

Introduction to SIR Modeling

13th Annual Mathematical Modeling and Public Health Workshop

Kirstin Oliveira Roster
Postdoctoral research fellow
<u>kroster@hsph.harvard.edu</u>

Infectious disease burden

Economic burden

US\$ 8 trillion

Health burden

168 million disability-adjusted life years lost

* of just 8 infectious diseases in a single year (HIV/AIDS, malaria, measles, hepatitis, dengue fever, rabies, tuberculosis and yellow fever)

Infectious disease burden

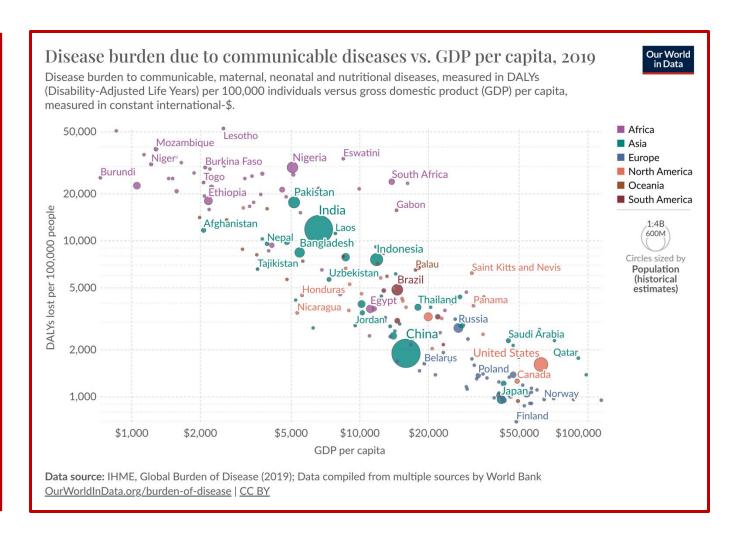
Economic burden

US\$8 trillion

Health burden

168 million disability-adjusted life years lost

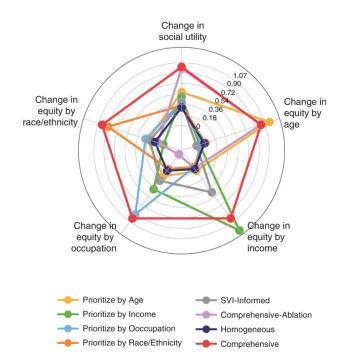
* of just 8 infectious diseases in a single year (HIV/AIDS, malaria, measles, hepatitis, dengue fever, rabies, tuberculosis and yellow fever)



Mathematical models to achieve public health goals

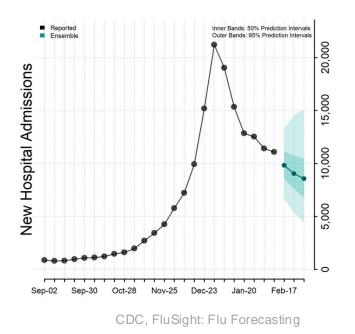
Prevention

Which vaccine allocation strategy is most equitable?



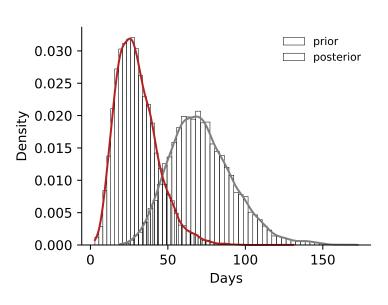
Prediction

How many hospitalizations?



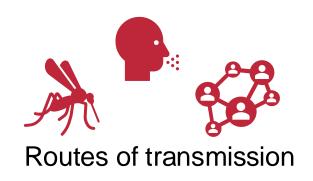
Understanding

How long is the latent* period?



*Latent period = time between infection and onset of symptoms

Characterizing infectious diseases



Disease control interventions

Anopheles

Image: Wikipedia

- Active between sunset and sunrise
- Breed in natural bodies of water
- Multiple hosts

Insecticide treated bed nets

Image: USAID

Anopheles

Image: Wikipedia

- Active between sunset and sunrise
- Breed in natural bodies of water
- Multiple hosts

Dengue Fever

Aedes

Image: Wikipedia

- Daytime feeders
- Highly domesticated
- Human is preferred host

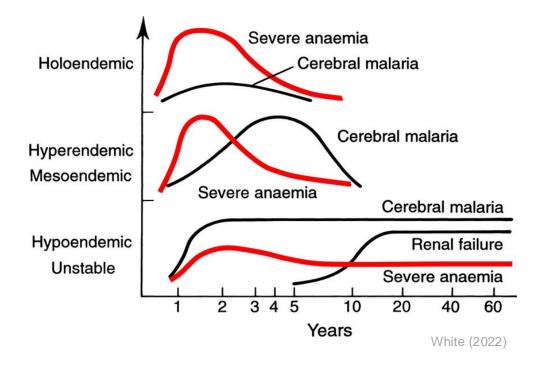
Insecticide treated bed nets

Image: USAID

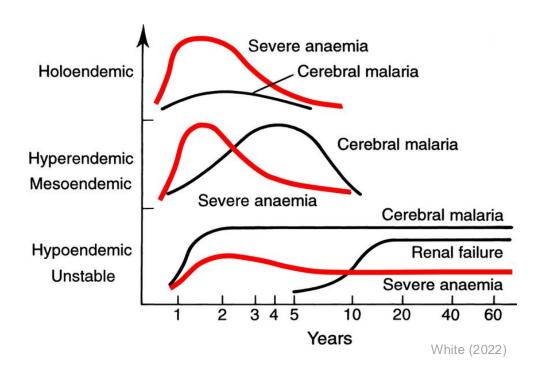
Removal of open water containers

Images: Municipal Government of Acerburgo, BR; FAPTO

Prior infection conveys some protection against reinfection and severe outcomes

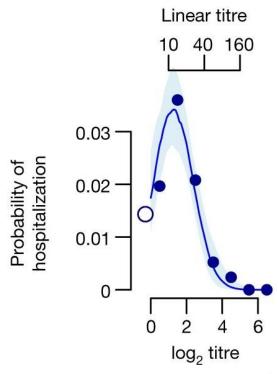


Prior infection conveys some protection against reinfection and severe outcomes



Dengue Fever

Prior infection increases the risk of severe dengue

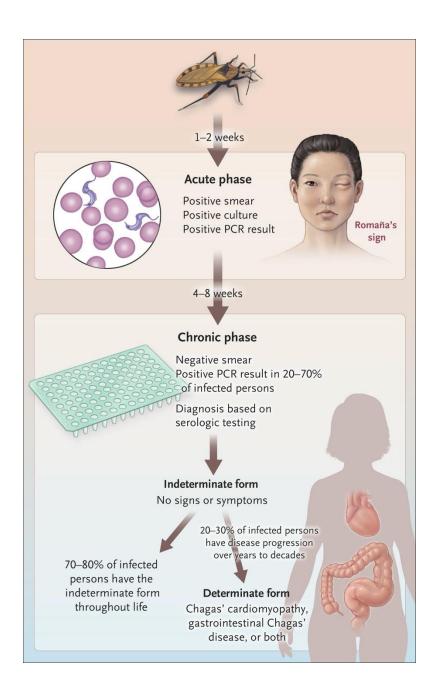


Salje et al. (2018)

