activity
• Google search activity
• Electronic Health 

records
• Crowd sourced 

information



Ensemble approaches yield more 
accurate and more robust real-time and 

forecast flu estimates



Performance of individual data sources 

Santillana et al. PLoS Computational Biology, 2015



Performance ensemble

Santillana et al. PLoS Computational Biology, 2015



Performance of individual data sources 

Santillana et al. PLoS Computational Biology, 2015



Performance ensemble

Santillana et al. PLoS Computational Biology, 2015



Ensemble approaches yield more 
accurate and more robust real-time and 

forecast flu estimates







Spatial-temporal synchronicities Flu-related Google search 
information

Lu F, Hattab M, Clemente L, Santillana M. Improved state-level influenza activity nowcasting in the United States leveraging 
Internet-based data sources and network approaches via ARGONet. Nature Communications. 2019; 10 (147)



Heat map of pairwise %ILI correlations between all states.
Boxes denote clusters of highly correlated states.







Tracking Flu using twitter
(Daily analysis in NYC)

Refining the spatial resolution…

Work with R. Nagar, Q. Yuan, C. Freifeld, A. Nojima, R. Chunara, and J. S. Brownstein



1. Identified tweets containing 
“flu”, “influenza”, “gripe”, “high 
fever”

2. Classified tweets in categories

Categories

Contains: “flu”, “influenza”, 
“high fever” 

Relevant Irrelevant

Infection Awareness

Self Others

Natural Language Processing
(Using geo-located tweets)

First experiment:  was done by hand…

Nagar et al. (2014) Journal of Medical Internet Research. In press



ILI Reported NYC-ED

Predicted ILI using 
Twitter

Daily ILI visits (as reported by the NYC emergency department) 
compared to predicted ILI using twitter data

Nagar et al. (2014) Journal of Medical Internet Research. In press



We will extend out methodology to finer spatial resolutions. 
(Massachusetts and Boston)

Highlights: (a) dynamic-moving training window, (b) automatic feature selection, (c) ensemble approach

Lu F, Hou S, Baltrusaitis K, Shah M, Leskovec J, Sosic R, Hawkins J, Brownstein JS, Conidi G, Gunn J, ..., Santillana M. 
Accurate influenza monitoring and forecasting in the Boston metropolis using novel Internet data streams. Journal of 
Medical Internet Research. 2018;4 (1) :e4.7

Twitter

Crowd-sourced disease 
surveillance platform
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Using multiple data sources to track flu in Boston 
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Using multiple data sources to forecast flu in Boston 



When combined, what are the 
strongest predictors?



When combined, what are the 
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When combined, what are the 
strongest predictors?



Hyper-local predictions
Can we predict daily emergency department visits in a hospital?





Daily Visits 2009-2015

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Seasonal Trend

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Noticeable Events

Flu

Blizzard

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Split data for modeling

Training/Fitting Testing

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Current Staffing model = Day of Week

MAPE = 11.0%                  Percent of days with bad staffing= 11.2%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Add in Auto regression

MAPE = 8.4%                  Percent of days with bad staffing= 4.9%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Add in Weather Data

MAPE = 7.9%                  Percent of days with bad staffing= 4.8%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Add in Calendar Data

MAPE = 7.7%                  Percent of days with bad staffing= 3.8%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Add in Google Data

MAPE = 7.6%                  Percent of days with bad staffing= 3.3%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis













State-level predictions



City-level predictions













Part 2. Success stories in tracking and forecasting Flu, Zika, 
Dengue, Ebola in data-poor medium- to low-income countries.

Dengue, Zika, and Flu 

Ebola

Cholera

• West Africa

• Middle East

• Latin America 
 (Flu, Zika, Dengue)
• South-east Asia
 (Dengue) 















Predicting Dengue epidemic years in Brazil 
months before they happen



Can we leverage available weather information and susceptibility 
to predict an epidemic year– in a wide range of locations?

Our contribution:
• Used assimilated weather data
• 20 cities with 17 years of data
• Improved results with new weather data
• Out-of-sample predictions for 4-6 years
• Incorporated susceptibility data
• Adaptive and dynamically calibrated

Assimilated weather information
(available for every location worldwide) Data driven identification of 3-4 year 

susceptibility depletion cycles

Team: Sarah McGough, Nathan Kutz, Mauricio Santillana



c

Can we leverage available weather information and susceptibility 
to predict an epidemic year– in a wide range of locations?

(Results)



How do we incorporate DENV susceptibility cycles (3-4 years)?

• Data-driven Hidden Markov model
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Transitioning to

Frequency of transition 
calculated from the data



How do we incorporate DENV susceptibility cycles (3-4 years)?

