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Abstract: A framework is presented that allows an investigator to 
estimate the portion of the effect of one exposure that is attributable 
to an interaction with a second exposure. We show that when the 2 
exposures are statistically independent in distribution, the total effect 
of one exposure can be decomposed into a conditional effect of that 
exposure when the second is absent and also a component due to 
interaction. The decomposition applies on difference or ratio scales. 
We discuss how the components can be estimated using standard 
regression models, and how these components can be used to evaluate 
the proportion of the total effect of the primary exposure attributable 
to the interaction with the second exposure. In the setting in which one 
of the exposures affects the other, so that the 2 are no longer statisti-
cally independent in distribution, alternative decompositions are dis-
cussed. The various decompositions are illustrated with an example in 
genetic epidemiology. If it is not possible to intervene on the primary 
exposure of interest, the methods described in this article can help 
investigators to identify other variables that, if intervened upon, would 
eliminate the largest proportion of the effect of the primary exposure.

(Epidemiology 2014;25: 711–722)

In some settings, the effect of a particular exposure may be 
substantially altered in the presence or absence of a second 

exposure, so that some form of interaction exists between these 
2 exposures.1,2 In such cases, it may be of interest to determine 
the extent to which the overall effect of the primary exposure of 
interest is due to the presence of the secondary exposure and the 
primary exposure’s interaction with it. We present an analytic 
framework within which to address such questions. We show 
that, if the distributions of the 2 exposures are statistically inde-
pendent in the population, then the overall effect of the primary 

exposure can be decomposed into 2 components: the first being 
the effect of the primary exposure when the secondary exposure 
is removed, and the second being a component due to interac-
tion. Such decompositions can be useful in settings in which it 
is not possible to intervene on the primary exposure of interest 
and an investigator is interested in trying to identify other vari-
ables that, if intervened upon, would eliminate much or most of 
the effect of the primary exposure of interest. We show how this 
decomposition applies on an additive scale and on a risk ratio 
scale, and how regression models can be used to estimate each 
of the components. We discuss extensions to settings in which 
the 2 exposures are not independent in distribution but rather 
when one affects the other, and we also discuss a decomposition 
of joint effects of both exposures and relate these to Rothman’s 
measures of the attributable proportion due to interaction.1–3 
The decompositions are illustrated with an example from 
genetic epidemiology. We begin with introducing notation. We 
will keep both the notation and the setting relatively simple in 
the article but consider more complex settings in the Appendix 
and eAppendix (http://links.Lww.com/EDE/A783).

DEFINITIONS AND NOTATION
We will let G and E denote 2 exposures of interest. 

These may be genetic and environmental exposures, respec-
tively, but they could also both be genetic or environmental, 
or one or both could be behavioral. We will, for simplicity 
in exposition, refer to the first as a genetic exposure and the 
second as an environmental exposure. When the ordering of 
the exposures is relevant, we will assume that G precedes E. 
We will assume for simplicity that both exposures are binary; 
however, we consider more general settings in the Appendix.

Let Y be an outcome of interest that may be binary or 
continuous. When the outcome is binary, for variable(s) X, we 
will use p P Y X xx = = =( )1|  to denote the probability of the 
outcome conditional on X = x. If the effect of G on Y is uncon-
founded, then p p P Y G P Y Gg g= =− = = =( ) − = =( )1 0 1 1 1 0     
would equal to the effect of G on Y. If the effect of E on Y is uncon-
founded, then p p P Y E P Y Ee e= =− = = =( ) − = =( )1 0 1 1 1 0      
would equal to the effect of E on Y. In the exposition in the 
text, we will assume that there is no confounding for the effects 
of G and E on Y, but in the appendix we consider analogous 
results when the effects are unconfounded only conditional on 
some set of covariates C.

With a binary outcome, we will also use 
p P Y G g E ege = = = =( )1 ,  to denote the probability of the 
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outcome when G = g and E = e. The standard interaction contrast 
on the additive scale would be written as p p p p

11 10 01 00
− −  +( ) 

and assesses the extent to which the effect of both exposures 

together exceeds the effect of each considered separately.

ATTRIBUTING TOTAL EFFECTS TO 
INTERACTIONS UNDER INDEPENDENCE
Suppose now that the 2 exposures G and E are statisti-

cally independent in distribution in the population and sup-
pose that the effects of G and E on Y are unconfounded. We 
show in the Appendix that:

p p p p p p p p P G
e e= =

−( ) = −( ) + − − +( ) =( )
1 0 01 00 11 10 01 00

1      .

We can decompose the overall effect of E on Y into 2 pieces. 
The first piece is the conditional effect of E on Y when 
G = 0; the second piece is the standard additive interaction, 

p p p p
11 10 01 00

− − +( ) , multiplied by the prevalence of G = 1. 

We can then attribute the total effect of E on Y to the part 
that would still be present if G were 0 this is p p

01 00
−( )  and 

to a part that has to do with the interaction between G and E 

this is     p p p p P G
11 10 01 00

1− − +( ) =( )( ) . If we could set the 

genetic exposure to 0, we would remove the part that is due to 
the interaction and would be left with only p p

01 00
− .

Since we can do this decomposition, we might define a 
quantity pAI E

G=
( )

0
 as the proportion of the overall effect of E 

that is attributable to interaction, with a reference category for 
the genetic exposure of G = 0, as

pAI E
p p p p P G

p p
G

e e

  

    

= ( ) =
+( ) =( )

( )
= =

0
11 10 01 00

1 0

1- -

-

The remaining portion p p p p
e e01 00 1 0

−( ) −( )
= =

 is the 

proportion of the effect of E that would remain if G were fixed 
to 0. The proportion attributable to interaction could then be 
interpreted as the proportion of the effect of E we would elimi-
nate if we fixed G to 0.

If Y is continuous, again assuming that G and 
E are independent, we have a similar decomposition, 
E E E

E

E
E

Y E Y E Y G E

Y G E

Y G E

Y

=[ ] − =[ ] = = =[ ]

− = =[ ]+

= =[ ]
−

1 0 0 1

0 0

1 1

,

,

| ,
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| ,
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  E
E

11( ), and we 

could likewise define the proportion attributable to interaction by:

pAI E
G

Y G E Y G E

Y G E
= ( ) =

= =[ ] = =[ ]
= = +

0

1 1 1 0

0 1 

        

  

E E
E
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The 2 components of the decomposition: the portion 
due to interaction and the portion due to the effect of E when 
G is fixed to 0 also have an intuitive form within a regression 
framework.

Consider the following regression model in which Y 
might be binary or continuous:

	 E Y G g E e eg| , 3= =[ ] = + + +α α α α0 1 2g e .	 (1)

We show in the Appendix that irrespective of whether 
the outcome is binary or continuous, if G and E are indepen-
dent, then the total effect of E on Y is given byα α2 3 1+ =( )P G  ,  
the portion due to interaction is equal toα3 1P G =( ) , and the 
portion due to the effect when G is fixed to 0 is equal toα2. 
Thus, the proportion due to interaction is simply

pAI E
P G

P GG=0
3

2 3

( ) =
(  = 1)

 + (  = 1)

α
α α

.

The portion due to the effect when G is fixed to 0 is 
simply the main effect of E in the regression model,α2. The 
portion due to interaction is just the product coefficient α3 
multiplied by the probability that G = 1.

Note that under the assumption that G and E 
are independent, the roles of G and E can be inter-
changed. Thus, with a binary outcome we could 
likewise decompose the total effect of G on Y by: 
( ) ( ) ( )p p p p p p p p P Eg g= =− = − + − − + =( )1  1 11 1 1  10 0 00 0 0 00 :  
We could define the proportion of the effect of G that is 
attributable to interaction (with a reference category for E of 

E = 0) as pAI G
p p p p P E

p pE
g g

=

( )
=

( ) =
− − + =

−
=

0
1

11 10 01 00

0

1
 

 ( )

( )
. Expressed 

in terms of the coefficients of the regression model in (1), we 

have pAI G
P E

P EE = =
=

+ =0
3

1 3

1

1
( )

( )

( )
. 

 

α
α α

To the best of our knowledge, this approach has not been 
previously described. The approach we have been considering 
thus far has assumed that the 2 exposures G and E are inde-
pendent. As we will see later in the article, the decomposition 
becomes somewhat more complicated when G and E are no 
longer independent in the population as would be the case if 
one exposure affected the other. Even under independence, the 
implications of the approach are also sometimes more subtle 
than they first appear. From the formulae above, the proportion 
attributable to interaction depends on the main effect coeffi-
cient for the primary exposure of interest, the interaction coef-
ficient, and the prevalence of the secondary exposure. Because 
of this, it would, for example, be possible for the main effect of 
G, namely α1, to be larger than the main effect of E, α2 , while 
still also being the case that the proportion of the effect of G 
attributable to the interaction is larger than the proportion of 
the effect of E attributable to interaction. This could occur, for 
instance, if the prevalence of G was relatively small with the 
prevalence of E being comparatively larger.
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ATTRIBUTING TOTAL EFFECTS TO 
INTERACTIONS ON THE RATIO SCALE
Often, when an outcome is binary, a ratio scale is used 

to measure effects. We can define the relative risk for G as 

RR
p

p

P Y G

P Y Gg
g

g
=

=

=

= =
= =
= =1

1

0

1 1

1 0

( | )

( | )
. Likewise, we can define the 

relative risk for E by RR
p

p

P Y E

P Y Ee
e

e
=

=

=

= =
= =
= =1

1

0

1 1

1 0

( | )

( | )
. We 

can also define relative risks when G and E are considered 
together; we would define the relative risk for the outcome Y, 
comparing G = g; E = e to the reference category G = 0; E = 0, 

as RR
p

p

P Y G g E e

P Y G Ege
ge= =

= = =
= = =00

1

1 0 0

( | , )

( | , )
.

