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The main motivation behind my research has been to provide
decision-makers with actionable information with the hope of
saving/improving human lives using mathematical models
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Team and collaborators in Epidemiological Forecasting: COVID-19
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Areas of Applied Mathematics and Mathematical Physics
used in my research:

* Linear Algebra

» Differential Equation
* Perturbation Theory
* Numerical Analysis
* Optimization

* Data Assimilation

* (Applied) Statistics
* Bayesian Statistics

* Signal Processing

* Time Series Analysis
* Uncertainty Quantification
* Machine Learning



Biosurveillance is a process of gathering, integrating, interpreting, and
communicating essential information that might relate to disease activity and
threats to human, animal, or plant health.




tracking, and communicating
information from multiple locations
in real-time

"

Predictive Analytics

<<<(A))>> Trillions of sensors are monitoring, Newspaper articles, Reports, etc

30+ petabytes of user-
generated data stored,
accessed, and analyzed

00Qle

Over 1 billion Google searches a day

~2 billion smartphones
world wide

230 million tweets every day Source: IBM



Big data

Weather information in
real-time

Newspaper articles, Reports, etc...

> s & ' /athenahealth

Electronic Health
Records (EHR)

30+ petabytes of user-
generated data stored,
accessed, and analyzed

Medicine and
/ Public Health \
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Over 1 billion Google searches a day .

~2 billion smartphones
world wide

230 million tweets every day



The challenge...

Real-time monitoring of disease activity, short-term forecasting (weeks),
long-term forecasting (months)
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The challenge...

, short-term forecasting (weeks),
long-term forecasting (months)
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The challenge...

Real-time monitoring of disease activity, ,
long-term forecasting (months)

Distribution Chart  Scores

|
Last

available
report

Actual
® Observed

History

Cl 90% none

Show all | none

Weighted ILI (%)

CDC
Baseline

I
I
I
I
I
I
I
I
I
: Short-term forecasting
I
I
I
I
I
I
I

|

| &
y Epidemi
3 pidemic

30 32 34 36 8 40 42 44 46 48 50 52 2 4 6 : 18 20 22 24 26 28  \yoek

Aug 17 Sep 17 Oct 17 Nov 17 Dec 17 Jan 18 Feb 18 Mar 18 Apr 18 May 18 Jun 18 Jul 18

Visualization borrowed from: http://reichlab.io/flusight/



The challenge...
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At what spatial resolution and time frequency?

Space: Country-level, state-level, city-level, neighborhood, hospital, patient?

Time: monthly, weekly, daily, hourly?
State

Hospital

Country

Patient?




What if we get it right?

NCEP Operational Forecast Skill

36 and 72 Hour Forecasts @ 500 MB over North America
[100 * (1-S1/70) Method]

- 36 Hour Forecast —e—72 Hour Forecast

Real-time tracking vs predictions of disease incidence/risk
Similarities and differences with weather prediction




Data streams

WIKIPEDIA

The Free Encyclopedia

Twitter and Wikipedia
activity
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Weather variables

Mosquito prevalence

Human mobility

Approach

Territory

Modeling
approaches

Mechanistic approaches

AV L A
\ f M\
w// N \\/ N

Machine-learning
approaches

Ensemble forecasting
approaches




Background: monitoring influenza in rich nations







Can Digital disease tracking pick up
ignals earlier ?

Traditional public health
confirmed information

(lagged 2-3 weeks)
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ARGO Prediction vs. CDC's ILI

—— CDC's ILI (with CDC's future revision)
——  ARGO prediction
1.96 x historical standard deviation
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Part 1. Previous success stories in tracking and forecasting
Influenza in data-rich high-income countries: USA

ARGO Prediction vs. CDC's ILI

prapsga
Wib.é =
'II/;% [—— CDC's ILI (with CDC's future revision)

|—— ARGO prediction
1.96 x historical standard deviation

[
L e
Jul 06 Jan 04 Jul 05 Jan 03 Jul 04 Jan 02 Jun 25
2013 2014 2014 2015 2015 2016 2016

[ UpToDate
1. Multiple spatial resolutions: National, multi-state, state, city-level

2. Multiple data sources (hybrid systems): traditional healthcare-based, EHR,
Google, Twitter, Crowd-sourced disease surveillance.



Part 2. Success stories in tracking and forecasting Flu, Zika,
Dengue, Ebola in data-poor medium- to low-income countries.

Dengue, Zika, and Flu

Countries/areas at risk of dengue transmission, 2008

Latin America
(Flu, Zika, Dengue)
South-east Asia
(Dengue)

West Africa

LIBERIA

71

Cholera

Cholera in Yemen

Middle East




Seminal work by Google

The promise of big data in public health

GOOGLE FLU TRENDS



natllr e International weekly journal of science

Letter

Google Flu Trends

Nature 457, 1012-10
A ed 13 N

19 Februar
Detecting influenza epidemics using search engine query
data

leremy Ginsbergl, Matthew H. Mohebbil, Rajan 5. Patel?, Lynnette E&rammerg,
Mark S. Smolinskit & Larry Brilliant?

PERCENT OF HEALTH VISITS FOR FLU-LIKE SYMPTOMS Mid-Atlantic region

Using Google to Monitor the Flu

8 percent 4 ESTRMATED ACTUAL measuring the frequency of certain search terms. Its findings
Based on Google As reported by closely track actual C.D.C. data and can, at times, anticipate the
Flu Trends data oe government reports
tracking flu-related r isease Cc g ‘ ’
search terms

through September




Google Flu Trends

What is the logic behind this approach?

bronchitis Pearson Correlations - Initial Period: 0.71, Whole Period: 0.68

Initial Training Reriod | Whole Testing Period
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bronchitis

2013 2014 20 2016 2017

Searches on “bronchitis” vs Flu activity in Scatter plot of searches vs flu
South Africa



Epidemiological information

google O rg Flu Trends available 2-3 weeks ahead of

traditional clinical tracking systems

| | | | | |
Week 43 Week 47 Week 51 Week 3 Week7 Week 11
Data available as of February 4,2008

| | | | | |
Week 43  Week 47 Week 51 Week 3 Week 7 Week 11
Data available as of March 3,2008

| | | | | | | |
Week 43  Week 47 Week 51 Week 3 Week 7 Week 11 Week 15 Week 19
Data available as of March 31,2008

| | | | | |
Week 43  Week 47  Week 51 Week 3 Week 7 Week 11 Week 15 Week 19
Data available as of May 12,2008

ILI percentage




What next? need to remove (not useful) terms. Big discrepancies again!

Google Flu Trends appears to have overstated 2012-13 U.S. fiu intensity

2008 Flu Trends algorithm 2009 Flu Trends algorithm Big
L & : -
discrepancy

\ again!

(§1/1 Buipue yeem)
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Flu Trends launch Algorithm update Data as of Feb. 4, 2013. Keith Winstein (keithw(@mit.edu)
Nov. 11, 2008 Sept. 24, 2009

Sources: http:/fwww.google.org/flutrendsfus, CDC ILInet data from http://gis_cdc. govigraspfluviewfluportaldashboard_himil,
Cook et al. (2011) Assessing Google Flu Trends Performance in the Uniled States during the 2009 Influenza Virus A (H1N1) Pandemic.