Chagas Disease

Carlos Chagas (1879 – 1934)

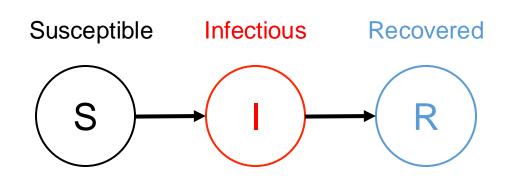
Image: Casa de Oswaldo Cruz

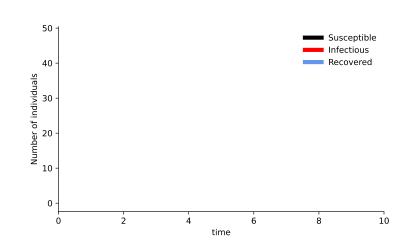


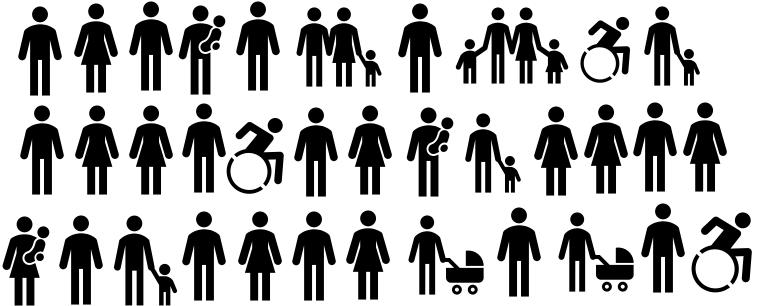
Vector control

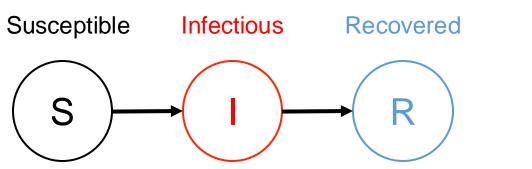
Image: PAHO

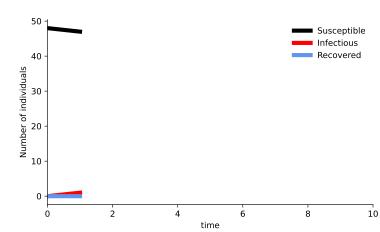
Translating a disease process into a mathematical model