It is shown in the Appendix that if G and E are indepen-
dent, then we have the decomposition of the excess relative 
risk for E as:

( ) ( ) ( )RR RR RR RR RRe P G= − = − + − − + =( ) 1 1 11 1 11  1   1  1κ κ0 0 0

where κ is a scaling factor given by κ =
=

p

p e

00

0

. As on the dif-

ference scale, so also on the ratio scale, we can decompose the  
excess relative risk for E into 2 components: the first com-
ponent is the excess relative risk for E if G were fixed to 0,  
(RR01 − 1), and the second component is a portion of the effect 
due to interaction, ( )RR RR RR P G11 10 01 1 1− − + =( )  . The con-
trast, ( )RR RR RR11 10 01 1− − +  , is sometimes referred to as the 
“relative excess risk due to interaction” (RERI)3 or the “inter-
action contrast ratio.”2 We can thus re-express the decomposi-
tion above as: (RRe = 1 − 1) = κ(RR01 − 1) + κ(RERI)P(G = 1). 
The scaling factor forms a part of both portions, κ(RR01 − 1), 
and κ(RERI)P(G = 1), of the total effect, but if we consider the 
proportion of the effect of E attributable to interaction, then 
the scaling factor drops out and we obtain:

pAI E
RERI P G

RR RERI P GG= =
=

+ =0
01

1

1 1
( )

( ) ( )

( - ) ( ) ( )
. 

  

  

By symmetry, a similar decomposition holds for the overall 
effect of G on Y on the risk ratio scale and we have the propor-
tion of the effect of G attributable to interaction as

pAI G
RERI P E

RR RERI P EE = =
=

+ =0
10

1

1 1
( )

( ) ( )

( - ) ( ) ( )
. 

  

  

Often a logistic regression model is used in analyzing data 
with a binary outcome on the ratio scale. Consider the logistic 
regression model

  log { , } .it P Y G g E e g e eg    = = =( ) = + + +1 0 1 2 3γ γ γ γ 	 (2)

If the outcome is rare, then odds ratios approxi-
mate risk ratios and RERI is given approximately by 

RERI e e e≈ ++ +γ γ γ γ γ1 2 3 1 2 1− − , and RR10 and RR01 can be 
estimated approximately by RR e RR e1 1and 0 0

1 2≈ ≈γ γ . We 
can thus still estimate all the components of the proportions 
attributable to interaction using the estimates from the logistic 
regression in (2) and could compute these proportions by:

pAI E
e e e P G

e eG=

+ +

+ +≈
− − + =

− + −0

1 2 3 1 2

2 1 2 3

1 1

1
( )

( ) ( )

( ) (

γ γ γ γ γ

γ γ γ γ
 

 ee e P Gγ γ1 2 1 1− + =) ( )

pAI G
e e e P E

e eE =

+ +

+ +≈
− − + =

− + −0

1 2 3 1 2

1 1 2 3

1 1

1
( )

( ) ( )

( ) (

γ γ γ γ γ

γ γ γ γ
 

 ee e P Eγ γ1 2 1 1− + =) ( )

As discussed in the Appendix, these same expressions can 
be used even when control is made for covariates in the 
logistic regression. This approach also works when using 
logistic regression in a case-control study. If the outcome 
is rare or incidence density sampling is used, then we can 
estimate the various components in the decomposition by 
RR e RR e RERI e e e1 1

1 2 1 2 3 1 2and 10 0≈ ≈ ≈ ++ +γ γ γ γ γ γ γ, , − −  and, in 
addition, P (G = 1) and P (E = 1) can be estimated approxi-
mately in a case-control study using the probability of G and 
E, respectively, among the controls. Thus, we can proceed 
with estimating the components of the decomposition, even in 
a case-control study.

Standard errors for these various expressions, using the 
delta method, along with SAS and Stata code to estimate pro-
portions attributable to interaction and their standard errors, 
using logistic regression, are given in the eAppendix (http://
links.lww.com/EDE/A783). If the sample size is relatively 
small, it may be preferable to use bootstrapping to obtain stan-
dard errors. A similar approach can also be used if control is 
made for some set of covariates C or if one or both the expo-
sures are continuous rather than binary; see eAppendix (http://
links.lww.com/EDE/A783) for details.

One of the motivations often given for studying interac-
tion, specifically on the additive scale, is to identify which sub-
groups would benefit most from intervention when resources 
are limited.1–3 In settings in which it is not possible to intervene 
directly on the primary exposure of interest, one might instead 
be interested in which other covariates could be intervened 
upon to eliminate much or most of the effect of the primary 
exposure of interest. The methods described here for attribut-
ing effects to interactions can be useful in assessing this and 
identifying the most relevant covariates for intervention.

RELAXING THE INDEPENDENCE ASSUMPTION
Our discussion up until now has assumed that the distri-

butions of the 2 exposures are statistically independent in the 
population. This assumption may not always be plausible. If G 
and E represent genetic and environmental exposures, then the 
assumption of independence in the population is often not unrea-
sonable, although there are documented cases4,5 in which genetic 
variants for an outcome do affect environmental exposures for 
the same outcome and so the assumption has to be assessed on 

http://links.lww.com/EDE/A783
http://links.lww.com/EDE/A783
http://links.lww.com/EDE/A783
http://links.lww.com/EDE/A783
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a case-by-case basis. When the exposures are 2 environmental 
factors, or 2 behavioral factors, the 2 exposures may often be 
correlated with each other. In this section, we will consider what 
can be concluded when the 2 exposures are instead correlated.

We will assume here that the ordering of the 2 exposures 
is known (eg, that G precedes E). In this setting, even if G 
affects E, the decompositions we have considered in the previ-
ous sections will still apply for the second exposure, ie, for 
E, provided the effect of E on Y is unconfounded conditional 
on G (and conditional on, if applicable, measured covariates 
C). Under this assumption of no confounding for E, we will 
still have that the total effect of E decomposes into the sum 
(p01 − p00) + (p11 − p10 − p01 + p00)P(G = 1) on the absolute 
risk scale, and we can use the sum of these 2 components 
as our estimate of the total effect. Likewise, the regression 
method in the previous section will still be applicable and 

( ) ( )

( ) ( ) ( )

p p p p P G

p p p p p p P G
11 10 01 00

01 00 11 10 01 00

1

1

− − + =
− + − − + =

 would consti-

tute the proportion of the effect attributable to interaction. 

And similarly on the ratio scale, 
( ) ( )

( ) ( ) ( )

RERI P G

RR RERI P G

=
− + =

1

1 101

 

would still constitute the proportion of the effect attributable to 
interaction. The methods in the previous 2 sections still apply 
even if G affects E or if G and E are otherwise correlated.

However, the decomposition of a total effect into a con-
ditional effect and an interaction considered in previous sec-
tions do not apply directly for the first exposure G, when G 
affects E. Intuitively, this is because the effect of G on Y does 
not depend only on the presence or absence of E but it is also 
the case that whether E is itself present (and thus whether the 
interaction operates) depends on G. Said another way, if G 
affects E, E is not simply an effect modifier for G but it is 
also potentially a mediator for G. Our decompositions above 
are no longer applicable. An alternative decomposition does, 
however, hold. Specifically, it can be shown (see Appendix) 
that, when G affects E, we have the following decomposition 
for the total effect of G:

( ) ( )

( ) |

(

p p p p

p p p p P E G

p p

g g= =− = − +

− − + = =( ) +

−

1 0 10 00

11 10 01 00

01 0

1 1 

00
1 1 0){ }.P E G P E G  = =( ) − = =( )1

The decomposition of the total effect of G, (pg = 1 − pg = 0), now 
consists of 3 components. We will consider each component 
in turn. The first component (p10 − p00) is simply the effect 
of G in the absence of E, ie, the portion of the effect of G 
that would remain if E were fixed to 0. This is analogous to 
the first component in the 2-way decompositions above. The 
second component, (p11 − p10 − p01 + p00)P(E = 1|G = 1), is the 
effect attributable to interaction, but now the interaction term,  
(p11 − p10 − p01 + p00), is multiplied by P (E = 1|G = 1) when 
G affects E rather than being multiplied by P (E  =  1), as 
when G and E were independent; note that when G and E are 

independent, P (E = 1|G = 1) reduces to P (E = 1). The third 
component, (p01 − p00){P(E = 1|G = 1) − P(E = 1|G = 0)}, was 
absent from the 2-way decomposition; it is essentially the main 
effect of E in the absence of G, (p01 − p00), multiplied by the 
effect of G on E, {P(E = 1|G = 1) − P(E = 1|G = 0)}; it could 
be interpreted as a mediated main effect; note again when G 
and E are independent P (E = 1|G = 1) − P (E = 1|G = 0) = 0 
and thus this third component vanishes. In the Appendix, we 
further discuss the relationship between this decomposition 
and the decompositions in the mediation analysis literature.

Thus, when G affects E, and we are decomposing the 
total effect of G, 2 things happen to the decomposition we 
had under independence. First, because G affects E, we need 
to take into account that the presence of E (and thus the pos-
sibility that the interaction between the 2 operates) is itself 
affected by G and thus the interaction term in the second com-
ponent is multiplied by P (E = 1|G = 1) rather than P (E = 1). 
Second, when G affects E, a change in G from 0 to 1 will 
also change E, and thus the main effect of E is more likely 
to operate, which introduces a third component, (p01 − p00)
{P(E = 1|G = 1) − P(E = 1|G = 0)}, to the decomposition.