Fixes were reported in: Cook et al. (2011) Assessing Google flu trends performance in the U.S.
during the 2009 influenza virus A (H1IN1) pandemic. PLoS One

Plot obtained from: http://blog.keithw.org/2013/02/qg-how-accurate-is-google-flu-trends.html



tu FEVER PEAKS
na re International weekly journal of science A compa rison of three different methods of

measuring the proportion of the US population

with an influenza-like illness.

- Google Flu Trends
- CDC data
Flu Near You

When Google got flu wrong.

nature.com/news/when-google-got-flu-wrong.
Google's algorithms
overestimated peak
flu levels this year
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Forbes-  MewPests  MostPopular  Lists
N Snowden And The Challenge Of

Intelligence: The Practical Case
106 Against The NSA's Big Data
T B olBFE B A 2 comments, 7calledont  + commen tNow + Follow Comments

We should soon be able to keep track of most activities on the surface of the earth, day or

61

"
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{SILICON AMNGLE} SiliconANGLE » Can Nate Silver's Data Culture Lead Us Out Of The NSA + Public Data Scare?

“°% " Can Nate Silver’s Data Culture Lead
socxe - Us Out of the NSA + Public Data
SERVICES Scare?
DEVOPRS RYAN COX | SEPTEMBER 18TH
il flu.
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We proposed an alternative method and tested it using
low quality input from Google Correlate in January
2013.

(with D. Wendong Zhang)

New model:

1. Each search term may contribute to prediction of ILI rate
separately (multi-variate approach)

2. Relationship between search volume for each individual term

and proportion of ill people is dynamic and should be found
using supervised machine learning optimization techniques.

N

iy g 1 1 I
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Every week the multiplicative coefficients (B’s) would be automatically
updated by expanding the training set (labeled data) as new information
from the CDC became available.



AMERICAN JOURNAL OF
Preventive Medicine

Teaching and

What Can Digital Disease Detection Learn from We published a paper proposing
(an External Revision to) Google Flu Trends? changes to GFT’s engine (2014)

Mauricio Santillana, PhD, MS, D. Wendong Zhang, MA, Benjamin M. Althouse, PhD, ScM,
John W. Ayers, PhD, MA

© 2014 Published by Elsevier Inc. on behalf of American Journal of Preventive Medicine ~ Am J Prev Med 2014,47(3):341-347 341
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Google Research Blog

The latest news from Research at Google
Post-HIN1 1o

Figure 1. The alternative model outperforms Google Flu Trends

Google Flu Trends gets a brand new engine

Each y t
Google incorporated our proposed |
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Advances in nowcasting influenza-
like illness rates using search query

Google and collaborators published a
paper improving our AJPM 2014

logs

Vasileios Lampos _. Andrew C. Miller, Steve Crossan & Christian Stefansen

Scientific Reports 5,
Article number: 12760 (2015)
doi:10.1038/srep12760

Download Citation

Received: 07 May 2015
Accepted: 06 July 2015
Published online: 03 August 2015

Applied mathematics
Computer science Epidemiology

Influenza virus

We improved last effort by
Google team and published
our results in PNAS in
September 2015

methodology in August 2015
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Accurate estimation of influenza epidemics using
Google search data via ARGO

Shihao Yang®, Mauricio Santillana®<", and S. C. Kou™’

Department of Statistics, Harvard University, Cambridge, MA 02138; "School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
02138; and “Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115

Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved September 30, 2015 (received for review August 6, 2015)

Accurate real-time tracking of influenza outbreaks helps public health
officials make timely and meaningful decisions that could save lives.
We propose an influenza tracking model, ARGO (AutoRegression
with GOogle search data), that uses publicly available online search
data. In addition to having a rigorous statistical foundation, ARGO
outperforms all previously available Google-search-based tracking
models, including the latest version of Google Flu Trends, even
though it uses only low-quality search data as input from publicly
available Google Trends and Google Correlate websites. ARGO
not only incorporates the seasonality in influenza epidemics
but also captures changes in people’s online search behavior
over time. ARGO is also flexible, self-correcting, robust, and scal-
able, making it a potentially powerful tool that can be used for real-
time tracking of other social events at multiple temporal and
spatial resolutions.

CDC’s ILI reports have a delay of 1-3wk due to the time for
processing and aggregating clinical information. This time lag is
far from optimal for decision-making purposes. To alleviate this
information gap, multiple methods combining climate, demo-
graphic, and epidemiological data with mathematical models
have been proposed for real-time estimation of flu activity (18,
21-25). In recent years, methods that harness Internet-based
information have also been proposed, such as Google (1), Yahoo
(2), and Baidu (3) Internet searches, Twitter posts (4), Wikipedia
article views (5), clinicians’ queries (6), and crowdsourced self-
reporting mobile apps such as Influenzanet (Europe) (26),
Flutracking (Australia) (27), and Flu Near You (United States)
(28) Among them, GIT hdh ru.uvcd th most attention and
ha di
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Google discontinues Flu Trends indefinitely!

Google Research Blog

The latest news from Research at Google

The Next Chapter for Flu Trends

Posted: Thursday, August 20, 2015

Instead of maintaining our own website going forward, we're now going to empower institutions who specialize in
infectious disease research to use the data to build their own models. Starting this season, we'll provide Flu and

nfluenza Division. We will also continue to make historical Flu and Dengue estimate data available for anyone to

see and analyze.
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Google Flu Trends calls out sick, indefinitely

Google will pass along search queries related to the flu to health MORE LIKE THIS

organizations so they can develop their own prediction models , , . _ ,
Google Begins Tracking Swine Flu in Mexico

Fred O'Connor | Follow

Google's Panicky Flu Estimates
DG Mews Service |

Cooale
sl Were Dead Wrong

-

NEWS  EVENTS  RESEARCH SUBSCRIBE Signup|Login Q

BIG DATA

Google discontinues Flu Trends, starts offering data
to researchers

JORDAN NOVET ~ AUGUST 20, 2015 12:17 PM
TAGS: GOOGLE, GOOGLE FLU TRENDS



In collaboration with the CDC Influenza division, we are extending our work from National
and Regional predictions, to state-level and city level (Boston as a pilot)

Grant: Centers for Disease Control and Prevention’s Cooperative Agreement PPHF 11797 -
998G-15

Team members: Fred Lu, Leonardo C. Clemente
CDC liaison and collaborator: Matt Biggerstaff

CDC

CENTERS FOR DISEASE"
CONTROL AND PREVENTION

Prepared by Mauricio Santillana




Beyond Google searches...

[ UpToDate
PROVIDING ANSWERS TO

CLINICAL QUESTIONS What are people tweet|ng? What are they

What are doctors Searching for? reporting on crowd-sourced disease
surveillance apps?

athenahealth

- ;{‘. 0

Can we use Electronic Health Records (EHR) to
track disease incidence? What lab tests or
medications are doctors prescribing?



Beyond Google searches...

CDC, FNY unadjusted, FNY adjusted
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o » = a,ﬂfm ® @ I What are people tweeting? What are they

What are doctors searching for? reporting on crowd-sourced disease
surveillance apps?

Prediction

Can we use Electronic Health Records (EHR) to
track disease incidence? What lab tests or
medications are doctors prescribing?



Beyond Google searches...