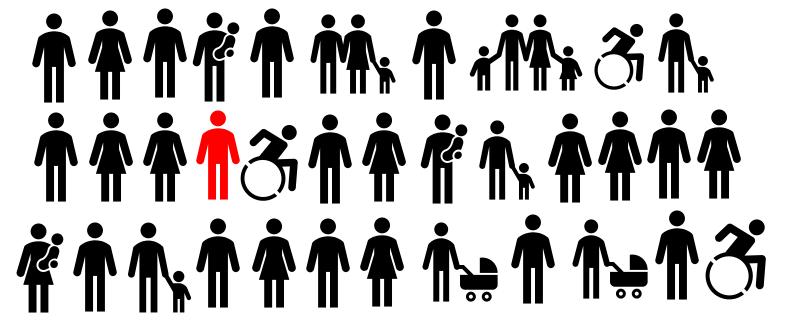




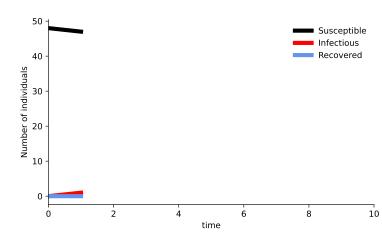


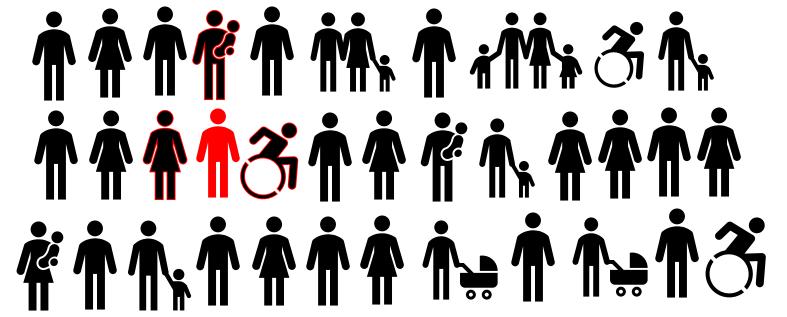


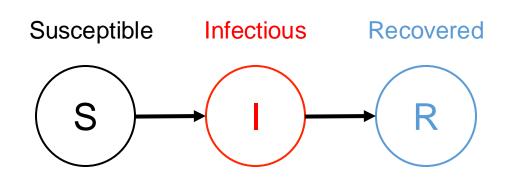


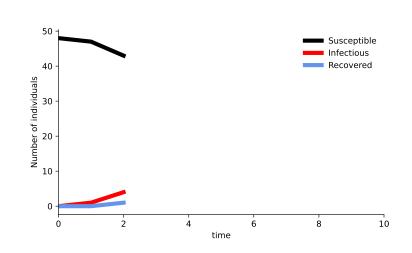


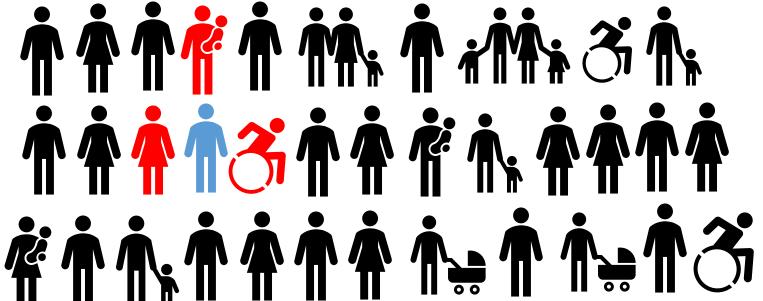


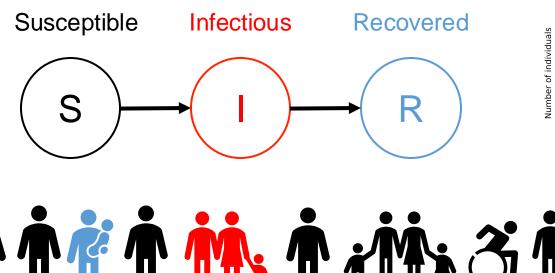


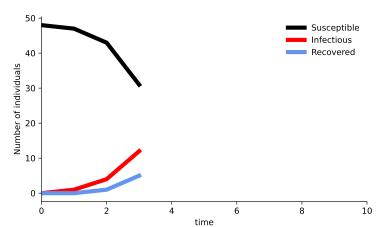


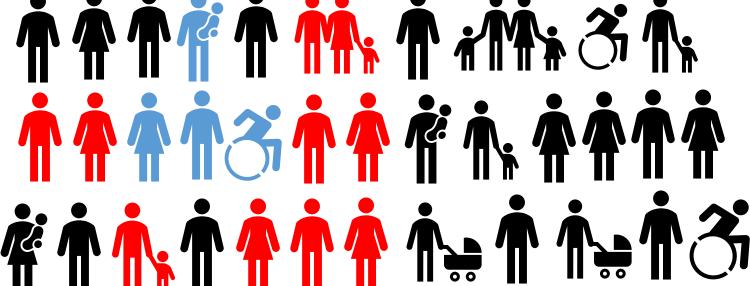


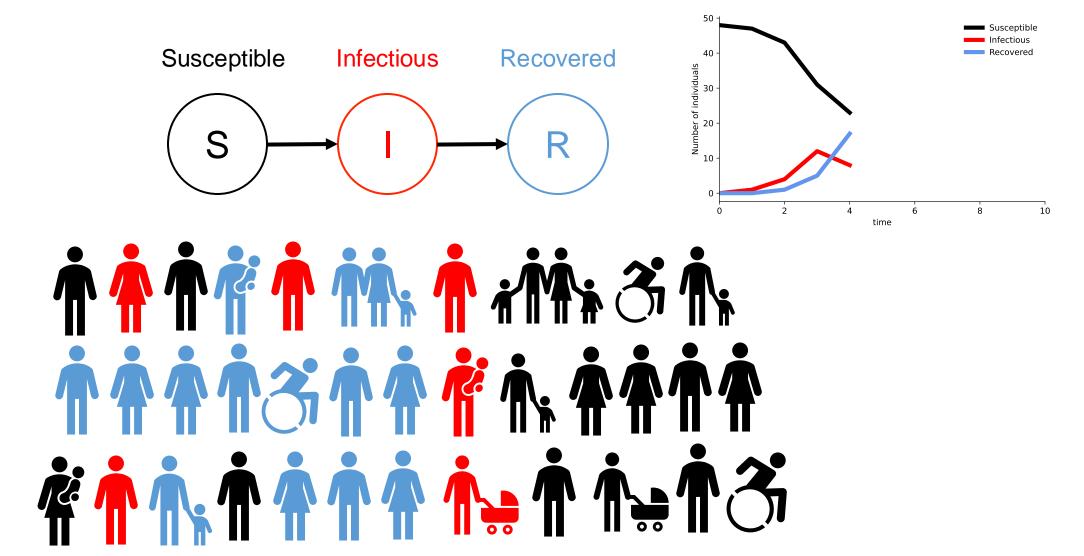


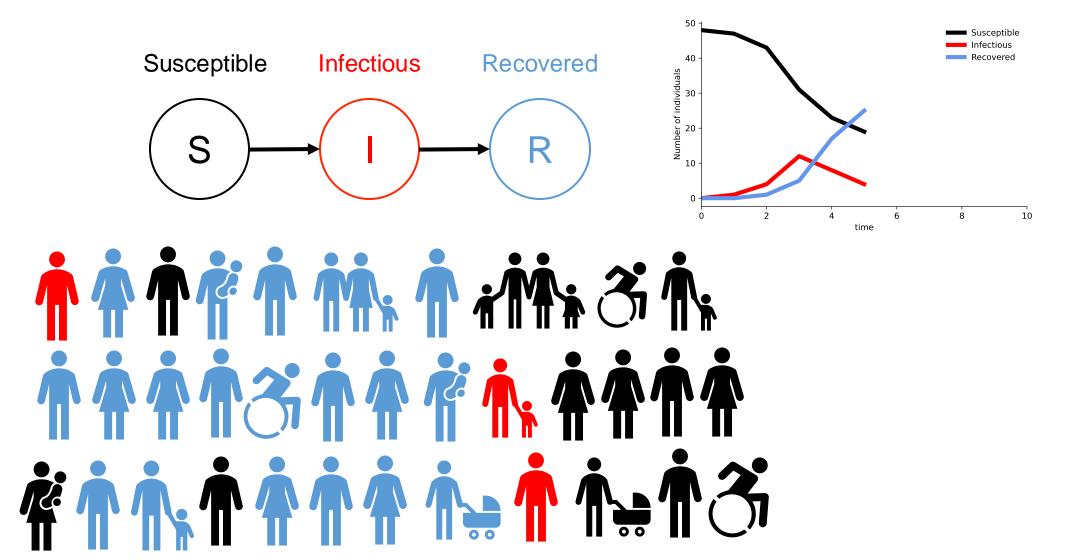


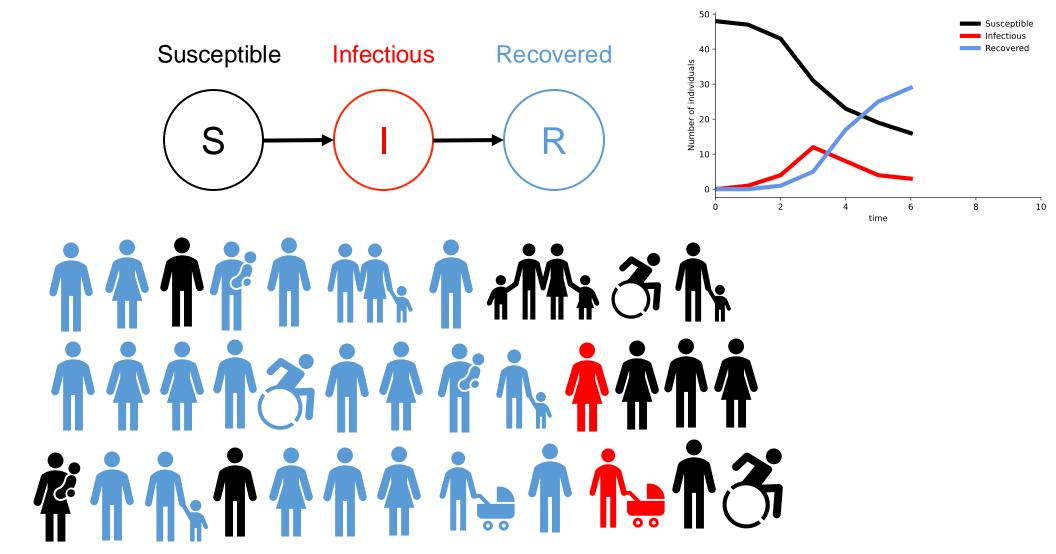




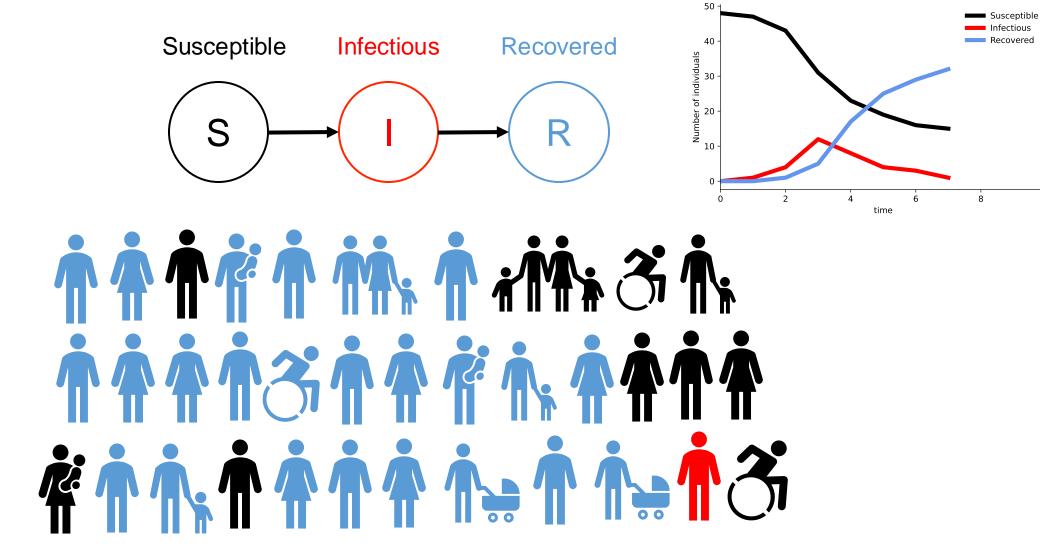






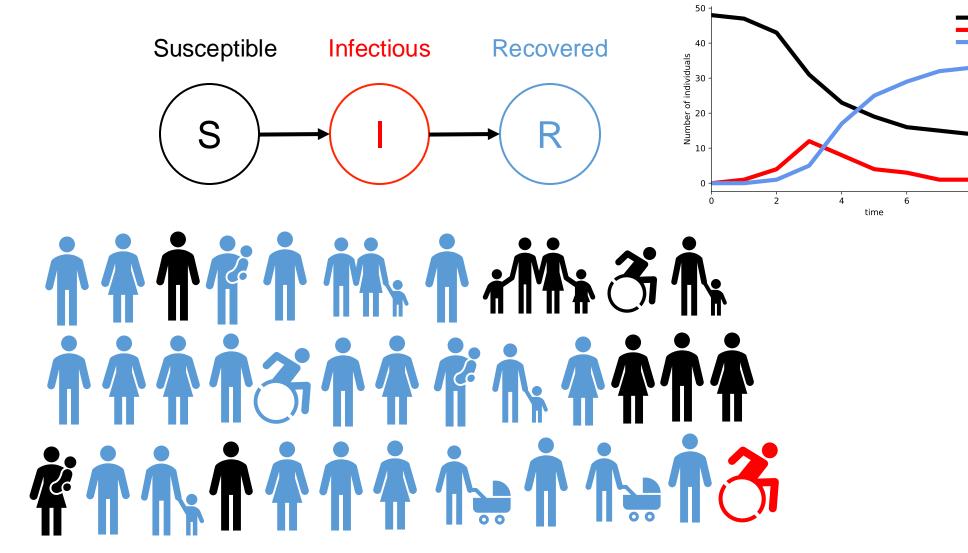


10



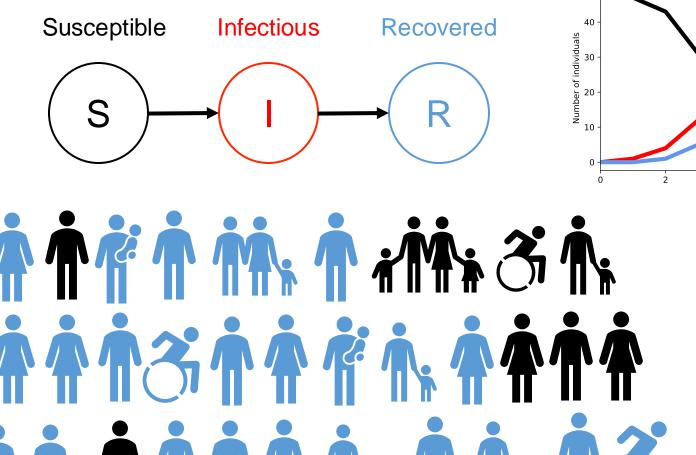
Susceptible

10

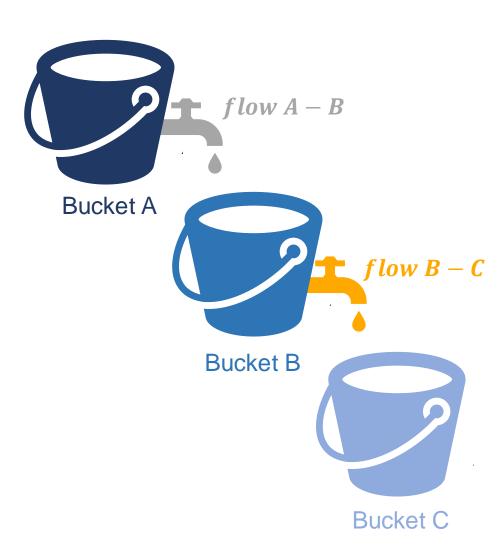


time

Susceptible