Under this setting of G affecting E, the proportion of the 
effect attributable to interaction becomes:

pAI G
p p p p P E G

p pE
g g

=
= =

=
− − + = =

0
11 10 01 00

1 0

1 1
( )

( ) ( | )

( - ).

In this context, we might also wonder what the consequences 
are of ignoring dependence between G and E and proceeding 
with estimating the proportion attributable to interaction mea-
sure when independence of G and E is (incorrectly) assumed, 
ie, of using the measure

pAI G
p p p p P E

p pE
g g

=
= =

=
− − + =

−0
11 10 01 00

1 0

1
( )

( ) ( )

( ).

It is shown in the Appendix that if the latter measure is used 
for the proportion attributable to interaction, incorrectly 
assuming independence, then although the latter measure does 
not actually capture the proportion of the effect attributable to 
interaction, it does nonetheless constitute a lower bound on 
the proportion of the effect of G that would be eliminated by 
fixing E to 0, provided G has a non-negative effect on E and 
E has a non-negative effect on Y (at least in the absence of 
G). Thus, even if one proceeds with the more naive estimate 
of the proportion attributable to interaction, ignoring (incor-
rectly) the dependence between G and E, one still, under fairly 
reasonable assumptions, obtains a lower bound on the propor-
tion of the effect of G eliminated by fixing E to 0.

Further extensions to this approach of relaxing the 
assumption of independence are discussed in the Appendix. 
There this is generalized to nonbinary exposures and out-
comes, to the ratio scale, and to settings in which covariates 
are needed to control for confounding.
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When G affects E, 2 other alternative approaches are 
worth noting. First, instead of decomposing the total effect into 
a component due to interaction and the various main effects, 
one might alternatively use methods for mediation. If G affects 
E and E affects Y, then E will in general be a mediator for the 
effect of G on Y, and one can assess how much of the effect of 
G on Y is mediated by E. Methods for mediation and easy-to-
use software packages6,7 are now available to carry out such 
mediation analysis. These methods now also allow for interac-
tions between the 2 exposures G and E.7,8 Because these meth-
ods are described elsewhere, we will not consider them in detail 
here. It should be noted, however, that these methods address 
different questions than the ones we have been considering in 
this article. However, when G affects the second exposure E, 
the questions concerning mediation may be the more relevant 
questions of interest. One can use these methods to assess the 
proportion of the effect of G on Y mediated through E.

This proportion-mediated measure is related to, but not 
identical with, the proportion eliminated discussed above.9,10 
The proportion eliminated is not always identical to the pro-
portion mediated because it considers what would happen if 
we fix the second exposure (the mediator E) to a particular 
level (rather than allowing G to affect it) (see Robins and 
Greenland9 and VanderWeele10 for further discussion). The 
decomposition above also gives an interpretation to the por-
tion-eliminated measure: it states that the difference between 
the total effect and the portion of the effect that would remain if 
E were fixed to zero is equal to the sum of the interaction term 
and the mediated main effect (ie, the second and third terms 
in the decomposition above). Second, yet another approach to 
assess the importance of interaction with regard to G when G 
itself affects E is to decompose not a total effect of G on Y but 
rather to focus on the joint effects of G and E together and to 
decompose this joint effect. This is the approach we consider 
in the following section.

DECOMPOSITION OF JOINT EFFECTS  
INTO MAIN EFFECTS AND AN  
INTERACTIVE COMPONENT

Another decomposition would be to decompose the 
joint effects of the 2 exposures, G and E, into 3 components, 
the effect due to G alone, due to E alone, and due to their inter-
action. On the risk difference scale, this is

p p p p p p p p p p11 00 10 00 01 00 11 10 01 00− = − + − + − − +( ) ( ) ( ).

We could then also compute the proportion of the effect due 

to G alone,
p p

p p
10 00

11 00

−( )
−( ) , due to E alone, 

p p

p p
01 00

11 00

−( )
−( ), and due 

to their interaction, 
p p p p

p p
11 10 01 00

11 00

− − +( )
−( ) . We can carry out a 

decomposition like this even if G affects E.

On the risk ratio scale, we can decompose the excess 
relative risk for both exposures RR11 −1 into the excess rela-
tive risk for G alone, E alone, and their interaction, RERI. Spe-
cifically we have

RR RR RR RERI11 1 11  1   1  .− = − + − +( ) ( )0 0

We could then likewise compute the proportion of the 

effect due to G alone,
 

RR

RR
10

11

1

1

−
−

, due to E alone, RR

RR
01

11

1

1

-

-
, and

 

due to their interaction RERI

RR11 1−
.

Under the logistic regression model in (2) for an out-
come that is rare, the joint effect attributable to G alone, to 
E alone, and to their interaction are given approximately by:
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As discussed in the Appendix, these same expressions can 
be used even when control is made for covariates in the 
logistic regression. In the eAppendix (http://links.lww.
com/EDE/A783), we give standard errors for these propor-
tion measures as well as SAS and Stata code to estimate the 
proportions and their standard errors and 95% confidence 
intervals.

Rothman3 considered a measure of interaction that 

he called the attributable proportion, defined as 
RERI

RR11

; the  

denominator Rothman used was RR11. The measure was 
meant to capture the proportion of the disease in the doubly 
exposed group that is due to the interaction. Rothman3 also 

considered an alternative measure, 
RERI

RR11 1−
, which captured 

the proportion of the effect of both exposures on the additive 
scale that is due to interaction. Most of the subsequent litera-
ture has focused on the former measure and likewise most of 
the other literature on attributable fractions focuses on the pro-
portion of disease attributable to an exposure2 or to an inter-
action. However, using the latter measure, ie, using RR

11 
1−

, as the denominator, and focusing on the proportion of the 
effect due to interaction in fact has a number of advantages: 
both the numerator and the denominator are then on the addi-
tive excess relative risk scale; when the entirety of the effect 
is due to the interaction, the latter measure is then 100% and 
not some number less than 100%; and the latter measure is 
moreover invariant to recoding of the outcome.11 Furthermore, 
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as we have shown here, the latter measure is what is involved 

in the decomposition above. With Rothman’s primary 
RERI

RR11 1−
 

even if all the joint effect were due to interaction so that 
the effect G alone and E alone were both risk ratios of 1, 
ie, RR10 = 1 and RR01 = 1, we would nevertheless have that 
Rothman’s primary attributable proportion measure would be 

RERI

RR

RR RR RR

RR

RR

RR

RR

RR11

11 10 01

11

11

11

11

111

1 1 1 1 1

−
=

− − +
=

− − +
=

−
< 11; ie, 

even if the entirety of the joint effect of both exposures were 
due to interaction, the attributable proportion measure is still 

less than 100%. The measure 
RERI

RR11 1−
 does not have this issue. 

It is 100% when the main effects of G alone and E alone were 
both risk ratios of 1; ie, when the entirety of the joint effect is 

due to interaction. The measure 
RERI

RR11 1−
 captures the propor-

tion of the joint effect attributable to interaction.
The attributable proportion of joint effects measure, 

RERI

RR11 1−
, is also attractive from another standpoint. Skro-

ndal12 criticized Rothman’s original attributable proportion 
measure because, in the presence of covariates, if the risks 
follow a linear risk model that is additive in the covariates, 

| , , ,P Y 1 g g  e e  c c  = = = =( ) = + + +α α α α1 2 3 4g e ge c  then, 
although the additive interaction, p p p p11 10 01 00 3    − − + = α , 
does not vary across strata of the covariates, Roth-
man’s primary attributable proportion measure, 
RERI

RR c11

3

0 1 2 3 4

=
+ + + +

α
α α α α α  

does vary across strata 

of the covariates. One may or may not think that this is an 
important criticism of the attributable proportion measure; 
however, the attributable proportion measure for joint effects,

 
RERI

RR11

3

1 2 31−
=

+ +
α

α α α , 
does not vary with the covariates and 

thus circumvents this criticism entirely.

EMPIRICAL ILLUSTRATION
We illustrate the various decompositions with an example 

from genetic epidemiology. We use data from a case-control study 
of lung cancer at Massachusetts General Hospital (Miller et al13) of 
1836 cases and 1452 controls. Eligible cases included any person 
over the age of 18 years; the controls were recruited from among the 
friends or spouses of patients with cancer or the friends or spouses of 
other surgery patients in the same hospital. The study included infor-
mation on smoking and genotype information on locus 15q25.1. For 
simplicity in this illustration, we will code the exposure as binary so 
that smoking is ever versus never and the genetic variant is a compar-
ison of 0 versus 1 or 2 T alleles at rs8034191. See the Appendix and 
eAppendix (http://links.lww.com/EDE/A783) for approaches han-
dling ordinal and categorical exposures. Covariate data include age 
(continuous), sex, and educational history (college degree or more, 
yes/no). Analyses were restricted to white persons. Genetic variants 

on 15q25.1 have been found to be associated with both smoking and 
lung cancer,5,14,15 and thus, we are in a setting in which the first expo-
sure G is correlated with the second exposure E. The prevalence of the 
exposures among the controls (which approximates that of the under-
lying population since the outcome is rare) is P (G = 1) = 56.7% and  
P (E = 1) = 64.94%. When we fit the logistic regression model in 
(2), adjusting also for covariates, we obtain estimates:γ 1 = 0.04 (95% 
CI = 0.33 to 0.41), γ 2 = 1.33 (1.01 to 1.64), γ 3 = 0.49 (0.08 to 0.89). 
The main effect of G is small, the main effect of E is large, and the 
interaction is of moderate size. If we use the regression coefficients 
to calculate the proportion attributable to interaction for smoking E, 
we obtain a proportion of 34.5% (7.1% to 61.9%). Even if we elimi-
nated the genetic exposure, 65.5% of the effect of smoking would 
remain (34.5% would be eliminated).