Upper.respiratory.track.infection
Sinusitis

H9n2

Bronchitis

Pneumonia

etapneumo
Respirator

Search terms

Gripe

Grippe

H3n2

H5n1

H7n9

Hint

Patainfluenza

Flu

Haemophilus Influenzae
Influenza

May 2012

Sep 2012 Feb 2013 Jun 2013

What are people tweeting? What are they

What are doctors searching for? reporting on crowd-sourced disease

surveillance apps?

athenahealth

iy

Can we use Electronic Health Records (EHR) to
track disease incidence? What lab tests or
medications are doctors prescribing?



Beyond Google searches...

Where®is Up-to-date used?

What are people tweeting? What are they

What are doctors searching for? reporting on crowd-sourced disease
surveillance apps?

athenahealth

Can we use Electronic Health Records (EHR) to
track disease incidence? What lab tests or
medications are doctors prescribing?



Beyond Google searches...

OXFORD JOURNALS

Clinical Infectious Diseases

US]Ilg Climcians’ Search Query Da.ta validated traditional surveillance systems and have the potential

. . K to provide timely epi i c intelligence to inform preven-
to Monitor Influenza Epldemlcs tion messaging and healthcare facility staffing decisions.

The potential for the public’s search 2 y to be influenced
by anxiety, fears, and rumors raises concerns regarding reliabil-
ity [10-13]. Although recent revisi GFT have shown
that these concerns can be partially mitigated [13-15], shifting
Desartment of Internal Internet-based surveillance from the entire public to subject-

and “Department of matter experts may maintain timeliness while gener

Gill University & more reliable and stable signal requiring much less data.
cent small retrospective study using data on queries to a Finnish
primary care guidelines database demonstrated, for example,
that dise queries for Lyme e, tularemia, and
other infecti i s correlated well with concurrent
firmed cases [16].

Here, we show that UpToDate (www.upt

Mauricio Santillana,? Elaine 0. Nsoesie,** Sumiko R. Mekaru?
David Scales! and John 8. Brownstein®3®

ol of Enging

Search query information from a clinician’s database, UpTo-
Date, is shown to predict influenza epidemics in the United
States in a timely manner. Qur results show that digital di:

ease surveillance tools based on experts’ databases may be

AJ P M American Journal of
Preventive Medicine

Flu Near You: Crowdsourced Symptom Reporting Spanning
2 Influenza Seasons

Mark S. Smalinski, MD, MPH, Adam W. Crawley, MPH, Kristin Baltrusaitis, MA, Rumi Chunara, PhD, MS, Jennifer M. Olsen, DrPH, Oktawia Wjcik, PhD,
Mauricio Santillana, PhD, MS, Andre Nguyen, and John S. Brownstein, PhD, MPH

Digital communications technologies have rapidly

increased in use for public health disease sur- d Flu Near You (FNY}
n the United Stati

weillan ibile phones, tablets, digital pens, and
F demographi
_b:\u:]lmcﬁ. are making Jtp:&.\'bhf r surveillance each Monday to
and rapid response teams in even remote areas (ILI) experienced during the pre
of the giobe to carry out an essential function of escriptive statistics and rates of ILI for the 201
public health to protect against outbreaks of mpared raw and noise-filtered ILI rates with ILI rates from the Centers for
infectious disease. To date; public health surve Control and Prevention ILINet surv
lance has been limited by the capaity of public More than 61000 c submitted at le:
th authorities to conduct case and contact 2012-2013 season, totaling 327 773 reports. Nearly 40 000 participants submitted
t 1 report during the 2013-2014 season, totaling 336 933 reports. Rates of
ly with ILINet in both timing and magnitude.
tion, FNY hi
ment to existing outpatient, hospital-ba:
ystems. Although many establist
s dibility, p:
participatory surveillgmos gp- . salability. (Am J Public Health. Published online ahead of print

em. The increased use of

the public to activel
health surveillance s

able to provide an alternative, reliable, and stable signal for

proaches have leveraged online survey technol- ust 13 . doi:10.2105/AJPH.2015.302696)
accurate predictions of influenza outbreaks.

support Internet re:
ans in 158 coun nd almost 9

urveillance of human

Keywords.  digital disease detection; Internet-based disease

surveillance; prediction of influenza. ; . o .
P syndromic surveillance of influenza. Specifically, we use UpTe

Date’ ch query activity related to ILI to design a timely sen-
tinel of influenza i lence in the United Stat:

What are doctors searching for?

What are people tweeting? What are they
reporting on crowd-sourced disease
surveillance apps?

SCIENTIFIC REPg}RTS

Cloud-based Electronic Health

Records for Real-time, Region-
specific Influenza Surveillance

Received: 31 December 2015 | pm_gantillanal2?, A. T. Nguyen?, T. Louie*, A. ZinkS, J. Gray®, I. Sung® & J. 5. Brownsteinl?
Accepted: 20 April 2016

Can we use Electronic Health Records (EHR) to
track disease incidence? What lab tests or
medications are doctors prescribing?




Disease: Influenza

Goal: short-term
forecasting

Location: United States
(Data rich, wealthy
country)

Spatial resolution: Country
Method: Machine learning
Input data sources:

e Historical flu activity

* Google search activity

e Electronic Health
records

* Crowd sourced
information

Data streams
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Ensemble approaches yield more

accurate and more robust real-time and
forecast flu estimates

Influenza Positive Tests Reported to CDC by U.S. WHO/NREVSS
Collaborating Laboratories, National Summary, 2013-14
5,500

Percent Positive

® 2014-2015




Performance of individual data sources

CORR RMSE (%ILI) Rel RMSE (%) RMAE (%) Hit Rate

FNY 0.948  0.385 15.9 39.3 65.9
ATH 0.977  0.351 14.1 36.7 777

GT 0.978  0.245 13.3 42.9 65.9
GFT 0.980  0.333 12.3 35.3 75.3
TWT 0.937 0.414 15.1 50.1 62.4
CDC Baseline 0.930 0.501 18.2 46.7 68.2
CDC Virology 0.923 - - - 69.4

Santillana et al. PLoS Computational Biology, 2015



Performance ensemble

CORR RMSE (%ILI) Rel RMSE (%) RMAE (%) Hit Rate

FNY 0.948  0.385 15.9 39.3 65.9
ATH 0.977  0.351 14.1 36.7 777
GT 0.978  0.245 13.3 42.9 65.9

GFT 0.980  0.333 12.3 35.3 75.3
TWT 0.937 0.414 15.1 50.1 62.4
CDC Baseline 0.930 0.501 18.2 46.7 68.2
CDC Virology 0.923 - - - 69.4
SVM (RBF) 0.989 0.176 8.27 23.6 69.4

Santillana et al. PLoS Computational Biology, 2015



Performance of individual data sources

mmm CDC ILI

7Ll — FNY (lagged 1 week)
ATH
GT

— GFT
TWT
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Santillana et al. PLoS Computational Biology, 2015



Performance ensemble

CDC ILI
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Ensemble approaches yield more

accurate and more robust real-time and

forecast flu estimates

Yang et al. BMC Infectious Diseases (2017) 17:332

DOI 10.1186/512879-017-2424-7 BMC Infectious Diseases

Using electronic health records and @
Internet search information for accurate
influenza forecasting

Shihao Yang', Mauricio Santillana®", John S. Brownstein™®, Josh Gray®, Stewart Richardson® and S. C. Kou""

Abstract

Background: Accurate influenza activity forecasting helps public health officials prepare and allocate resources for
unusual influenza activity. Traditional flu surveillance systems, such as the Centers for Disease Control and Prevention’s
(CDQ) influenza-like illnesses reports, lag behind real-time by one to 2 weeks, whereas information contained in cloud-
based electronic health records (EHR) and in Internet users' search activity is typically available in near real-time. We
present a method that combines the information from these two data sources with historical flu activity to produce
national flu forecasts for the United States up to 4 weeks ahead of the publication of COC's flu reports.