Compartmental models



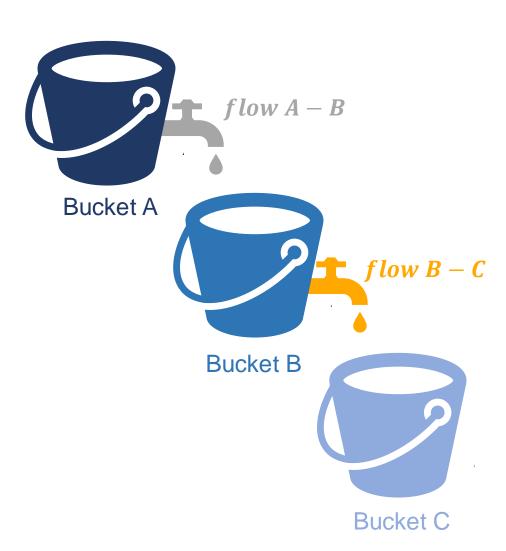
Difference equations

Bucket A (t+1) = Bucket A (t) – flow A-B

Bucket B (t+1) = Bucket B (t) + flow A-B - flow B-C

Bucket C (t+1) = Bucket C (t) + flow B-C

Compartmental models



Difference equations

Differential equations

$$\frac{dA}{dt} = -a A$$

$$\frac{dB}{dt} = a A - b B$$

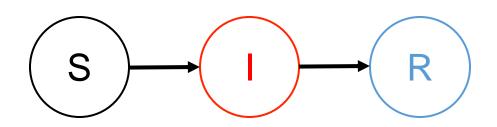
$$\frac{dC}{dt} = b B$$

Susceptible Infectious Recovered Recovered

$$\frac{dS}{dt} = -(\text{rate out})S$$

$$\frac{dI}{dt} = (\text{rate in})S - (\text{rate out})I$$

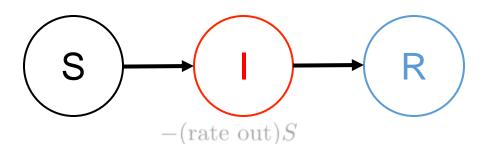
$$\frac{dR}{dt} = (\text{rate in})I$$



$$\frac{dS}{dt} = \frac{-(\text{rate out})S}{-(\text{infectiousness} * P(\text{contact with infectious person}))S}$$