We could proceed with a similar analysis with G but 
because G affects E here we need to be somewhat more care-
ful in interpretation. Here, however, the correlation between G 
and E, although present, is quite weak, and so the decomposition 
assuming independence might not be a bad approximation. If we 
proceed with the decomposition, we obtain that the proportion of 
the effect of G due to interaction is 98% (58% to 137%). Almost 
all the effect of G is due to the presence of E and its interaction 
with E. As discussed above, if we can assume that the variants 
increase smoking, and that smoking increases lung cancer (both 
reasonable assumptions here), then 98% (95% CI  =  58% to 
137%) would be a lower bound on the proportion of the effect of 
G that would be eliminated if we were to eliminate smoking. And, 
indeed, there is now strong evidence elsewhere that the genetic 
variants do not have an effect on lung cancer for nonsmokers.16,17 
Almost the entirety of the effect of G appears due to the interac-
tion. The results are summarized in the first 2 lines of the Table.

If we proceed with the decomposition of the joint effect, 
then the proportions attributable to G alone, E alone, and to 
their interaction are:

rr

rr
to

rr

rr
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11

01

11

1

1
0 8 95 6 2 7 7

1

1
51 4 33 4

−
−

≈ = −( )

−
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≈

. . .

. .

% % % %
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%% %

% % %

to
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69 4

1
47 8 33 3 62 3

11

.

. . .

( )

−
≈ ( )reri

rr

The results are summarized in the third line of the Table. 
Almost none of the joint effect (comparing both G and E pres-
ent to both absent) is due to the effect of G in the absence of E, 
about 51% is due to E in the absence of G, and about 48% is 
due to the interaction between G and E. Note that the decom-
positions for total effects and for joint effects differ in their 
denominators and so are not directly comparable to each other: 
the decomposition for joint effect considers the proportion of 
the effect due to interaction when comparing both exposures 
present versus neither present; the decompositions for total 
effects consider the proportion of the effect due to interaction 
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when one exposure is present (and the other is fixed at its actual 
level) versus when that same single exposure is absent.

DISCUSSION
In this article, we have considered the decomposition of a 

total effect into a conditional effect when the other exposure is 
fixed to 0 and a component due to interaction. This decomposition 
can be done with both exposures if the 2 exposures are statistically 
independent in distribution, but can be done only with the second 
exposure in settings in which the first exposure affects the second. 
Other decompositions for the first exposure are then possible, but 
the interpretation becomes somewhat more complicated. Even in 
this case, the joint effects of both exposures can still be decom-
posed into the component due to the first exposure alone, due to 
the second exposure alone, and due to their interaction. In the 
Appendix, fairly general methods are given using linear regres-
sion for carrying out these decompositions with binary, ordinal, 
or continuous exposures. In the eAppendix (http://links.lww.com/
EDE/A783), methods and software are provided for these decom-
positions using logistic regression and linear regression when the 
outcome is binary or continuous and the exposures are binary or 
continuous. These various decompositions can shed light on the 
proportion of various effects that are attributable to interaction.

Several motivations are commonly given for assessing inter-
action: first, to identify subgroups for which an intervention on the 
exposure might be most effective in settings in which resources 
are limited1–3,18; second, to assess evidence for mechanistic forms 
of interaction2,19–21; third, to leverage interaction to increase power 
to detect genetic effect22–24; and fourth, to allow for additional flex-
ibility in statistical models.2,25 The methods described in this arti-
cle suggest yet another motivation for assessing interaction. The 
methods described here for attributing effects to interactions may 
help determine the extent to which an intervention on a potential 
effect modifier would successfully alter the effect of the exposure 
of interest. As noted above, one of the motivations often given for 
studying interaction, specifically on the additive scale, is to iden-
tify which subgroups would benefit most from intervention when 
resources are limited. However, in some settings, it may not be 
possible to intervene directly on the primary exposure of interest, 
and one might then instead be interested in which other covariates 

could be intervened upon to eliminate much or most of the effect 
of the primary exposure of interest. The methods described here 
for attributing effects to interactions can be useful in assessing this 
and identifying the most relevant covariates for intervention.

When used for this purpose, it is important that it is the effect 
modifier itself that affects the outcome and that the effect modi-
fier is not simply serving as a proxy for some other variable that 
does.26,27 In other words, we need to make sure we have controlled 
for confounding for the effects of the effect modifier itself. These 
issues of confounding control are discussed in greater detail in the 
Appendix. We have assumed throughout, for simplicity, that the 
effects of both factors are unconfounded, but these assumptions 
need to be thought about more carefully if these measures are to 
be used in making policy decisions. However, provided such con-
trol for confounding for both factors has been made, the measures 
considered in this article can be useful in determining how much of 
an effect could be eliminated by intervening on an effect modifier.
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APPENDIX

Decomposition of a Total Effect into a 
Conditional Effect and a Portion Due to 
Interaction

We will let G and E denote 2 exposures of interest which 
may be binary, continuous, or categorical and let Y be an outcome 
of interest that may be binary or continuous. Let Yg denote the 
counterfactual outcome for an individual if G were set to g, let Ye 
denote the counterfactual outcome for an individual if E were set 
to e, and let Yge denote the counterfactual outcome for an individ-
ual if G were set to g and E were set to e. We will let X Y | Z⊥  
denote that X is independent of Y conditional on Z. We will say 
that the effect of G on Y is unconfounded conditional on C if 
Y G Cg ⊥ . We will say that the effect of E on Y is unconfounded 
conditional on C if Y E Ce ⊥ . We will say the joint effects of G 
and E on Y are unconfounded conditional on C if Y G E Cge ⊥ ( ), .

Proposition 1. For any 2 levels e1 and e0 of E and any 
level g0 of G, we have the decomposition:
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This completes the proof.

In Proposition 1, we can decompose a total effect, E Y Y ce e1 0
−  ,  

into an effect conditional on G = g0, namely, E Y Y g ce e1 0 0− ∫ , ,  
and a component which is a summary measure of effect 

modification E EY Y g c Y Y g c dP g ce e e e1 0 1 0 0−  − − { } ( )∫ , , .      

The proportion attributable to interaction is then defined by 
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The decomposition here is given at the counterfactual level and, 
as noted above, it is a decomposition of a total effect into an effect 
conditional on G and a measure of effect modification. Note that 
this decomposition and the proportion due to interaction will vary 
for different values of G = g0 and thus the reference value g0 must 
be specified. This reference value was taken as G = 0 in the text; 
it is the value at which the conditional effect, E Y Y g ce e1 0 0−  , , 
is calculated. The decomposition is given for a particular level of 
the covariates C = c, but we can also marginalize over C to obtain 

E E
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Note then, however, that the first term in the decomposi-
tion, E Y Y g c dP ce e1 0 0- ,    ( )∫  is the effect of E on Y conditional 

on G = g0 and marginalized over the distribution P (C). It will not 

in general equal E Y Y ge1
− e0 0





 since with the decomposition 

E Y Y g ce e1 0
 − 0 ,  is marginalized over P (C) rather than P (C|g0).

Under assumptions about confounding, we can identify 
each component of the decomposition.

Proposition 2. Suppose that the effect of E on Y is uncon-
founded conditional on (C, G) then:

E E E[ , ] , , , , .Y Y g c Y g e c Y g e ce e1 0 1 0− = [ ] −          

and we can thus identify the components in Proposition 1 and 
the right-hand side of the decomposition in Proposition 1 can 
be written in terms of observed data as: E Y Y ce e1 0
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If, moreover, the joint effects of G and E are unconfounded 
conditional on C, then we can write the decomposition as:

E E E
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Proof. If the effect of E on Y is unconfounded conditional on 
(C, G), then we have 

E E E[ , , , , , ]Y Y g c Y g e c Y g e ce e1 0 1 0− =] [ −] [           . If the 
joint effects of G and E are unconfounded conditional on C, 
then we have E[Y|g, e, c] = E[Yge|c] and thus:
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This completes the proof.

If the effect of E on Y is unconfounded conditional on 
C alone as would be the case under Proposition 2 if G and E 
were independent conditional C, then we would also have 
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1 0 1 0− =] [ −] [     . Otherwise, we will 
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Note that in the second part of Proposition 2, to obtain  

the decomposition,
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+ − − +{ }∫ E E E E[ ] [ ] [ ] [ ] ( ),Y c Y c Y c Y c dP g cege g g e g e1 10 0 0 0
 we 

required that joint effects of both G and E on Y were uncon-
founded given C. Under this assumption, what we estimate as 
the portion attributable to interaction is equal to the difference, 

E E EY Y c Y c Y ce e g e g e1 0 0 1 0 0
− − −     { }, ie, to the portion of the 

effect of E on Y that could be eliminated if we fixed G to g0. This 
measure may be of relevance from a policy perspective insofar as 
we can determine the extent to which intervening to fix G to some 
level g0 would eliminate the effect of E on the outcome. We might 
thus decide whether to intervene on G to eliminate the effect of 
E. Importantly, however, to interpret the measure in this man-
ner, it is important that control is made for confounding for both 
exposures, G and E. Viewed intuitively, this ensures that it is the 
effect modifier itself that affects the outcome and that the effect 
modifier is not simply serving as a proxy for some other variable 
that does.26,27 When this is the case, the proportion attributable to 
interaction is equal to the proportion eliminated by fixing G to g0.