Methods: We extend a methed originally designed to track flu using Google searches, named ARGO, to combine
information from EHR and Internet searches with historical flu activities. Our regularized multivariate regression model
dynamically selects the most appropriate variables for flu prediction every week. The model is assessed for the flu
seasons within the time pericd 2013-2016 using multiple metrics including root mean squared error (RMSE)

Results: Our method reduces the RMSE of the publicly available alternative (Healthmap flutrends) method by 33, 20, 17
and 21%, for the four time horizons: real-time, one, two, and 3 weeks ahead, respectively. Such accuracy improvements
are statistically significant at the 5% level. Our real-time estimates correctly identified the peak timing and magnitude of
the studied flu seasons.

Conclusions: Our method significantly reduces the prediction error when compared to historical publicly available
Internet-based prediction systems, demonstrating that: (1) the methed to combine data sources is as important as data quality;
(2) effectively extracting information from a cloud-based EHR and Internet search activity leads to accurate forecast of flu.

Keywords: Influenza-like illnesses reports, Digital disease detection, Dynamic error reduction, Velidation test, Autoregression

@ PLOS | satoermons:

RESEARCH ARTICLE

Combining Search, Social Media, and
Traditional Data Sources to Improve
Influenza Surveillance

Mauricio Santillana’?**, André T. Nguyen', Mark Dredze®, Michael J. Paul®, Elaine
0. Nsoesie®’, John S. Brownstein®3

ARGO Prediction vs. CDC's ILI
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Spatial-temporal synchronicities Flu-related Google search
information

Electronic 2
Health Recards

Lu F, Hattab M, Clemente L, Santillana M. Improved state-level influenza activity nowcasting in the United States leveraging
Internet-based data sources and network approaches via ARGONet. Nature Communications. 2019; 10 (147)



Heat map of pairwise %lLI correlations between all states.

Boxes denote clusters of highly correlated states.
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Refining the spatial resolution...

Tracking Flu using twitter
(Daily analysis in NYC)

Work with R. Nagar, Q. Yuan, C. Freifeld, A. Nojima, R. Chunara, and J. S. Brownstein



2.

Natural Language Processing
(Using geo-located tweets)

Identified tweets containing

“flu”, “influenza”, “gripe”, “high )
fever” Categories
Classified tweets in categories

“high fever”

in the conflict

a miracle.

[
] ara/ 3 he ay the hell
The flu is an epidemic he T schoo ca v T i i iih
7 7 @ Du [

o ke peop o ' ' First experiment: was done by hand...

the flu, but s people not

Nagar et al. (2014) Journal of Medical Internet Research. In press



Daily ILI visits (as reported by the NYC emergency department)
compared to predicted ILI using twitter data

ILI Reported NYC-ED

Predicted ILI using
Twitter
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Nagar et al. (2014) Journal of Medical Internet Research. In press



We will extend out methodology to finer spatial resolutions.
(Massachusetts and Boston)

Highlights: (a) dynamic-moving training window, (b) automatic feature selection, (c) ensemble approach

Ny flus
near you

“ . Crowd-sourced disease

* surveillance platform

Twitter
athenahealth ,

. 5 .
-
Lu F Hou S, Baltrusaitis K, Shah M, Leskovec J, Sosic R, Hawkins J, Brownstein JS, Conidi G, Gunn J, ..., Santillana M.
Accurate influenza monitoring and forecasting in the Boston metropolis using novel Internet data streams. Journal of
Medical Internet Research. 2018;4 (1) :e4.7
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Using multiple data sources to track flu in Boston

ARGO NowCast

T
— Official case count

— ARGO

ILI Rate

Plots produced by Fred Lu and Suqin Hou




Using multiple data sources to forecast flu in Boston

ARGO, one week ahead

T
— Official case count

ILI Rate

Plots produced by Fred Lu and Suqin Hou
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When combined, what are the
strongest predictors?

ARGO(athena+Google+FNY) nowcast
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When combined, what are the
strongest predictors?
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Hyper-local predictions
Can we predict daily emergency department visits in a hospital?
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Abstract
Objective

Emergency departments (EDs) are increasingly overcrowded. Forecasting
patient visit volume is challenging. Reliable and accurate forecasting strategies
may help improve resource allocation and mitigate the effects of overcrowding.
Patterns related to weather, day of the week, season, and holidays have been
previously used to forecast ED visits. Internet search activity has proven useful
for predicting disease trends and offers a new opportunity to improve ED visit
forecasting. This study tests whether Google search data and relevant statistical
methods can improve the accuracy of ED volume forecasting compared with
traditional data sources.



Daily Visits 2009-2015

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Seasonal Trend

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Noticeable Events
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In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Split data for modeling

Training/Fitting Testing

variable
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In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Current Staffing model = Day of Week
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MAPE = 11.0% Percent of days with bad staffing=11.2%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Add in Auto regression

MAPE = 8.4% Percent of days with bad staffing= 4.9%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Add in Weather Data

MAPE =7.9% Percent of days with bad staffing= 4.8%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis



Add in Calendar Data

MAPE =7.7% Percent of days with bad staffing= 3.8%



Add in Google Data

MAPE = 7.6% Percent of days with bad staffing= 3.3%

In collaboration with: Sam Tideman, Mauricio Santillana, Jon Bickel, and Ben Reis
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Machine learning approaches to predicting
no-shows in pediatric medical appointment
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Abstract

Patients' no-shows, scheduled but unattended medical appointments, have
a direct negative impact on patients’ health, due to discontinuity of
treatment and late presentation to care. They also lead to inefficient use of
medical resources in hospitals and clinics. The ability to predict a likely no-
show in advance could enable the design and implementation of
interventions to reduce the risk of it happening, thus improving patients’
care and clinical resource allocation. In this study, we develop a new

interpretable deep learning-based approach for predicting the risk of no-

shows at the time when a medical appointment is first scheduled. The



Fig. 1: Summary statistics of no-show rates and counts.

From: Machine learning approaches to predicting no-shows in pediatric medical appointment
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a Distribution of medical appointment no-show rates and counts over ages at a pediatric primary care clinic in a major
academic Children's Hospital in the U.S. (patients above age 18 were excluded from our analysis). b Distribution of no-show
rates and counts over days of the week. ¢ Distribution of no-show rates and counts over hours of day. d Distribution of no-
show rates and counts over visit types. e Distribution of no-show rates and counts over spoken languages (languages were

excluded from the predictive model training). f Distribution of no-show rates and counts over health insurance types.



Fig. 2: Feature importance in predicting no-shows.

From: Machine learning approaches to predicting no-shows in pediatric medical appointment
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Fig. 4: Performance of deep learning models predicting no-shows with
different approaches to handle missing information.