$$\frac{dI}{dt} = (\text{rate in})S - (\text{rate out})I$$

$$\frac{dR}{dt} = (\text{rate in})I$$



-(infectiousness * P(contact with infectious person))S

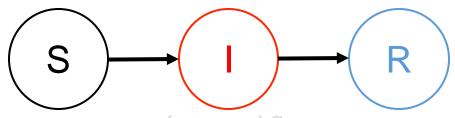
$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$

$$\frac{dI}{dt} = (\text{rate in})S - (\text{rate out})I$$

$$\frac{dR}{dt} = (\text{rate in})I$$

 β : infectiousness

 $N: population size \rightarrow N = S+I+R$



-(rate out)S

-(infectiousness * P(contact with infectious person))S

$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

(rate in)S - (rate out)I

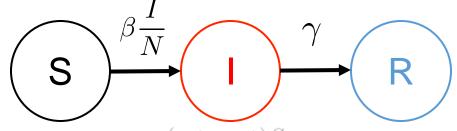
$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = (\text{rate in})I$$

 β : infectiousness

 $N: population size \rightarrow N = S+I+R$

 γ : recovery



$$-(\text{rate out})S$$

-(infectiousness * P(contact with infectious person))S

$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

(rate in)S - (rate out)I

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

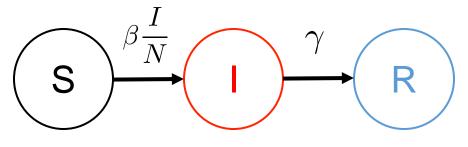
$$\frac{dR}{dt} = \gamma I$$
 (rate in) I

 β : infectiousness

 $N: population size \rightarrow N = S+I+R$

 γ : recovery

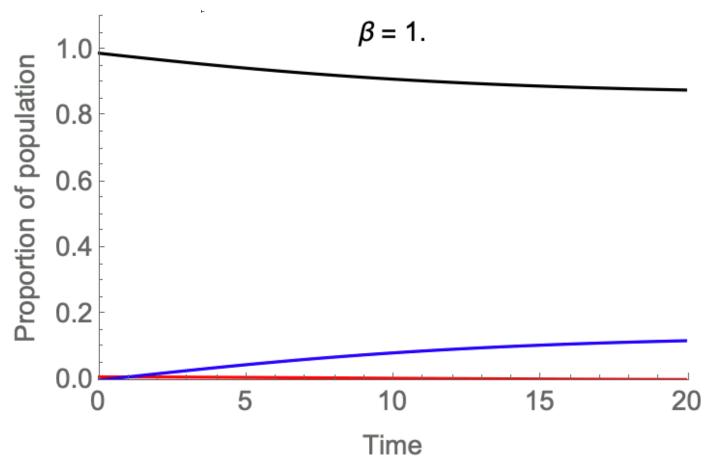
R



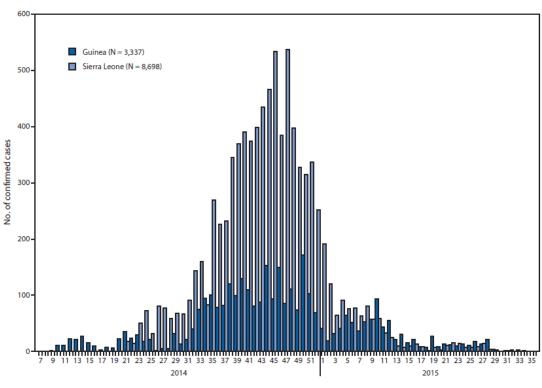
$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

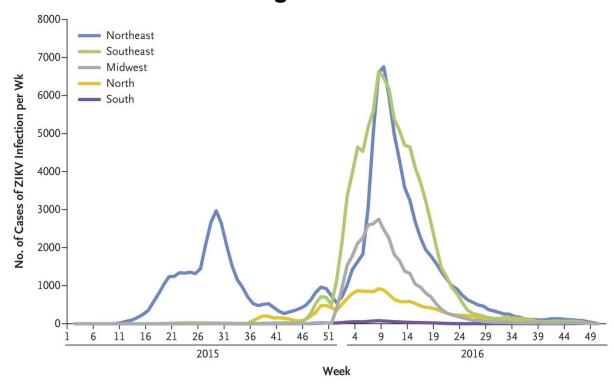


Ebola: weekly confirmed cases in Guinea and Sierra Leone in 2014-15



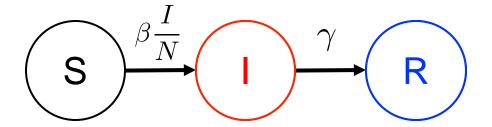
World Health Organization reporting week

Zika: weekly suspected cases in different regions of Brazil in 2015-16



Sources: CDC, NEJM: 10.1056/NEJMc1608612

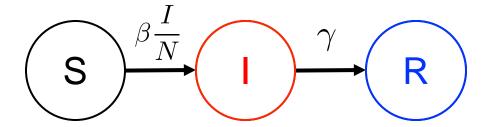
Will there be an outbreak?



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

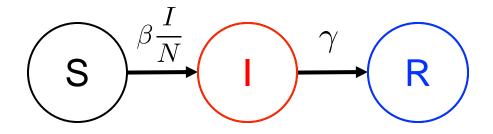


$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} > 0$$



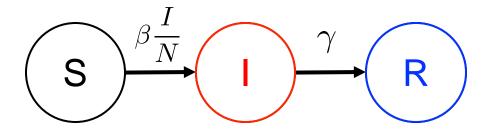
$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} > 0$$

$$\beta \frac{I}{N}S - \gamma I > 0$$



$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

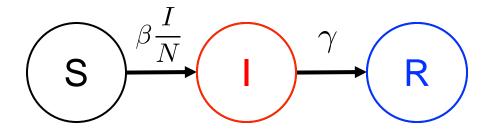
$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} > 0$$

$$\beta \frac{I}{N}S - \gamma I > 0$$

$$\beta \frac{I}{N}S > \gamma I$$

Will an outbreak happen?