If no covariates are necessary for confounding control 
and we let pge = P (Y = 1|G = g, E = e), pg = P (Y = 1|G = g), 
and pe = P (Y = 1|E = e), then the first decomposition in Propo-
sition 2 written in terms of the observed data simplifies to:

p p p p p p p p P Ge e= =−( ) = −( ) + − − +( ) =( )1 0 01 00 11 10 01 00 1      .

and the second decomposition written in terms of counterfac-
tuals simplifies to

E E EY Y Y Y Y Y Y Y P Ge e= =−[ ] = −[ ]+ − − +[ ] =( )1 0 01 00 11 10 01 00 1 .

For the linear model

E Y G g E e C c g e eg c       = = =[ ] = + + + +, , ’α α α α α0 1 2 3 4

we have

E E[ , , ] [ , , ] ( )

(

’Y g e c Y g e c g e e g c

g

1 0 0 1 2 1 3 1 4

0 1

− = + + + +

− +

   

 

α α α α α

α α ++ + +α α α2 0 3 0 4e e g c  

                                      

’ )

   = + −( )( )α α2 3 1 0g e e

and thus the first component in the empirical decomposition in 
Proposition 2 is equal to:

E E[ , , ] [ , , ] ( )( )Y g e c Y g e c g e e0 1 0 0 2 0 3 1 0− = + − α α

and the second is equal to:

E E

E E

[ , , , , ]

[ , , , , ]

Y g e c Y g e c

Y g e c Y g e c

       

     

1 0

0 1 0 0

−] [
− +] [












( )

= + − − + − (

∫   

 

dP g c

g e e g e e dP g c( )( ) ( )( )α α α α2 3 1 0 2 0 3 1 0 ))
= [ ] −{ } −

∫
α3 0 1 0EG c g e e( )

The proportion due to interaction is then 
α
α α

3 0

2 3

{ [ | ] }

( [ | ])

E
E

G c g

G c

−
+ . 

When G and E are binary and g0 0=  and there are no covari-
ates, the 2 components reduce to α2 and α3 1P G( )=  and the 

proportion due to interaction is 
α

α α
3

2 3

1

1

P G

P G

( )

( )

=
+ =

, as in the text. 

Note, however, that when the exposures are not binary, the mea-
sures themselves (and thus the proportion attributable to interac-
tion) may vary depending on the values, e1 and e0, of E that are 
being compared and also again on the reference value, g0 of G.

On the risk ratio scale, we let  

RR
p

p

P Y G

P Y Gg
g

g
=

=

=
= =

= =( )
= =( )1

1

0

1 1

1 0
 and RR

p

p

P Y E

P Y Ee
e

e
=

=

=
= =

= =( )
= =( )1

1

0

1 1

1 0
  

 

and RR
p

p

P Y G g E e

P Y G Ege
ge= =

= = =( )
= = =( )00

1

1 0 0

,

,
. The decomposition  

p p p p p p p p P Ge e= =−( ) = −( ) + − − +( ) =( )1 0 01 00 11 10 01 00 1  when 

divided by pe=0 is

RR RR RR RR RR P Ge= −( ) = −( ) + − − +( ) =( )1 01 11 10 011 1 1 1κ κ

where κ  is a scaling factor given by κ = =p pe00 0/ . The propor-
tion of the effect of E attributable to interaction is given by:

pAI
RR RR RR P G

RR RR RR RR
EG= ( ) =

− − +( ) =( )
−( ) + − − +0

11 10 01

01 11 10 01

1 1

1 11 1( ) =( )P G
.

As noted in the text, if we use the logistic regression model

log | , ,

.

it P Y G g E e C c

g e eg c

= = = =( ){ }
= + + + + ′

1

0 1 2 3 4γ γ γ γ γ
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then proportion attributable to interaction if the 
exposures are binary can be approximated by 

pAI E
e e e P G

e e eG=

+ +

+ +( ) ≈
− − +( ) =( )

−( ) + −0

1 2 3 1 2

2 1 2 3 1

1 1

1

γ γ γ γ γ

γ γ γ γ γ −− +( ) =( )e P Gγ 2 1 1
. In 

the eAppendix (http://links.lww.com/EDE/A783), we discuss 
estimating standard errors for this proportion attributable to 
interaction.

Analogous Results for G
Note that, by symmetry, from Proposition 1, we have the 

decomposition 

E E

E E

Y Y c Y Y e c

Y Y e c Y Y

g g g g

g g g g

1 0 1 0

1 0 1 0

0−  = − 

+ −  − −

| | ,

| , || , ( ).e c dP e c0
 { }∫

This decomposition applies even if G affects E. If G and E 
were independent so that G did not affect E, then we would 
have an analog of Proposition 2, which would be that if the 
effect of G on Y  is unconfounded conditional on ( , )C E  then 
we have E E E[ , ] , , , ,Y Y e c Y g e c Y g e cg g1 0 1 0− = [ ] −  ,and under 

independence also, E E EY Y c Y g c Y g cg g1 0 1 0−  = [ ] −  , , , and 
we can thus write the decomposition of the total effect of G in 
terms of observed data as: E EY g c Y g c1 0, ,[ ] −  

=   −  

+
[ ] −  

−

E E

E E

E

Y g e c Y g e c

Y g e c Y g e c

Y g

1 0 0 0

1 0

1

, , , ,

, , , ,

,ee c Y g e c
dP ec

0 0 0, , ,
( ).

  +  












∫ E

If, moreover, the joint effects of G and E are unconfounded 
conditional on C , then we can write the decompositions as:

E E

E E

Y Y c Y Y c

Y Y c Y Y

g g g e g e

g e g e g e g e

1 0 1 0 0 0

1 0 1 0 0 0

−  =  

+ − − −

−

[ ] cc dP e c { }∫ ( | ).

Settings in Which G Affects E
If G affects E, then Proposition 2 for E still applies. 

We can still thus empirically decompose the total effect 
of E on Y  into a conditional effect and the portion due to 
interaction. If G affects E, we no longer have the simple 
relation Y Y c Y e c Y e ce e1 0 1 0−  = [ ] −  | , ,E E  because con-
trol for G will in general be needed to control for con-
founding for E. But we can still obtain E Y Y ce e1 0

− ,  
even if G affects E under Proposition 2, using the sum 
of the 2 components, E EY g e c Y g e c0 1 0 0, , , ,  −    and 

E E

E E

Y g e c Y g e c

Y g e c Y g e c

, , , ,

, , , ,

1 0

0 1 0 0

[ ] −  
−   +  












∫ dP g c( | )

.

However, if G affects E, then the analog of Proposition 
2 for G will not apply. We still have the analogous decomposi-
tion to that in Proposition 1:

E E

E E

Y Y c Y Y e c

Y Y e c Y Y e

g g g g

g g g g

1 0 1 0

1 0 1 0

0

0

−  = − 

+ −  − −

,

, ,cc dP e c { }∫ ( ).

However, the counterfactuals of the form E Y Y e cg g1 0 0− ,  will 

not be identified and so we cannot empirically estimate the 
various parts of the decomposition. This is because when G 
affects E, the analog of Proposition 2 for G would require that 
the effect of G on Y  is unconfounded conditional on ( , )C E  and 
this fails because G itself affects E.

However, when G affects E, we still have the decompo-
sition in the Proposition below.

Proposition 3. If the effect of G on Y  is unconfounded con-
ditional on C , and the effects of G and E are unconfounded 
conditional on C  then we have 

E E

E E

Y Y c Y Y c

Y Y c Y Y

g g g e g e

g e g e g e g

1 0 1 0 0 0

1 0 1 0 0
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+ − { } −

∫ ,

( , ) ( , )E {{ }∫ .

Moreover, each component of the decomposition above 
is identified and the corresponding decomposition expressed 
in terms of the observed data is E Y Y cg g1 0

− 

=   − [ ]{ }
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E E 00 1 0, , , .c dP e g c dP e g c { } ( ) − ( ){ }∫
Proof. We have that E[ | ]Y Y cg g1 0

−

= −
= − + −
E E
E E E

[ | , ] [ | , ]

[ | , , ] [ | , , ] { [ | , ]

Y g c Y g c

Y g e c Y g e c Y g c
1 0

1 0 0 0 1 EE
E E
E E

[ | , , ]}

{ [ | , ] [ | , , ]}

[ | , , ] [ |

Y g e c

Y g c Y g e c

Y g e c Y g

1 0

0 0 0

1 0

− −
= − 00 0

1 1 0 1

0

, , ]

{ [ | , , ] [ | , , ]} ( | , )

{ [ | , ,

e c

Y g e c Y g e c dP e g c

Y g e c

+ −

−

∫ E E

E ]] [ | , , ]} ( | , )

{ [ | , , ] [ | , , ]}

{

−

= −

+

∫ E

E E

E

Y g e c dP e g c

Y g e c Y g e c

0 0 0

1 0 0 0

[[ | , , ] [ | , , ]} { [ | , , ]

[ | , , ]} ( |

Y g e c Y g e c Y g e c

Y g e c dP e

1 0 1 0

0 0

− −

−
∫ E E

E gg c

Y g e c Y g e c

dP e g c dP e g c

1

0 0 0

1 0

, )

{ [ | , , ] [ | , , ]}

{ ( | , ) ( | , )}

+ −

−
=

∫ E E

EE

E E

[ | ]

{ [ | ] [ | ]} ( |

Y Y c

Y Y c Y Y c dP e g

g e g e

g e g e g e g e

1 0 0 0

1 0 1 0 0 0 1

−

+ − − − ,, )

{ [ | ]}{ ( | , ) ( | , )}.

c

Y Y c dP e g c dP e g cg e g e

∫
∫+ − −E

0 0 0 1 0

http://links.lww.com/EDE/A783


Epidemiology  •  Volume 25, Number 5, September 2014	 Attributing Effects to Interactions

© 2014 Lippincott Williams & Wilkins	 www.epidem.com  |  721

In the decomposition above, the first term, 
E E E[ | ] { [ | , , ] [ | , , ]}Y Y c Y g e c Y g e cg e g e1 0 0 0 1 0 0 0− = −  is 

the controlled direct effect9,10 of G, comparing lev-
els, g1 and g0, when E is fixed to e0. The second term, 

{ [ | ] [ | ]} ( | , )E EY Y c Y Y c dP e g cg e g e g e g e1 0 1 0 0 0 1− − −∫ , is the  

portion attributable to interaction; it is an interaction, 
E E[ | ] [ | ]Y Y c Y Y cg e g e g e g e1 0 1 0 0 0

− − − , standardized by 
the distribution, P e g c( | , )1 . The third and final term, 
{ [ | ]}{ ( | , ) ( | , )}E Y Y c dP e g c dP e g cg e g e0 0 0 1 0− −∫ , is the main 

effect of E when G g= 0, standardized by P e g c( | , )1  versus 
P e g c( | , )0 , which, provided the effect of G on E is uncon-
founded conditional on C , is essentially the effect of G on 
E and thus the third term is in some sense a mediated main 
effect.