From: Machine learning approaches to predicting no-shows in pediatric medical appointment
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Toward the use of neural networks for influenza
prediction at multiple spatial resolutions
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Abstract

Mitigating the effects of disease outbreaks with timely and effective interventions requires
accurate real-time surveillance and forecasting of disease activity, but traditional health care-
based surveillance systems are limited by inherent reporting delays. Machine learning
methods have the potential to fill this temporal “data gap,” but work to date in this area has
focused on relatively simple methods and coarse geographic resolutions (state level and
above). We evaluate the predictive performance of a gated recurrent unit neural network
approach in comparison with baseline machine learning methods for estimating influenza
activity in the United States at the state and city levels and experiment with the inclusion of
real-time Internet search data. We find that the neural network approach improves upon
baseline models for long time horizons of prediction but is not improved by real-time internet
search data. We conduct a thorough analysis of feature importances in all considered models
for interpretability purposes.




State-level predictions

a Predictions of ILI in Oregon Using Only Historical Epi Data
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City-level predictions

a Predictions of ILI in Fort Myers, FLL Using Only Historical Epi Data
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Super-ensemble Seasonal Influenza Forecasting with Machine Learning Augmented
Mechanistic Models

Xinyue Xiong, Qian Zhang, Fred S. Lu, Mauricio Santillana, Alessandro Vespignani

BACKGROUND

Statistical Machine Learning Models Mechanistic Models
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Statistical machine learning models that harness
internet-based information have exhibited
desirable prediction accuracy of now-casting.

The mechanistic model Global Epidemic And Mobility
(GLEAM) have demonstrated the strong power of
inferring key epidemiological parameters.

To improve the accuracy and reliability of our GLEAM model without losing the power of

predicting epidemiological characteristics, we introduce a super-ensemble forecasting
framework.




Super-ensemble Seasonal Influenza Forecasting with Machine Learning Augmented
Mechanistic Models

Xinyue Xiong, Qian Zhang, Fred S. Lu, Mauricio Santillana, Alessandro Vespignani

APPROACH
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surveillance census area Averaging
data
observed augmented
ground truth | ground truth
- Augmented
Mechanistic L
Machine 1 week ahead . Mechanistic
3 — ] ! Prediction .
Learning prediction Prediction

Forecasting Framework: we collect surveillance data and digital

surrogates first to estimate the initial infections in each census area. Next, the
initial infection are seeded into the GLEAM simulator to generate a corpus of
epidemic models with predicted epidemic profiles. Meanwhile, the initial data are
fed into Machine Learning model to generate 1-wlp for ILI, which is used to
augment the ground truth ILI rate. The original and augmented ground truth are
plugged separately into the model selection to generate two corpus of epidemic
models, which are further assembled by Bayesian Model Averaging method to be
a Mechanistic super-ensemble and a Augmented Mechanistic super-ensemble.




Super-ensemble Seasonal Influenza Forecasting with Machine Learning Augmented
Mechanistic Models

Xinyue Xiong, Qian Zhang, Fred S. Lu, Mauricio Santillana, Alessandro Vespignani

Augmentation: The observed ground truth of GLEAM: A spatial,

weekly ILI rate (dotted black curve) is appended by the stochastic and indiv-
1-wlp (hollow black circle) by ARGO (dashed curve). idual based epidemic
This augmented ILI is used to compare with all the model utilizing human
epidemic profile predictions generated by GLEAM. The mobility infrastructur-
ones that are closer to the augmented ground truth es.

are selected (blue shadow) to form an augmented

ensemble prediction as the output of model selection ARGO" A machine

rocess. . .
P learning algorithm to
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Super-ensemble Seasonal Influenza Forecasting with Machine Learning Augmented
Mechanistic Models

Xinyue Xiong, Qian Zhang, Fred S. Lu, Mauricio Santillana, Alessandro Vespignani

RESULTS
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National Short & Long Term Forecasting: The upper/lower panel
compares the short/long-term forecast by non-augmented ensemble model £ (w)
and augmented model £ (w). Obviously the augmented prediction is more conci-
se and accurate in short-term targets, and converges faster in long-terms.




Super-ensemble Seasonal Influenza Forecasting with Machine Learning Augmented

observed

Mechanistic Models

Xinyue Xiong, Qian Zhang, Fred S. Lu, Mauricio Santillana, Alessandro Vespignani

season 2013/14 2015/16 2017/18
Effective reproduction number R§T [ 1.36 (1.35, 1.38) | 1.11 (1.10, 1.11) | 1.15 (1.13, 1.16)
Residual immunity r 0.34 (0.30, 0.38) | 0.21 (0.18, 0.23) | 0.15 (0.12, 0.17)
Average infectious time g~ 4.2 (4.0, 4.3) 2.7 (2.5, 2.8) 3.2 (2.9, 3.5)
ILI Patient visit rate 0.37 (0.31, 0.42) | 0.73 (0.69, 0.77) | 0.71 (0.67, 0.76)

Epidemic Parameters: estimated by £%(w)at the end of each season.

Calibration: for the 1-wlp, the pr-

edictions (blue dots) with probability
less than 0.1 are above the reference

line (black dashed line), implying over-

1-wlp Peak Intensity
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.
1.0

0.01 0.1

0.32
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confidence. While the peak intensity
shows well-calibrated.

State Forecasting:
Performance of £% () on
state level. The upper
map shows the Pears- on
correlation between the
1-wlp and the observed
wlLl incidences, while the
lower table shows the
accuracy of peak week
prediction half-month
prior to the actual peaks.




Part 2. Success stories in tracking and forecasting Flu, Zika,
Dengue, Ebola in data-poor medium- to low-income countries.

Dengue, Zika, and Flu

Countries/areas at risk of dengue transmission, 2008

Latin America
(Flu, Zika, Dengue)
South-east Asia
(Dengue)

West Africa

LIBERIA

71

Cholera

Cholera in Yemen

Middle East




Can these methodologies yield accurate estimates of flu in Low to middle income countries?
Yes, in selected countries where enough historical flu activity has been recorded over time

Latin America @ JMIR Publications  aces - ER

Brazil Peru i GFT

=~ FluNet
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4 JMIR Public Health and Surveillance 2 Journal Information~  Browse Journal »

| 20¢ Published on 4.4.2019 in Vol 5, No 2 (2019): Apr-Jun

X Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/12214, first published September 14,
00 2018.

Mexico Chile

Improved Real-Time Influenza Surveillance: Using

is Internet Search Data in Eight Latin American

Countries

Argentina Paraguay 60 Leonardo Clemente ; Fred Lu ; Mauricio Santillana

0 | [ Article Authors Cited by Tweetations Metrics
200 ——
10¢
Abstract
Uruguay Bolivia 800 e Abstract
80
| sox « Introduction Background:
= « Methods Novel influenza surveillance systems that leverage Internet-based real-time data sources including
| 40
40 « Results Internet search frequencies, social-network information, and crowd-sourced flu surveillance tools

| 200 have shown improved accuracy over the past few years in data-rich countries like the United States

+ Discussion These systems not only track flu activity accurately, but they also report flu estimates a week or

014

2012 2013 2 2015 2013 2014 2015 2016 2017 « Abbreviations more ahead of the publication of reports produced by healthcare-based systems, such as those
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Can these methodologies yield accurate estimates of flu in Low to middle income countries?

Yes, in selected countries where enough historical flu activity has been recorded over time
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Do these methods work for Emerging Disease Outbreaks in in the developing world?
Yes, with certain limitations

Yellow Fever in Angola
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Can other Internet-based data sourced be used to monitor emerging disease outbreaks in real time in
Africa?