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

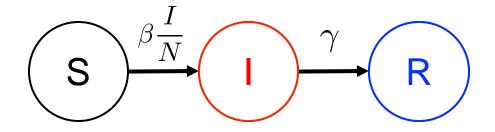
"The number infected must increase"

$$\frac{dI}{dt} > 0$$

$$\beta \frac{I}{N} S - \gamma I > 0$$

$$\beta \frac{X}{N} S > \gamma X \qquad (S_0 \approx N)$$

Will an outbreak happen?



$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

"The number infected must increase"

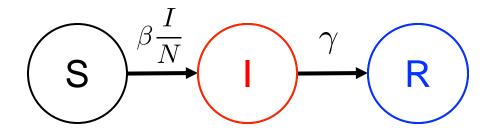
$$\frac{dI}{dt} > 0$$

$$\beta \frac{I}{N}S - \gamma I > 0$$

$$\beta \frac{X}{N} S > \gamma X \qquad (S_0 \approx N)$$

infectiousness
$$\beta > \gamma$$
 recovery

Will an outbreak happen?



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

"The number infected must increase"

$$\frac{dI}{dt} > 0$$

$$\beta \frac{I}{N}S - \gamma I > 0$$

$$\beta \frac{X}{N} S > \gamma X \qquad (S_0 \approx N)$$

infectiousness
$$\beta > \gamma$$
 recovery

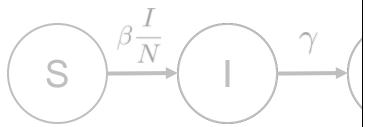
$$\beta > \gamma$$

Basic reproduction number

$$R_0 = \left| \frac{\beta}{\gamma} > 1 \right|$$

 $R_0 = \left| \ rac{eta}{\gamma} > 1 \
ight| \ rac{eta}{\gamma}$: average number of infections caused by one infectious person

Will an outbreak happen'



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Values of R_0 of well-known infectious diseases^[1]

Disease	Transmission	R ₀
Measles	Airborne	12–18
Diphtheria	Saliva	6-7
Smallpox	Airborne droplet	5–7
Polio	Fecal-oral route	5–7
Rubella	Airborne droplet	5–7
Mumps	Airborne droplet	4–7
HIV/AIDS	Sexual contact	2–5
Pertussis	Airborne droplet	5.5 ^[2]
SARS	Airborne droplet	2–5 ^[3]
Influenza (1918 pandemic strain)	Airborne droplet	2–3 ^[4]
Ebola (2014 Ebola outbreak)	Bodily fluids	1.5-2.5 ^[5]

infected must increase"

> 0

 $(S_0 \approx N)$

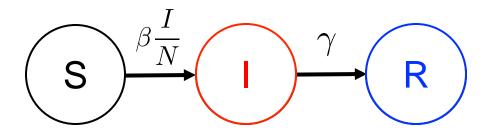
 β : infectiousness

 γ : rate of recovery

 $\frac{\beta}{\gamma}$: average number of infections γ caused by one infectious person

Source: Wikipedia

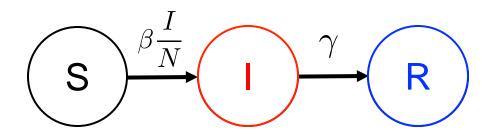
Can we prevent the outbreak?



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

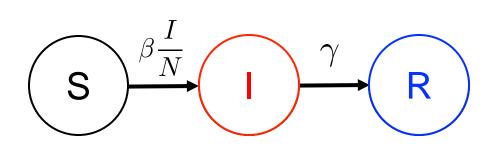


$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} < 0$$



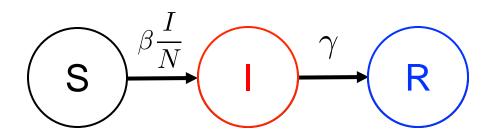
$$\frac{dI}{dt} < 0$$

$$\beta \frac{I}{N} S - \gamma I < 0$$

$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

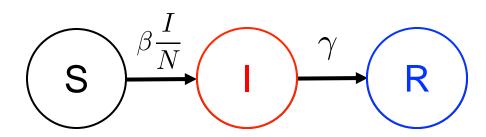
$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} < 0$$

$$\beta \frac{I}{N} S - \gamma I < 0$$

$$\beta \frac{I}{N} S < \gamma I$$



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

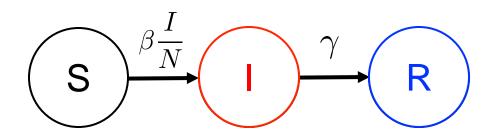
$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} < 0$$

$$\beta \frac{I}{N} S - \gamma I < 0$$

$$\beta \frac{I}{N} S < \gamma I$$

$$\beta \frac{I}{N} (1 - p) N < \gamma I \qquad (S_0 \approx (1 - p) N)$$



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

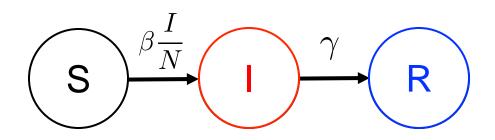
$$\frac{dI}{dt} < 0$$

$$\beta \frac{I}{N} S - \gamma I < 0$$

$$\beta \frac{I}{N} S < \gamma I$$

$$\beta \frac{X}{N} (1 - p) N < \gamma X \qquad (S_0 \approx (1 - p) N)$$

$$\beta (1 - p) < \gamma$$



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} < 0$$

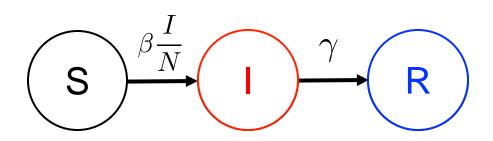
$$\beta \frac{I}{N} S - \gamma I < 0$$

$$\beta \frac{I}{N} S < \gamma I$$

$$\beta \frac{X}{N} (1 - p) N < \gamma X \qquad (S_0 \approx (1 - p) N)$$

$$\beta (1 - p) < \gamma$$

$$\frac{\beta}{\gamma} < \frac{1}{(1 - p)}$$



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} < 0$$

$$\beta \frac{I}{N} S - \gamma I < 0$$

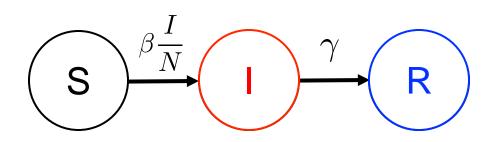
$$\beta \frac{I}{N} S < \gamma I$$

$$\beta \frac{X}{N} (1 - p) N < \gamma X \qquad (S_0 \approx (1 - p) N)$$

$$\beta (1 - p) < \gamma$$

$$\frac{\beta}{\gamma} < \frac{1}{(1 - p)}$$

$$R_0 < \frac{1}{(1 - p)}$$



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

What proportion, *p*, should we vaccinate?