When G, E, and Y  are binary and g0 0=  is selected as 
the reference level, and no covariates are required for con-
founding, the decomposition reduces to: E[ ]Y Y1 0−

= − + − − − = =
+ − =
E E
E
[ ] [ ] ( | )

[ ]{ ( |

Y Y Y Y Y Y P E G

Y Y P E
10 00 11 01 10 00

01 00

1 1

1 GG P E G= − = =1 1 0) ( | )}

Or, expressed in terms of the observed data, as ( )p pg g= =−1 0

= − + − − + = =
+ − = =
( ) ( ) ( | )

( ){ ( |

p p p p p p p E G

p p p E G
10 00 11 10 01 00

01 00

1 1

1 1)) ( | )}− = =P E G1 0

as in the text. The proportion attributable to interaction is then:

pAI G
p p p p P E G

p pE
g g

=
= =

=
− − + = =

−0
11 10 01 00

1 0

1 1
( )

( ) ( | )

( ).

Note that when G has a non-negative effect on E, and 
E has a non-negative effect on Y  (in the absence of G) so that 
P(E = 1|G = 1) – P(E = 1|G = 0) ≥ 0 and thus P(E = 1) =  
P(E =1|G = 1)P(G = 1) + P(E = 1|G = 0)P(G = 0) ≤ P(E =  
1|G = 1) and (p01 – p00){P(E = 1|G = 1) – P(E = 1|G = 0) ≥ 0, 
we then have that (p11 – p10 – p01 + p00)P(E = 1) ≤ (p11 – p10 –  
p01 + p00){P(E = 1|G = 1) = (pg=1 – pg=0) – (p10 – p00) –  
(p01 – p00)}P(E = 1|G = 1) – P(E = 1|G = 0) ≤ (pg=1 – pg=0)–(p10 
– p00) and from this it follows that if the dependence between 
G and E is incorrectly ignored and 

( ) ( )

( )
.

p p p p P E

p pg g

11 10 01 00

1 0

1− − + =
−= =

is used for the proportion attributable to interaction, then 
although the latter measure does not actually capture the pro-
portion of the effect attributable to interaction, it does none-
theless constitute a lower bound on the proportion of the effect 
of G that would be eliminated by fixing E to 0, as indicated 
in the text. Thus, even if one proceeds with the more naive 
estimate of the proportion attributable to interaction, ignor-
ing (incorrectly) the dependence between G and E, one still, 

under fairly reasonable assumptions, obtains a lower bound on 
the proportion of the effect of G eliminated by fixing E to 0.

The decomposition in Proposition 3 with binary expo-
sures when the effect of G on Y  and on E are unconfounded, and 
the effects of ( , )G E  on Y  are unconfounded can be rewritten as: 
E E E[ ] [ ] [ ] ( )Y Y Y Y Y Y Y Y P Eg1 0 10 00 11 01 10 00 1 1− = − + − − − = +=
E[ ]{ ( ) ( )}Y Y P E P Eg g01 00 1 01 1− = − == = , where Eg  is the 
counterfactual outcome for E fixing G to g. The analog on the 
individual counterfactual level is Y1 – Y0 = (Y10 – Y00) + (Y11 – 
Y01 – Y10 – Y00)Eg=1 + (Y01 – Y00)(Eg=1 – Eg=0). These are 3-way 
decompositions of a total effect. These differ somewhat from 
the decompositions in the mediation analysis literature.6–9 In 
the mediation analysis literature, the total effect is decomposed 
into either 2 components, what is called a natural indirect effect 
and a natural direct effect given, respectively, by E[ ]Y YE E1 11 0

−  
and E[ ]Y YE E1 00 0

− ; or into 3 components,8 a so-called pure 
indirect effect,9 a pure direct effect (equivalent to the natural 
direct effect just given), and a mediated interaction, which, 
when identified can be written as E[ ]Y YE E0 01 0

− , E[ ]Y YE E1 00 0
−  , 

and  E[Y Y Y11 01 10− − −+ Y ]{P(e  = 1)  P(e  = 1)}],00 g=1 g=0  
respectively. In contrast, for the decomposition given in Prop-
osition 3, the “direct effect” given in this decomposition is a 
controlled direct effect, E[ ]Y Y10 00− , not a natural direct effect; 
and the interaction term, E[ ] ( )Y Y Y Y P Eg11 01 10 00 1 1− − ==+ , is 
the proportion of the effect attributable to interaction. Note 
also that if G does not affect E (ie, if there is no mediation) 
then the mediation decomposition into 3 components8 reduces 
to a single component (the pure direct effect). However, if G 
does not affect E, then, with the decompositions considered in 
this article, there are still 2 components: the controlled direct 
effect for G and also the interaction term.

For the ratio scale, the decomposition, (pg=1 – pg=0) =  

(p10–p00)+(p11–p10–p01 + p00)P(E = 1|G = 1) + (p01 – p00){P(E = 
1|G = 1) – P(E = 1|G = 0)}, when divided by pg=0 is 

( ) ( )

( ) ( | )

(

RR RR
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where κ is a scaling factor given by κ =
=

p
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00

0

. The proportion 

of the effect of G attributable to interaction is:

pAI G
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E
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.

Decomposition of Joint Effects
At the counterfactual level, we can decompose the joint 

effects of the 2 exposures, G and E, into the effect due to 
G alone, the effect due to E alone and their interaction. We 
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have E E E[ | ] [ | ] [ | ]Y Y c Y Y c Y Y cg e g e g e g e g e g e1 1 0 0 1 0 0 0 0 1 0 0
− = − + − +

E[ | ]Y Y Y Y cg e g e g e g e1 1 1 0 0 1 0 0
− − +

.
If the joint effects of G and E are unconfounded conditional on 
C , each of these components is identified from the observed 
data and the decomposition can be rewritten as: 

E E E E
E

[ | , , ] [ | , , ] { [ | , , ] [ | , , ]}

{ [

Y g e c Y g e c Y g e c Y g e c
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E
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We can then also compute the proportion of the joint effect due 

to G alone as 
E E
E E

[ | , , ] [ | , , ]
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, and due to their interaction as 

E E E E
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Y g
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ee c Y g e c1 0 0, ] [ | , , ]− E

.  

Dividing the first decomposition above by E[ | ]Y cg e0 0
, or the 

second by E[ | , , ]Y g e c0 0 , or both the numerator and the 
denominator of the proportions by E[ | , , ]Y g e c0 0  yields 
decompositions and proportions on the ratio scale. All these 
decompositions are applicable even if G affects E. On a dif-
ference scale, under the linear model 

E[ | , , ] ,Y G g E e C c g e eg c= = = = + + + + ′α α α α α0 1 2 3 4

we have that the 3 components are given by:
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Y g e c
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0 1

0 0 3 1 1 1 0 0 1 0 0+ = − − +α

When G and E are binary, these 3 components reduce to α1, α2,  
and α3, respectively. Note, however, that when the exposures 
are not binary, the measures themselves (and thus the propor-
tion attributable to each component) may vary depending on 
the values, e1and e0, of E and the values, g1 and g0, of G that 
are being compared.