Yes, news alerts related to the 2014 Ebola outbreak in Western Africa foreshadowed changes in the
local reproductive number
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Abstract
Transmission of dengue fever depends on a complex interplay of human, climate and

1. Introduction mosquito dynamics, which often change in time and space. It is well known that its
disease dynamics are highly influenced by multiple factors including population
2. Results susceptibility to infection as well as by microclimates: small-area climatic conditions
. ) which create environments favourable for the breeding and survival of mosqguitoes.
3. Discussion ) . ) .
Here, we present a novel machine learning dengue forecasting approach, which,
4. Material and methods dynamically in time and space, identifies local patterns in weather and population
susceptibility to make epidemic predictions at the city level in Brazil, months ahead of
Data availability the occurrence of disease outbreaks. Weather-based predictions are improved when
information on population susceptibility is incorporated, indicating that immunity is an
Authors' contributions important predictor neglected by most dengue forecast models. Given the
generalizability of our methodoelogy to any location or input data, it may prove veluable
for public health decision-making aimed at mitigating the effects of seasonal dengue
outbreaks in locations globally.

Competing interests

Funding



Predicting Dengue epidemic years in Brazil
months before they happen

Distribution of global dengue risk (Simmons CP et al, 2012)

Dengue risk

PN High suitability

B Low suitability

Unsuitadble/non-endemic




Can we leverage available weather information and susceptibility
to predict an epidemic year—in a wide range of locations?

Dengue cases in Rio de Janeiro

2003 2005 2007 2009 2011 2013
14000

10000 I

|
|
|
|
6000 ‘
|

2000

0

Assimilated weather information

(available for every location worldwide) Data driven identification of 3-4 year

susceptibility depletion cycles

Venezuela

Our contribution:
* Used assimilated weather data
e 20 cities with 17 years of data
* Improved results with new weather data
e Qut-of-sample predictions for 4-6 years
Paruarl * Incorporated susceptibility data
* Adaptive and dynamically calibrated

eam: Sarah McGough, Nathan Kutz, Mauricio Santillana




Can we leverage available weather information and susceptibility
to predict an epidemic year—in a wide range of locations?

(Results)

OOS Epidemic Predictions by City

Epidemic
Predicted

Correct
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. 1
!

Training
division




How do we incorporate DENV susceptibility cycles (3-4 years)?

e Data-driven Hidden Markov model

Transitioning to

Frequency of transition
calculated from the data

Transitioning from




How do we incorporate DENV susceptibility cycles (3-4 years)?

e Data-driven Hidden Markov model

Transitioning to

Transitioning from

ENSEMBLE APPROACH

Decision Rule:
IF probability of transition > percent of model votes
THEN overturn the vote




How do we incorporate DENV susceptibility cycles (3-4 years)?

e Data-driven Hidden Markov model

OOS Evaluation Metric Climate Climate + DENV Cycle
Accuracy 71.7% 75%

Hit rate (Sensitivity) 81% 78%

Non-epidemic detection rate 58% 71%

No-information rate 60% 60%

P(Accuracy > No-Information p = 0.005 p=0.0004

Rate)

Pattern N(overrides) Correct Incorrect
1110 ) 4 1

110 3 2 1

0001 0 - -

001 0




Can we leverage available weather information and susceptibility
to predict an epidemic year—in a wide range of locations?

(Results)

OOS Epidemic Predictions by City

Epidemic
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Incorporating human mobility data improves forecasts
of Dengue fever in Thailand
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Relative underprediction (%) Relative overprediction (%

]

Under- and over-prediction of outlier travel. Relative under-prediction (left) and over-prediction
(right) comparing observed mobility data (from CDRs) to estimated mobility data from the best fit
gravity model. We defined relative prediction error as 100%*(PredictedTrips -
ObservedTrips)/ObservedTrips. We highlight only observations with Cook's distance greater than
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Correlation of province-level dengue by distance, at different time lags. We show the mean cross-correlation coefficient (y-axis) for pairs of provinces at
binned distances (x-axis; 0 indicates correlation of an area with itself) for synchronous dengue (left panel) and lagged by 1 month (middle panel) and 3

months (right panel). The lines are separated based on the connectivity of pairs of provinces where the red line shows the bottom quartile of provinces in
terms of incoming and outgoing travel and the blue line shows the top quartile. Bangkok, an important travel hub, is in the approximate center of Thailand

and between 700 and 800 km from all other provinces, therefore the last two distance categories do not include Bangkok.



COVID-19




Coronavirus Disease (COVID - 19) Year of detection 2019

Caused by: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

It was first identified in December 2019 in Wuhan, China, and has resulted in an
ongoing pandemic.[10][11] The first case may be traced back to 17 November
2019.[12] As of 17 June 2020, more than 8.18 million cases have been reported
across 188 countries and territories, resulting in more than 443,000 deaths.

Common symptoms include fever, cough, fatigue, shortness of breath, and loss of
smell and taste.

Source:
Wikipedia



First detected in China
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Real-Time Forecasting of the COVID-19 Outbreak in
Chinese Provinces: Machine Learning Approach
Using Novel Digital Data and Estimates From
Mechanistic Models

Dianbo Liu '*2 @; Leonardo Clemente ; Canelle Poirier -2 @; Xiyu Ding " * @;
5,6
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Abstract Related Article

Introduction This is a corrected version. See correction statement in: https:www.jmir.org/2020/9/e23996/

Methods
Results Abstract

Discussion
: : Background:

The inherent difficulty of identifying and monitoring emerging outbreaks caused by novel pathogens
Abbreviations can lead to their rapid spread; and if left unchecked, they may become major public health threats to
the planet. The ongoing coronavirus disease (COVID-19) outbreak, which has infected over
2,300,000 individuals and caused over 150,000 deaths, is an example of one of these catastrophic
events.

References

Copyright

Objective:

We present a timely and novel methodology that combines disease estimates from mechanistic
models and digital traces, via interpretable machine learning methodologies, to reliably forecast
COVID-19 activity in Chinese provinces in real time.
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RMSE Relative Improvement (average)
Chinese provinces




COVID-2019 Coronavirus
confirmed cases by country/region

I 1.000+
Bl 100-999
- BRE
Bl 0-40
5-9
1-4

none

Date

Source:
Wikipedia



10-30

I 300-1,000 0-10
. 100-30 None or no data

Source:
30-100 Wikipedia




scientific reports

Explore our content v  Journal information v  Publish with us v

nature > scientific reports > articles > article

Article | Open Access | Published: 12 October 2020

The role of environmental factors on transmission
rates of the COVID-19 outbreak: an initial assessment
in two spatial scales

Canelle Poirier =1, Wei Luo, Maimuna S. Majumder, Dianbo Liu, Kenneth D. Mandl, Todd A. Mooring &
Mauricio Santillana

Scientific Reports 10, Article number: 17002 (2020) | Cite this article
7516 Accesses | 3 Citations | 347 Altmetric | Metrics




Background
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“[...] the timing of pandemic
influenza outbreaks is controlled
by a combination of absolute
humidity conditions, levels of
susceptibility, and changes in
population-mixing and contact

rates.”
These observed relationships in

influenza transmission have been
assumed (without any evidence)
for the ongoing COVID-19
outbreak. It has been stated that
COVID-19 transmission will
decrease as warmer temperatures
(leading to higher absolute
humidity conditions) are
experienced in the upcoming
spring months

From:J. Shaman, E. Goldstein, M. Lipsitch, Absolute Humidity and Pandemic Versus Epidemic
Influenza, American Journal of Epidemiology, Volume 173, Issue 2, 15 January 2011, Pages 127-135,



Our findings :

A novel coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, in December
2019 and has caused over 240,000 cases of COVID-19 worldwide as of March 19, 2020. Previous
studies have supported an epidemiological hypothesis that cold and dry environments facilitate the
survival and spread of droplet-mediated viral diseases, and warm and humid environments see
attenuated viral transmission (e.g., influenza). However, the role of temperature and humidity in
transmission of COVID-19 has not yet been established. Here, we examine the spatial variability of the
basic reproductive numbers of COVID-19 across provinces and cities in China and show that
environmental variables alone cannot explain this variability. Our findings suggest that changes in
weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the
Northern Hemisphere) will not necessarily lead to declines in case count without the implementation of
extensive public health interventions.