• Data-driven Hidden Markov model
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Transitioning to

Decision Rule: 
IF probability of transition > percent of model votes 

THEN overturn the vote

ENSEMBLE APPROACH



OOS Evaluation Metric Climate Climate + DENV Cycle

Accuracy 71.7% 75%

Hit rate (Sensitivity) 81% 78%

Non-epidemic detection rate 58% 71%

No-information rate 60% 60%

P(Accuracy > No-Information 
Rate)

p = 0.005 p=0.0004

Pattern N(overrides) Correct Incorrect

1110 5 4 1

110 3 2 1

0001 0 - -

001 0 - -

How do we incorporate DENV susceptibility cycles (3-4 years)?

• Data-driven Hidden Markov model



c

Can we leverage available weather information and susceptibility 
to predict an epidemic year– in a wide range of locations?

(Results)











COVID-19



Coronavirus Disease (COVID - 19)                                                Year of detection 2019

Caused by: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

It was first identified in December 2019 in Wuhan, China, and has resulted in an 
ongoing pandemic.[10][11] The first case may be traced back to 17 November 
2019.[12] As of 17 June 2020, more than 8.18 million cases have been reported 
across 188 countries and territories, resulting in more than 443,000 deaths.

Common symptoms include fever, cough, fatigue, shortness of breath, and loss of 
smell and taste.

Source:
Wikipedia



First detected in China

Source:
Wikipedia
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“[…] the timing of pandemic 
influenza outbreaks is controlled 
by a combination of absolute 
humidity conditions, levels of 
susceptibility, and changes in 
population-mixing and contact 
rates.”

Background

These observed relationships in 
influenza transmission have been 
assumed (without any evidence) 
for the ongoing COVID-19 
outbreak. It has been stated that 
COVID-19 transmission will 
decrease as warmer temperatures 
(leading to higher absolute 
humidity conditions) are 
experienced in the upcoming 
spring months

From: J. Shaman, E. Goldstein, M. Lipsitch, Absolute Humidity and Pandemic Versus Epidemic 
Influenza, American Journal of Epidemiology, Volume 173, Issue 2, 15 January 2011, Pages 127–135,



Our findings :

A novel coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, in December 

2019 and has caused over 240,000 cases of COVID-19 worldwide as of March 19, 2020. Previous 

studies have supported an epidemiological hypothesis that cold and dry environments facilitate the 

survival and spread of droplet-mediated viral diseases, and warm and humid environments see 

attenuated viral transmission (e.g., influenza). However, the role of temperature and humidity in 

transmission of COVID-19 has not yet been established. Here, we examine the spatial variability of the 

basic reproductive numbers of COVID-19 across provinces and cities in China and show that 

environmental variables alone cannot explain this variability. Our findings suggest that changes in 

weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the 

Northern Hemisphere) will not necessarily lead to declines in case count without the implementation of 

extensive public health interventions.  



C(t) is the total cumulative cases at time t, and d = 5,6,7 is an estimate of the 
serial interval

time

New (reported) cases

t t+7 t+14

Calculating a proxy for R0
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Data Sources

We were interested in comparing the performance of digital data sources (COVID-19 “proxies”) to the performance of 
traditional COVID-19 measures (“gold standards”) in forecasting sharp changes in epidemic activity 

COVID-19 proxies COVID-19 gold standards

*

* ILINet



Fig. I - Time series for COVID-19 proxies and gold standards  
Legend (delays represent lags in data availability):
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Fig. III - Uptrends and downtrends are detected earliest for 
Twitter and Cuebiq, respectively, across the US



Fig. IV - Evolving posterior probability distribution for time-to-
event estimation in New York

Legend:



Widespread spatial transmission of COVID-19 can only be explained by high number of unreported cases (> 85% ?)

How many people have been affected in the US?
Why should we estimate prevalence?



1. Spatial patterns of COVID-19 
transmission could not be 
observed under currently 
reported numbers

2. Unreported cases are driving 
transmission in the US

3. Evidence that this happened in 
China suggests that 86% of 
infections were undetected

4. Given the level of testing in the 
USA, this number could be higher
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Why should we estimate prevalence?



Interventions (non-pharmaceutical) need to be implemented according to prevalence







Subset of US states
As of April 4th, 2020



As of April 4th, 2020



As of April 4th, 2020

In MA we estimate about 120,000 COVID-19 infected
Compare to 



As of April 4th, 2020

In MA we estimate about 120,000 COVID-19 infected
Compare to 

As of April 16th, 2020
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Not from our team with updates. Credit @maolesen

































“[…] the timing of pandemic 
influenza outbreaks is controlled 
by a combination of absolute 
humidity conditions, levels of 
susceptibility, and changes in 
population-mixing and contact 
rates.”