On a ratio scale, under the logistic regression model 
with a rare outcome, 

logit P Y G g E e C c g e eg c{ ( | , , )}= = = = = + + + + ′1 0 1 2 3 4γ γ γ γ γ

if G and E are binary then the proportions discussed in the text 
of the joint effect attributable to G alone, E alone, and to their 
interaction are given approximately by:
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respectively. See the eAppendix (http://links.lww.com/EDE/
A783) for standard errors.
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eAppendix for �Attributing E¤ects to Interactions�by Tyler J. VanderWeele and Eric J. Tchetgen
Tchetgen

1. Binary Exposures and Binary Outcomes

1.1. Standard Error for the Proportion of a Total E¤ect Attributable to Interaction

As noted in the text, for a binary outcome and two binary exposures G and E, the proportion of the excess
relative risk for E that is attributable to interaction is given by:

pAIG=0(E) =
(RERI)P (G = 1)

(RR01 � 1) + (RERI)P (G = 1)
:

where RERI = RR11 �RR10 �RR01 + 1. Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 
0 + 
1g + 
2e+ 
3eg + 
04c; (A1)

the (marginal) proportion attributable to interaction averaged over covariates can be shown to be:

pAIG=0(E) �
(e
1+
2+
3 � e
1 � e
2 + 1)P (G = 1)

(e
2 � 1) + (e
1+
2+
3 � e
1 � e
2 + 1)P (G = 1) :

The conditional proportion attributable to interaction in stratum C = c would replace P (G = 1) in both the
numerator and the denominator by P (G = 1jC = c).
For the standard error for the proportion due to interaction we will assume that the proportion P (G = 1) is

known. Alternatively, the standard errors derived can be interpretted as standard errors for the estimate of the
proportion attributable to interaction in a population which had the same underlying risk ratios as the sample in
question, but had a prevalence of G equal to the prevalence of G in the sample.
Let
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Let K1, K2 and K3 denote the �rst, second, and third non-zero expressions in this vector. We then have

V ar( bQ) =
@Q
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2; 
3)
0

0
V
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1.2 Standard Error for the Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to Interaction

For the three-way decomposition of the joint excess relative risk of both exposures, RR11 � 1, we have a
decomposition into an excess risk relative risk for G alone, an excess relative risk for E alone, and the excess
relative risk due to interaction i.e. we have the decomposition: RR11� 1 = (RR10� 1)+ (RR01� 1)+RERI. And
we can compute the proportion of the joint e¤ect due to G alone RR10�1

RR11�1 , and due to E alone RR01�1
RR11�1 , and due to

their interaction RERI
RR11�1 . Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 
0 + 
1g + 
2e+ 
3eg + 
04c;

the proportion can be estimated approximately by:
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We will now compute the standard errors for these expressions.
For the proportion of the joint e¤ect due to a single exposure alone, we have, by the delta method, that the

variance of our estimator bQ of Q = e
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Let K1, K2 and K3 denote the �rst, second, and third non-zero expressions in this vector. We then once again
have V ar( bQ) = v11K2

1 + v22K
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For the standard error for the proportion of a joint e¤ect attributable to interaction we have, by the delta method,
that the variance of the estimator bQ of Q = (e
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1CCCCA :
Let K1, K2 and K3 denote the �rst, second, and third non-zero expressions in this vector. We then have V ar( bQ) =
v11K

2
1 + v22K

2
2 + v33K

2
3 + v12K1K2 + v13K1K3 + v23K2K3:

1.3. SAS and Stata Code to Implement Proportion of a Total E¤ect Attributable to Interaction

Suppose we have a SAS dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and
three covariates �c1�, �c2�and �c3�. To use the code below, the user must input in the third and fourth line of the
data step the prevalence of the exposure G (�pg=�) and the prevalence of the exposure E (�pg=�). In a case-control
study, these prevalences should be computed only among the controls. The output will include the proportion
of the total e¤ect of G that is attributable to interaction, along with a 95% con�dence interval; the remaining
proportion is that attributable to G when E is set to 0. The code will also report the proportion of the total e¤ect
of E that is attributed to interaction, along with a 95% con�dence interval; once again, the remaining proportion
is that attributable to E when G is set to 0.
These measures assume that G and E are independent, and that control has been made for confounding. In this

case, the proportion attributable to interaction for G can also be interpretted as the proportion of the total e¤ect
of G that would be eliminated if E were set to 0. Likewise, the proportion attributable to interaction for E can
also be interpretted as the proportion of the total e¤ect of E that would be eliminated if G were set to 0. When G
and E are not independent (e.g. G a¤ects E), the measure for the second exposure still carries this interpretation
provided control has been made for confounding. However, for the �rst exposure G the proportion attributable to
interaction given in the output corresponds to the proportion of an integrated joint e¤ect due to interaction, as
discussed in the Appendix to the paper.

proc logistic descending data=mydata outest=myoutput covout;
model y=g e g*e c1 c2 c3;
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run;

data PAIoutput;
set myoutput;
array mm {*} _numeric_;
pg=0.5;
pe=0.5;
b0=lag4(mm[1]);
b1=lag4(mm[2]);
b2=lag4(mm[3]);
b3=lag4(mm[4]);
v11=lag2(mm[2]);
v12=lag(mm[2]);
v13=mm[2];
v22=lag(mm[3]);
v23=mm[3];
v33=mm[4];
k1=((exp(b2)-1)*(exp(b1+b2+b3)-exp(b1))*pg)

/((exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg)*(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg));
k2=(-(exp(b1+b2+b3)-exp(b2))*pg)

/((exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg)*(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg));
k3=((exp(b2)-1)*exp(b1+b2+b3))

/((exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg)*(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg));
vPAIE=v11*k1*k1 + v22*k2*k2 + v33*k3*k3 + 2*v12*k1*k2 + 2*v13*k1*k3 + 2*v23*k2*k3;
PAI_E=(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg/(exp(b2)-1+(exp(b1+b2+b3)-exp(b1)-exp(b2)+1)*pg);
se_PAIE=sqrt(vPAIE);
ci95_lE=PAI_E-1.96*se_PAIE;
ci95_uE=PAI_E+1.96*se_PAIE;
h1=((exp(b1)-1)*(exp(b2+b1+b3)-exp(b2))*pe)

/((exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe)*(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe));
h2=(-(exp(b2+b1+b3)-exp(b1))*pe)

/((exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe)*(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe));
h3=((exp(b1)-1)*exp(b2+b1+b3))

/((exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe)*(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe));
vPAIG=v11*h1*h1 + v22*h2*h2 + v33*h3*h3 + 2*v12*h1*h2 + 2*v13*h1*h3 + 2*v23*h2*h3;
PAI_G=(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe/(exp(b1)-1+(exp(b2+b1+b3)-exp(b2)-exp(b1)+1)*pe);
se_PAIG=sqrt(vPAIG);
ci95_lG=PAI_G-1.96*se_PAIG;
ci95_uG=PAI_G+1.96*se_PAIG;
keep PAI_E ci95_lE ci95_uE PAI_G ci95_lG ci95_uG;
if _n_=5;

run;

proc print data=PAIoutput;
var PAI_E ci95_lE ci95_uE PAI_G ci95_lG ci95_uG;

run;

The equivalent Stata code would be:

generate pg=0.5
generate pe=0.5

generate Ige = g*e
logit y g e Ige c1 c2 c3

nlcom (exp(_b[e]+_b[g]+_b[Ige])-exp(_b[e])-exp(_b[g])+1)*pe/(exp(_b[g])-1
+(exp(_b[e]+_b[g]+_b[Ige])-exp(_b[e])-exp(_b[g])+1)*pe)

1.4. SAS and Stata Code to Implement Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to
Interaction
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As discussed in the text it is possible to decompose the joint excess relative risk for both exposures together
into three components: (i) a component due to the �rst exposure G alone, (ii) a component due to E alone, and
(iii) a component due to the interaction between the e¤ect of G and E. The output gives the proportions due to G
alone, the proportion due to E alone, and the proportion due to the interaction; 95% con�dence intervals are also
given for these three proportions. The three proportions will sum to 100%. The decomposition applies even if one
of the exposures a¤ects the other. The code in SAS is:

proc logistic descending data=mydata outest=myoutput covout;
model y=g e g*e c1 c2 c3;

run;

data JOINToutput;
set myoutput;
array mm {*} _numeric_;
b0=lag4(mm[1]);
b1=lag4(mm[2]);
b2=lag4(mm[3]);
b3=lag4(mm[4]);
v11=lag2(mm[2]);
v12=lag(mm[2]);
v13=mm[2];
v22=lag(mm[3]);
v23=mm[3];
v33=mm[4];
k1=(exp(b1+b2+b3)-exp(b1))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
k2=(-(exp(b1)-1)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
k3=(-(exp(b1)-1)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
vG=v11*k1*k1 + v22*k2*k2 + v33*k3*k3 + 2*v12*k1*k2 + 2*v13*k1*k3 + 2*v23*k2*k3;
PAG=(exp(b1)-1)/(exp(b1+b2+b3)-1);
se_PAG=sqrt(vG);
ci95_lG=PAG-1.96*se_PAG;
ci95_uG=PAG+1.96*se_PAG;
h1=(exp(b2+b1+b3)-exp(b2))/((exp(b2+b1+b3)-1)*(exp(b2+b1+b3)-1));
h2=(-(exp(b2)-1)*exp(b2+b1+b3))/((exp(b2+b1+b3)-1)*(exp(b2+b1+b3)-1));
h3=(-(exp(b2)-1)*exp(b2+b1+b3))/((exp(b2+b1+b3)-1)*(exp(b2+b1+b3)-1));
vE=v11*h1*h1 + v22*h2*h2 + v33*h3*h3 + 2*v12*h1*h2 + 2*v13*h1*h3 + 2*v23*h2*h3;
PAE=(exp(b2)-1)/(exp(b2+b1+b3)-1);
se_PAE=sqrt(vE);
ci95_lE=PAE-1.96*se_PAE;
ci95_uE=PAE+1.96*se_PAE;
f1=(exp(b1)+(exp(b2)-2)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
f2=(exp(b2)+(exp(b1)-2)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
f3=((exp(b1)+exp(b2)-2)*exp(b1+b2+b3))/((exp(b1+b2+b3)-1)*(exp(b1+b2+b3)-1));
vINT=v11*f1*f1 + v22*f2*f2 + v33*f3*f3 + 2*v12*f1*f2 + 2*v13*f1*f3 + 2*v23*f2*f3;
PaINT=(exp(b2+b1+b3)-exp(b1)-exp(b2)+1)/(exp(b1+b2+b3)-1);
se_PaINT=sqrt(vINT);
ci95_lINT=PaINT-1.96*se_PaINT;
ci95_uINT=PaINT+1.96*se_PaINT;
keep PAG ci95_lG ci95_uG PAE ci95_lE ci95_uE PaINT ci95_lINT ci95_uINT;
if _n_=5;

run;

proc print data=JOINToutput;
var PAG ci95_lG ci95_uG PAE ci95_lE ci95_uE PaINT ci95_lINT ci95_uINT;

run;