Calculating a proxy for RO

C(t+2d) - C(t+d)
C(t+d)—C(t)

Rpfroa:y (ty d) —

C(t) is the total cumulative cases at time t, and d =5,6,7 is an estimate of the
serial interval
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Estimated reproductive number
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An early warning approach to monitor COVID-19 activity
with multiple digital traces in near real time
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Abstract

Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent
transmission-containing strategies, outbreaks have continued to emerge across the United
States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully
timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for
this. Here, we evaluate digital data streams as early indicators of state-level COVID-19 activity
from 1 March to 30 September 2020. We observe that increases in digital data stream activity
anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and
deaths also decrease 2 to 4 weeks after NP| implementation, as measured by anonymized,
phone-derived human mobility data. We propose a means of harmonizing these data streams
to identify future COVID-19 outbreaks. Our results suggest that combining disparate health
and behavioral data may help identify disease activity changes weeks before observation
using traditional epidemioclogical monitoring.
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Abstract

Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent
transmission-containing strategies, outbreaks have continued to emerge across the United
States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully
timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for
this. Here, we evaluate digital data streams as early indicators of state-level COVID-19 activity
from 1 March to 30 September 2020. We observe that increases in digital data stream activity
anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and
deaths also decrease 2 to 4 weeks after NPl implementation, as measured by anonymized,
phone-derived human mobility data. We propose a means of harmonizing these data streams
to identify future COVID-19 outbreaks. Our results suggest that combining disparate health
and behavioral data may help identify disease activity changes weeks before observation
using traditional epidemiological monitoring.




Data Sources

We were interested in comparing the performance of digital data sources (COVID-19 “proxies”) to the performance of
traditional COVID-19 measures (“gold standards”) in forecasting sharp changes in epidemic activity
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Fig. | - Time series for COVID-19 proxies and gold standards

Legend (delays represent lags in data availability):
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Fig. lll - Uptrends and downtrends are detected earliest for

Twitter and Cuebiq, respectively, across the US
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Fig. IV - Evolving posterior probability distribution for time-to-
event estimation in New York
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How many people have been affected in the US?
Why should we estimate prevalence?

€he New Hork imes

Widespread spatial transmission of COVID-19 can only be explained by high number of unreported cases (> 85% ?)



1.

Spatial patterns of COVID-19
transmission could not be
observed under currently
reported numbers

Unreported cases are driving
transmission in the US

Evidence that this happened in
China suggests that 86% of
infections were undetected

Given the level of testing in the
USA, this number could be higher
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Substantial undocumented infection facilitates the
rapid dissemination of novel coronavirus (SARS-CoV2)

Ruiyun Li"", Sen Pei2", Bin Chen®", Yimeng Song?, Tao Zhang®, Wan Yang®, Jeffrey Shaman?®*
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Article

Abstract

Estimation of the prevalence and contagiousness of undocumented novel coronavirus (SARS-
CoV?2) infections is critical for understanding the overall prevalence and pandemic potential of
this disease. Here we use observations of reported infection within China, in conjunction with
mobility data, a networked dynamic metapopulation model and Bayesian inference, to infer
critical epidemiological characteristics associated with SARS-CoV2, including the fraction of
undocumented infections and their contagiousness. We estimate 86% of all infections were
undocumented (95% ClI: [82%—90%]) prior to 23 January 2020 travel restrictions. Per person,
the transmission rate of undocumented infections was 55% of documented infections ([46%—
62%]), yet, due to their greater numbers, undocumented infections were the infection source
for 79% of documented cases. These findings explain the rapid geographic spread of SARS-
CoV2 and indicate containment of this virus will be particularly challenging.




Why should we estimate prevalence?
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Interventions (non-pharmaceutical) need to be implemented according to prevalence
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Estimating the cumulative incidence of COVID-19 in the
United States using influenza surveillance, virologic testing,
and mortality data: Four complementary approaches
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Abstract

Effectively designing and evaluating public health responses to the ongoing COVID-19
pandemic requires accurate estimation of the prevalence of COVID-19 across the United States
(US). Equipment shortages and varying testing capabilities have however hindered the
usefulness of the official reported positive COVID-19 case counts. We introduce four
complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in
each state in the US as well as Puerto Rico and the District of Columbia, using a combination of
excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and
a spatially structured epidemic model. Instead of relying on the estimate from a single data
source or method that may be biased, we provide multiple estimates, each relying on different
assumptions and data sources. Across our four approaches emerges the consistent conclusion
that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official
positive test counts across the different states. Nationally, our estimates of COVID-19
symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million, with possibly as many
as 7.6 million cases, up to 25 times greater than the cumulative confirmed cases of about
311,000. Extending our methods to May 16, 2020, we estimate that cumulative symptomatic
incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million positive test counts. The
proposed combination of approaches may prove useful in assessing the burden of COVID-19
during resurgences in the US and other countries with comparable surveillance systems.




Subset of US states
As of April 4th, 2020
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As of April 4th, 2020
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As of April 4th, 2020 )
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Socioeconomic status determines COVID-
19 incidence and related mortality in
Santiago, Chile
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Abstract

The current COVID-19 pandemic has impacted cities particularly hard. Here, we provide an in-
depth characterization of disease incidence and mortality, and their dependence on
demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of
Chile. Our analyses show a strong association between socioeconomic status and both
COVID-19 outcomes and public health capacity. People living in municipalities with low
socioeconomic status did not reduce their mobility during lockdowns as much as those in
more affluent municipalities. Testing volumes may have been insufficient early in the
pandemic in those places, and both test positivity rates and testing delays were much higher.
We find a strong association between socioeconomic status and mortality, measured either by
COVID-19 attributed deaths or excess deaths. Finally, we show that infection fatality rates in
young people are higher in low-income municipalities. Together, these results highlight the
critical consequences of socioeconomic inequalities on health outcomes.
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SARS-CoV-2 RNA concentrations in
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cases
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Figure 2: Evolution of COVID-19 deaths vs Political leaning. COVID-19 attributed deaths (per 10,000) at the county level
as a function of vote share in favor of J. Biden (Democratic) vs D.J. Trump (Republican), the 2020 presidential candidates,

during the three time periods of interest. Inspiration for this figure comes from a David Leonhardt’s New York Times article,
”Red COVID” [19].
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Figure 3: A breakdown of COVID-19 presence across the time periods of interest. (A) The percentage of deaths in the