$$\frac{dI}{dt} < 0$$

$$\beta \frac{I}{N} S - \gamma I < 0$$

$$\beta \frac{I}{N} S < \gamma I$$

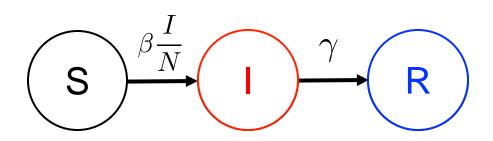
$$\beta \frac{X}{N} (1 - p) N < \gamma X \qquad (S_0 \approx (1 - p) N)$$

$$\beta (1 - p) < \gamma$$

$$\frac{\beta}{\gamma} < \frac{1}{(1 - p)}$$

$$R_0 < \frac{1}{(1 - p)}$$

Critical vaccination threshold



$$\frac{dS}{dt} = -\beta \frac{I}{N} S$$

$$\frac{dI}{dt} = \beta \frac{I}{N} S - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dI}{dt} < 0$$

$$\beta \frac{I}{N} S - \gamma I < 0$$

$$\beta \frac{I}{N} S < \gamma I$$

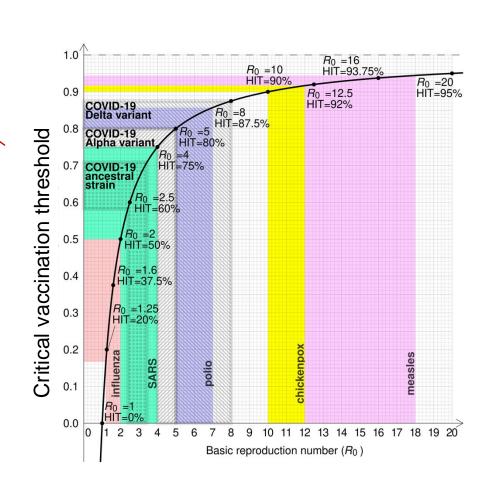
$$\beta \frac{I}{N} (1 - p) N < \gamma I$$

$$\beta (1 - p) < \gamma$$

$$\frac{\beta}{\gamma} < \frac{1}{(1 - p)}$$

$$R_0 < \frac{1}{(1 - p)}$$

$$p > 1 - \frac{1}{R_0}$$

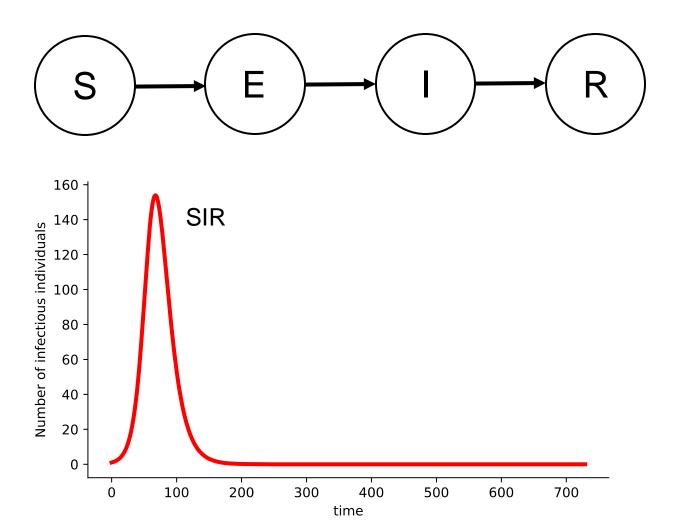


Extensions of the SIR model

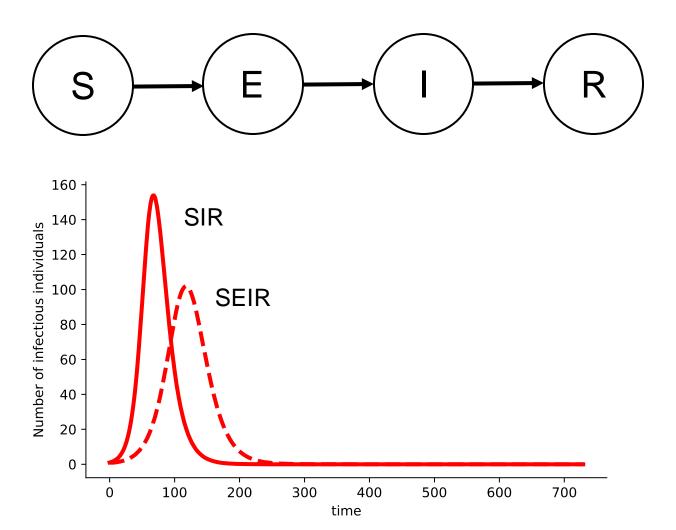
We can increase model complexity and realism by:

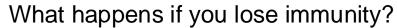
- adding disease states (compartments)
- o changing transitions (flows), or
- splitting compartments to account for population heterogeneity

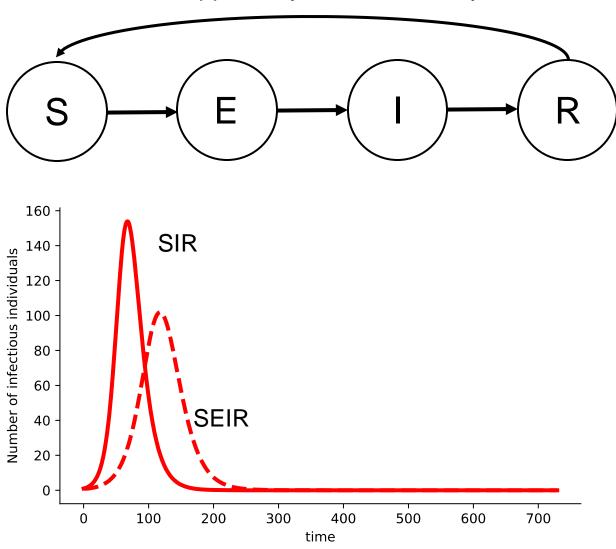
What happens if there's an incubation period?

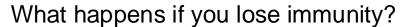


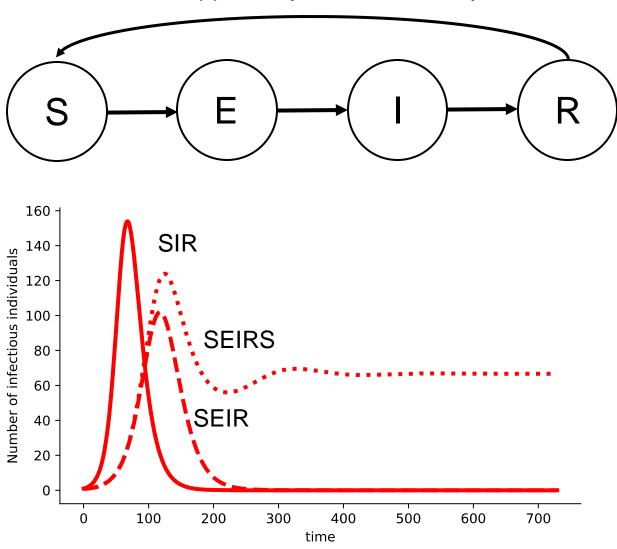
What happens if there's an incubation period?