Background

These observed relationships in 
influenza transmission have been 
assumed (without any evidence) 
for the ongoing COVID-19 
outbreak. It has been stated that 
COVID-19 transmission will 
decrease as warmer temperatures 
(leading to higher absolute 
humidity conditions) are 
experienced in the upcoming 
spring months

From: J. Shaman, E. Goldstein, M. Lipsitch, Absolute Humidity and Pandemic Versus Epidemic 
Influenza, American Journal of Epidemiology, Volume 173, Issue 2, 15 January 2011, Pages 127–135,



Our findings :

A novel coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, in December 

2019 and has caused over 240,000 cases of COVID-19 worldwide as of March 19, 2020. Previous 

studies have supported an epidemiological hypothesis that cold and dry environments facilitate the 

survival and spread of droplet-mediated viral diseases, and warm and humid environments see 

attenuated viral transmission (e.g., influenza). However, the role of temperature and humidity in 

transmission of COVID-19 has not yet been established. Here, we examine the spatial variability of the 

basic reproductive numbers of COVID-19 across provinces and cities in China and show that 

environmental variables alone cannot explain this variability. Our findings suggest that changes in 

weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the 

Northern Hemisphere) will not necessarily lead to declines in case count without the implementation of 

extensive public health interventions.  



C(t) is the total cumulative cases at time t, and d = 5,6,7 is an estimate of the 
serial interval

time

New (reported) cases

t t+7 t+14

Calculating a proxy for R0









Towards the Development of Decision-Support 
Tools for the Pediatric Intensive Care Unit

 

Collaborators: Gaston Fiore, David Castineira (MIT), Brian Walsh, Yuval Barak Corren, Katherine 
Schlosser, John Arnold, Craig Smallwood, and many others I have not met. 

Mauricio Santillana, PhD (msantill@fas.harvard.edu)



Philosophy: we do not aspire to replace clinicians by “smart 
automatic systems/robots”, instead, we aspire to help medical 

teams make better decisions systematically.



Goals: 

1. Use real-time data from monitors (vital signs + mechanical ventilation) to perform 
event detection

2. Learn from historical patterns to improve care to children and potentially reduce 
costs in the most expensive unit in the hospital.



Goals: 

1. Use real-time data from monitors (vital signs + mechanical ventilation) to perform 
event detection

2. Learn from historical patterns to improve care to children and potentially reduce 
costs in the most expensive unit in the hospital.

Early event detection

a) Early detection of Ventilator 
Associated Conditions (VACs are 

associated to increased mortality)

b) Continuous assessment of 
readiness to extubate a patient 
(reduce re-intubation cases and prevent 
infections and VACs)

c) Early determination of long 
lengths of stay in the ICU (improve 

resource allocation across the hospital)

d) Real-time determination of vital 
signs percentile curves (improve 

patient assessment in real-time)

e) Continuous monitoring of 
sedation levels (may prevent over-

sedation and may reduce length of stay)



1. B. Patel**, F. Sperotto M. Molina**, S. Kimura, M. Delgado, M. Santillana J N Kheir. 
Computerized prediction of avoidable serum potassium testing in the cardiac intensive care unit. 
Pediatric Critical Care Medicine, 2020;22 (4) 

2. S Tideman**, M. Santillana, J. Bickel, B. Reis. Internet search query data improves fore- casts of 
daily emergency department volume. Journal of the American Medical Informatics Associ- ation. 
2019; ocz154, 2019. 

3.  Smallwood C, Walsh B, Rettig J, Thompson J, M. Santillana, Arnold J. 955: A machine-learning 
algorithm for oxygenation response prediction in mechanically ventilated children. Critical Care 
Medicine 2016 Dec; Volume 44, Issue 12, pp:315. doi: 10.1097/01.ccm.0000509631.99570.c2 

4. K R. Schlosser, G. Fiore**, C. D. Smallwood, J. Griffin, M. Santillana, J. H. Arnold Non-invasive 
ventilation is interrupted frequently and mostly used at night in the pediatric intensive care unit. 
Respiratory Care, 2019. 

5.  Schlosser K**, Smallwood C, Arnold J, Lee G, Priebe G, Walsh B, M. Santillana 1015: 
Identification of pediatric ventilator-associated conditions using continuous ventilator data. 
Critical Care Medicine. 2016 Dec; Volume 44, Issue 12, pp:330. doi: 
10.1097/01.ccm.0000509691.59308.ae 

6. Walsh B, Smallwood C, Rettig J, M. Santillana, Arnold J. 949: Development of heart, respiratory 
rate, and oxygenation saturation percentile curves in children. Critical Care Medicine 2016 Dec; 
Volume 44, Issue 11pp:313. doi: 10.1097/01.ccm.0000509625.30958.52 

Relevant publications



Thank you!

Contact: msantill@g.harvard.edu
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