« 4

nation by time period, both nationwide and by Census region. Other than the Northeast, which was hit hard in the first period,
the nation was hit hardest in period 3, as pointed out in [20]. (B) COVID-19 onset at the county-level. A county is treated as
infected once it has experienced at least 5 COVID-related deaths. We see the movement of COVID from the cities and coastal

areas to the center of the county over the course of the year.
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Abstract

On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019
(COVID-19) a pandemicl. The strategies based on non-pharmaceutical interventions that
were used to contain the outbreak in China appear to be effective?, but quantitative research
is still needed to assess the efficacy of non-pharmaceutical interventions and their timings>.
Here, using epidemiological data on COVID-1?9 and anonymized data on human
movement*3, we develop a modelling framework that uses daily travel networks to simulate
different outbreak and intervention scenarios across China. We estimate that there were a
total of 114,325 cases of COVID-19 (interquartile range 76,776-164,576) in mainland China as
of 29 February 2020. Without non-pharmaceutical interventions, we predict that the
number of cases would have been 67-fold higher (interquartile range 44-94-fold) by 29
February 2020, and we find that the effectiveness of different interventions varied. We
estimate that early detection and isolation of cases prevented more infections than did
travel restrictions and contact reductions, but that a combination of non-pharmaceutical

interventions achieved the strongest and most rapid effect. According to our model, the
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a-c, Estimates for the city of Wuhan. d-f, Estimates for cities outside of Hubei province in mainland China. The blue lines represent estimated
transmission under combined NPIs, and the other coloured lines represent the scenario without one type of intervention. Data are presented as the
median (solid line) and IQR (shading) of estimates (1,000 simulations). The orange vertical lines indicate the date on which the lockdown of Wuhan began
(23 January 2020).
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High coverage COVID-19 mRNA vaccination rapidly
controls SARS-CoV-2 transmission in long-term care
facilities
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Abstract

Background

Residents of Long-Term Care Facilities (LTCFs) represent a major share of COVID-19
deaths worldwide. Measuring the vaccine effectiveness among the most vulnerable in

these settings is essential to monitor and improve mitigation strategies.




Fig. 1: Documented infections and vaccinations in Catalonia, July 6, 2020-March 28,
2021.

From: High coverage COVID-19 mRMNA vaccination rapidly controls SARS-CoV-2 transmission in long-term care facilities
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a Comparison of the total community (gray) and LTCFs' doecumented infections (red) trajectories in Catalonia, Spain. b First and second dose vaccine
coverage among LTCFs' residents.




Fig. 2: Predicted vs. observed SARS-CoV-2 infections, deaths, and transmission events
in Catalonia.

From: High coverage COVID-19 mRNA vaccination rapidly controls SARS-CoV-2 transmission in long-term care facilities
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The predictions for infections (a) and deaths (b) across all of Catalonia. The solid lines show the model predictions from training July 8, 2020 through
December 27, 2020, the darker shaded background shows the 50% prediction intervals (Pl), and the lighter background shows the 90% PI. Vertical
lines show key analysis time points: when vaccination started (solid), when 70% of residents received the first dose and when 70% of residents
received the second dose. ¢ The ratio between observed and predicted transmission at county level in Catalonia, represented by point estimates, gray
for the training period and green for the prediction period; gray horizontal ribbon represents the 90% confidence interval. Solid green areas represent

the prediction periods after vaccination starts.
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Real-Time Forecasting of the COVID-19 Outbreak in
Chinese Provinces: Machine Learning Approach
Using Novel Digital Data and Estimates From
Mechanistic Models
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Abstract Related Article

Introduction This is a corrected version. See correction statement in: https:www.jmir.org/2020/9/e23996/

Methods
Results Abstract

Discussion
: : Background:

The inherent difficulty of identifying and monitoring emerging outbreaks caused by novel pathogens
Abbreviations can lead to their rapid spread; and if left unchecked, they may become major public health threats to
the planet. The ongoing coronavirus disease (COVID-19) outbreak, which has infected over
2,300,000 individuals and caused over 150,000 deaths, is an example of one of these catastrophic
events.

References

Copyright

Objective:

We present a timely and novel methodology that combines disease estimates from mechanistic
models and digital traces, via interpretable machine learning methodologies, to reliably forecast
COVID-19 activity in Chinese provinces in real time.
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Background

+ Transmission
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“[...] the timing of pandemic
influenza outbreaks is controlled
by a combination of absolute
humidity conditions, levels of
susceptibility, and changes in
population-mixing and contact

rates.”
These observed relationships in

influenza transmission have been
assumed (without any evidence)
for the ongoing COVID-19
outbreak. It has been stated that
COVID-19 transmission will
decrease as warmer temperatures
(leading to higher absolute
humidity conditions) are
experienced in the upcoming
spring months

From:J. Shaman, E. Goldstein, M. Lipsitch, Absolute Humidity and Pandemic Versus Epidemic
Influenza, American Journal of Epidemiology, Volume 173, Issue 2, 15 January 2011, Pages 127-135,



Our findings :

A novel coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, in December
2019 and has caused over 240,000 cases of COVID-19 worldwide as of March 19, 2020. Previous
studies have supported an epidemiological hypothesis that cold and dry environments facilitate the
survival and spread of droplet-mediated viral diseases, and warm and humid environments see
attenuated viral transmission (e.g., influenza). However, the role of temperature and humidity in
transmission of COVID-19 has not yet been established. Here, we examine the spatial variability of the
basic reproductive numbers of COVID-19 across provinces and cities in China and show that
environmental variables alone cannot explain this variability. Our findings suggest that changes in
weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the
Northern Hemisphere) will not necessarily lead to declines in case count without the implementation of
extensive public health interventions.



Calculating a proxy for RO

C(t+2d) - C(t+d)
C(t+d)—C(t)

Rpfroa:y (ty d) —

C(t) is the total cumulative cases at time t, and d =5,6,7 is an estimate of the
serial interval
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Estimated reproductive number
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Towards the Development of Decision-Support
Tools for the Pediatric Intensive Care Unit

Mauricio Santillana, PhD (msantill@fas.harvard.edu)

Collaborators: Gaston Fiore, David Castineira (MIT), Brian Walsh, Yuval Barak Corren, Katherine
Schlosser, John Arnold, Craig Smallwood, and many others | have not met.




Philosophy: we do not aspire to replace clinicians by “smart
automatic systems/robots”, instead, we aspire to help medical
teams make better decisions systematically.
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Goals:

1. Use real-time data from monitors (vital signs + mechanical ventilation) to perform
event detection

2. Learn from historical patterns to improve care to children and potentially reduce
costs in the most expensive unit in the hospital.




Goals:

Use real-time data from monitors (vital signs + mechanical ventilation) to perform

event detection

Learn from historical patterns to improve care to children and potentially reduce

costs in the most expensive unit in the hospital.

Early detection of Ventilator
Associated Conditions (vAcs are
associated to increased mortality)
Continuous assessment of
readiness to extubate a patient

(reduce re-intubation cases and prevent
infections and VACs)

Early determination of long
lengths of stay in the ICU (improve

resource allocation across the hospital)
Real-time determination of vital

signs percentile curves (improve
patient assessment in real-time)
Continuous monitoring of

sedation levels (may prevent over-
sedation and may reduce length of stay)
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Thank you!

Contact: msantill@g.harvard.edu
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