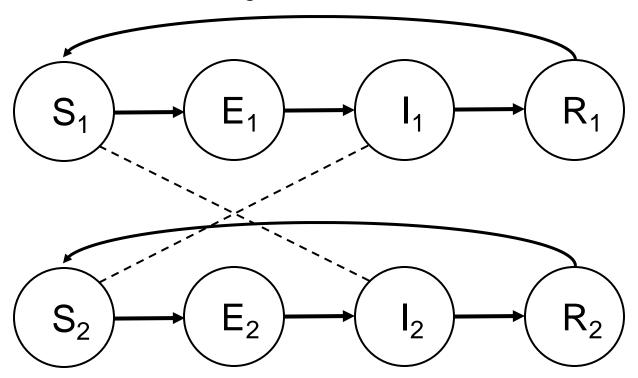






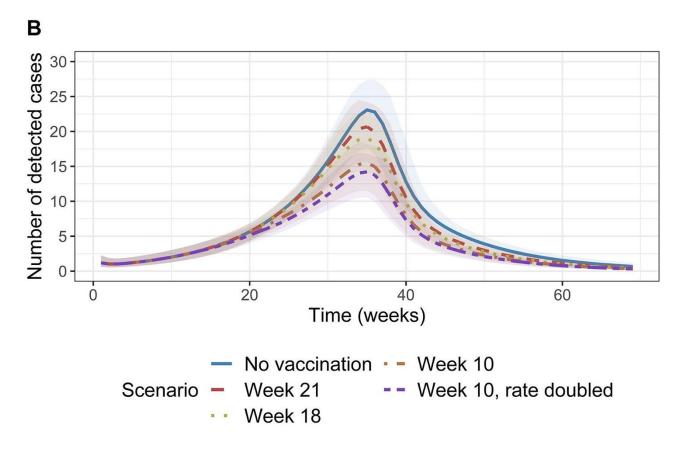


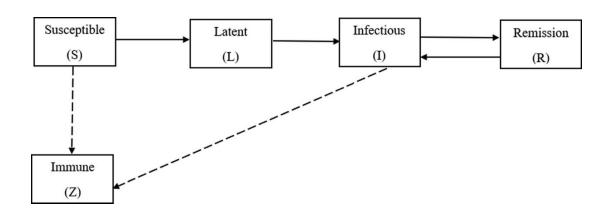




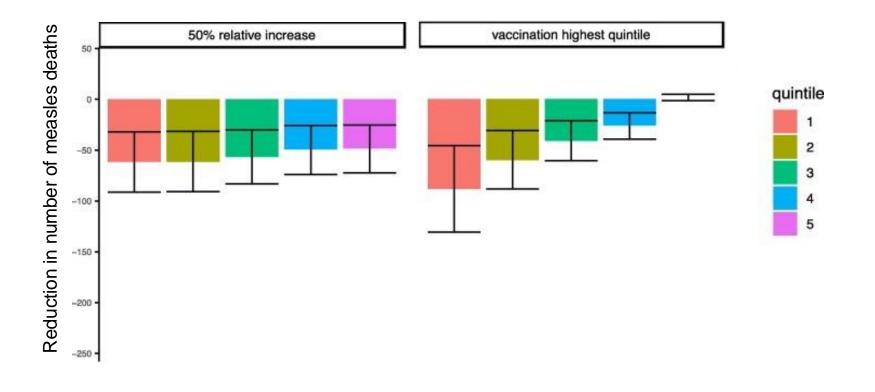
We do really use this stuff...

Comparing timing and coverage of Hepatitis A vaccine





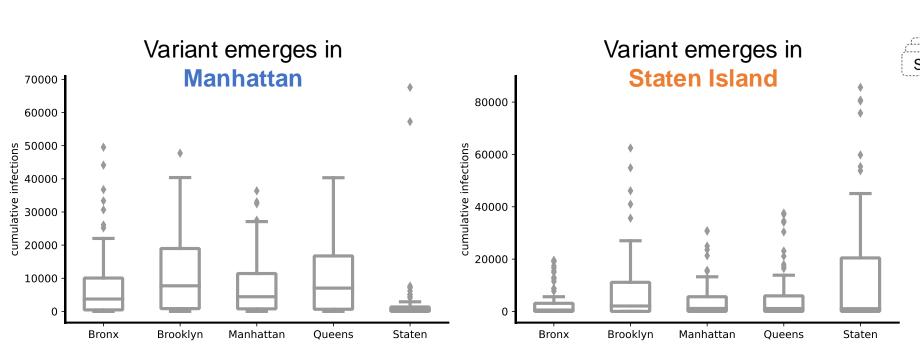
Incorporating equity in infectious disease modeling and vaccination decisions

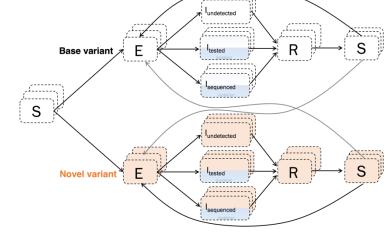


Menkir et al. (2021)

Where do we see the greatest number of infections if new SARS-CoV-2

variants emerge in different places across the city?





Final thoughts

- Compartmental models are simple but powerful
- Start by understanding the disease process
- Identify the public health goal
- Translate the disease process into a model
- Start with a simple model, add complexity as needed, but no more!
- Return to the disease process & public health impact

Thank you!

Textbooks & Academic Articles

Modeling Infectious Diseases in Humans and Animals (Matt J. Keeling and Peiman Rohani)

An Introduction to Infectious Disease Modelling (Emilia Vynnycky and Richard White)

Mathematical Modelling of Zombies (Robert Smith?) https://people.maths.ox.ac.uk/maini/PKM%20publications/384.pdf

An introduction to compartmental modeling for the budding infectious disease modeler (Lauren Childs) https://vtechworks.lib.vt.edu/items/61e9ca00-ef21-4356-bcd7-a9294a1d2f17

Popular Science

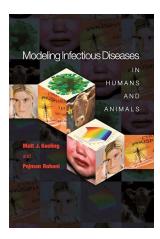
The Rules of Contagion: Why Things Spread and Why They

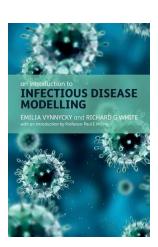
Stop

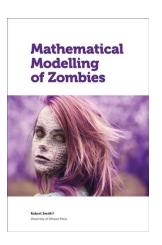
(Adam Kucharski)

The Premonition: A Pandemic Story (Michael Lewis)

THE







Online Courses

Introduction to Infectious Disease Modelling (Caroline Buckee, Inga Holmdahl, Ayesha Mahmud) https://ccdd.hsph.harvard.edu/introduction-to-infectious-disease-modeling/

Coursera: Infectious Disease Modelling Specialization (Nimalan Arinaminpathy)

https://www.coursera.org/specializations/infectious-disease-modelling#courses

Contagious Maths

(Julia Gog)

https://plus.maths.org/content/contagious-maths