The equivalent Stata code would be as follows (with the output �rst giving the proportion of joint e¤ect due to
G alone, then due to E alone, and then that due to their interaction):

generate Ige = g*e
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logit y g e Ige c1 c2 c3

nlcom (exp(_b[g])-1)/(exp(_b[g]+_b[e]+_b[Ige])-1)
nlcom (exp(_b[e])-1)/(exp(_b[e]+_b[g]+_b[Ige])-1)
nlcom (exp(_b[e]+_b[g]+_b[Ige])-exp(_b[g])-exp(_b[e])+1)/(exp(_b[g]+_b[e]+_b[Ige])-1)

2. Binary Outcome and Continuous Exposures

2.1. Proportion of a Total E¤ect Attributable to Interaction

As discussed in the Appendix to the text, for continuous exposures, when the e¤ect of E on Y is unconfounded
conditional on (C;G) then the total e¤ect of E on Y , E[Ye1 jc]�E[Ye0 jc], could be decomposed into two components
as: E[Ye1 jc]� E[Ye0 jc]

= E[Y jg0; e1; c]� E[Y jg0; e0; c] +
Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc)

which on the ratio scale can be rewritten as E[Ye1 jc]
E[Ye0 jc]

� 1

= �fE[Y jg0; e1; c]
E[Y jg0; e0; c]

� 1g+ �
Z
f E[Y jg; e1; c]
E[Y jg0; e0; c]

� E[Y jg; e0; c]
E[Y jg0; e0; c]

� E[Y jg0; e1; c]
E[Y jg0; e0; c]

+ 1gdP (gjc)

where � = E[Y jg0;e0;c]
E[Ye0 jc]

. The proportion of the e¤ect of E attributable to interaction is given by:

pAIG=g0(E) =

Z
f E[Y jg;e1;c]E[Y jg0;e0;c] �
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E[Y jg0;e0;c] �
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fE[Y jg0;e1;c]E[Y jg0;e0;c] � 1g+
Z
f E[Y jg;e1;c]E[Y jg0;e0;c] �

E[Y jg;e0;c]
E[Y jg0;e0;c] �

E[Y jg0;e1;c]
E[Y jg0;e0;c] + 1gdP (gjc)

:

Suppose �rst that E is continuous and G is binary, then this expression reduces to
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E[Y jg0;e0;c] + 1gP (G = g1jc)

fE[Y jg0;e1;c]E[Y jg0;e0;c] � 1g+ f
E[Y jg1;e1;c]
E[Y jg0;e0;c] �

E[Y jg1;e0;c]
E[Y jg0;e0;c] �
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:

Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 
0 + 
1g + 
2e+ 
3eg + 
04c; (A1)

the proportion attributable to interaction is given by approximately by: pAIG=g0(E) �
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3 � e(e1�e0)
2+(e1�e0)g0
3 + 1gP (G = g1jc)

fe(e1�e0)
2+(e1�e0)g0
3 � 1g+ fe(g1�g0)
1+(e1�e0)
2+(g1e1�g0e0)
3 � e(g1�g0)
1+(g1�g0)e0
3 � e(e1�e0)
2+(e1�e0)g0
3 + 1gP (G = g1jc)
:

Suppose now that G is continuous and normally distributed with mean

E[Gjc] = �0 + �01c (A2)
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and variance �2. Assuming a rare outcome, under logistic regression (A1) we have:Z
E[Y jg; e; c]
E[Y jg0; e0; c]

dP (gjc)

�
Z
expf(g � g0)
1 + (e� e0)
2 + (ge� g0e0)
3gdP (gjc)

= expf�g0
1 + (e� e0)
2 � g0e0
3g
Z
expfg(
1 + e
3)gdP (gjc)

= expf�g0
1 + (e� e0)
2 � g0e0
3 + (
1 + e
3)(�0 + �01c) +
1

2
(
1 + e
3)

2�2g

and thus the proportion attributable to interaction is: pAIG=g0(E) =Z
f E[Y jg;e1;c]
E[Y jg0;e0;c]

� E[Y jg;e0;c]
E[Y jg0;e0;c]

� E[Y jg0;e1;c]
E[Y jg0;e0;c]

+ 1gdP (gjc)

fE[Y jg0;e1;c]
E[Y jg0;e0;c]

� 1g+
Z
f E[Y jg;e1;c]
E[Y jg0;e0;c]

� E[Y jg;e0;c]
E[Y jg0;e0;c]

� E[Y jg0;e1;c]
E[Y jg0;e0;c]

+ 1gdP (gjc)
�

e�g0
1+(e1�e0)
2�g0e0
3+(
1+e1
3)(�0+�
0
1c)+

1
2
(
1+e1
3)

2�2 � e�g0
1�g0e0
3+(
1+e0
3)(�0+�
0
1c)+

1
2
(
1+e0
3)

2�2 � e(e1�e0)
2+(e1�e0)g0
3 + 1g
e�g0
1+(e1�e0)
2�g0e0
3+(
1+e1
3)(�0+�

0
1c)+

1
2
(
1+e1
3)

2�2 � e�g0
1�g0e0
3+(
1+e0
3)(�0+�01c)+
1
2
(
1+e0
3)

2�2
:

2.2. Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to Interaction

Let RRg1e1 =
E[Y jg1;e1;c]
E[Y jg0;e0;c] . For the three-way decomposition of the joint excess relative risk of both exposures,

RRg1e1 � 1, we have the decomposition:

(RRg1e1 � 1) = (RRg1e0 � 1) + (RRg0e1 � 1) + (RRg1e1 �RRg1e0 �RRg0e1 + 1) :

Under the logistic regression model with a rare outcome

logitfP (Y = 1jG = g;E = e; C = c)g = 
0 + 
1g + 
2e+ 
3eg + 
04c;

the proportions of the joint excess relative risk of both exposures due to each of the exposures considered alone
and due to interaction can be estimated approximately by:

RRg1e0 � 1
RRg1e1 � 1

� e(g1�g0)
1+(g1�g0)e0
3 � 1
e(g1�g0)
1+(e1�e0)
2+(g1e1�g0e0)
3 � 1

RRg0e1 � 1
RRg1e1 � 1

� e(e1�e0)
2+(e1�e0)g0
3 � 1
e(g1�g0)
1+(e1�e0)
2+(g1e1�g0e0)
3 � 1

(RRg1e1 �RRg1e0 �RRg0e1 + 1)
RRg1e1 � 1

�

fe(g1�g0)
1+(e1�e0)
2+(g1e1�g0e0)
3 � e(g1�g0)
1+(g1�g0)e0
3 � e(e1�e0)
2+(e1�e0)g0
3 + 1g
e(g1�g0)
1+(e1�e0)
2+(g1e1�g0e0)
3 � 1

:

2.3. SAS and Stata Code to Implement Proportion of a Total E¤ect Attributable to Interaction

Although we could obtain analytic standard errors for the expressions in Section 2.1 using the delta, the formulae
would be very involved. The SAS procedure proc nlmixed, can however, carry out standard error computations for
these expressions.
To estimate the proportion of the total e¤ect of E on binary outcome Y due to E when G is �xed to g0 and the

proportion due to interaction when G is binary, and logistic regression model (A1) is used, one can use the code
below. Suppose we have a dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and
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three covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second
and fourth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E

(�e1=�and �e0=�) that are being compared. The user must also input in the third line of the code the prevalence
of the exposure G (�pg=�) conditional on C = c (or use the marginal prevalence of G as a summary). In a case-
control study, these prevalences should be computed only among the controls. For the standard error to be valid
it is assumed that the prevalence of G is known; alternatively, standard errors and con�dence interval can be
interpretted as that for the proportion attributable to interaction in a population which had the same underlying
risk ratios as the sample in question, but had a prevalence of G equal to the prevalence of G in the sample.
The output will include the proportion of the total e¤ect of E that is attributable to interaction, along with a

95% con�dence interval; the remaining proportion is that attributable to E when G is set to g0.

proc nlmixed data=mydata;
parms b0=1 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0;
g1=1; g0=0; e1=1; e0=0; pg=0.5;
p_y=(1+exp(-(b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
model Y ~general(ll_y);
estimate �PAI_E� (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3)-exp((g1-g0)*b1+(g1-g0)*e0*b3)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1)*pg
/ ( ( exp((e1-e0)*b2+(e1-e0)*g0*b3) - 1) + (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3)
-exp((g1-g0)*b1+(g1-g0)*e0*b3)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1) *pg);
run;

The equivalent Stata code would be:

generate g1=1
generate g0=0
generate e1=1
generate e0=0
generate pg=0.5

generate Ige = g*e
logit y g e Ige c1 c2 c3

nlcom (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige])-exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige])-exp((e1-e0)*_b[e]+(e1-e0)
*g0*_b[Ige])+1)*pg/ ( ( exp((e1-e0)*_b[e]+(e1-e0)*g0*_b[Ige]) - 1) + (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige])
-exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige])-exp((e1-e0)*_b[e]+(e1-e0)*g0*_b[Ige])+1) *pg);

To estimate the proportion of the total e¤ect of E on binary outcome Y due to E when G is �xed to g0 and
the proportion due to interaction when G is continuous, and logistic regressions models (A1) and (A2) are used,
one can use the code below. Suppose we have a SAS dataset named �mydata�with outcome variable �d�, exposure
variables �e�and �g�and three covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would
have to modify the second, third, fourth and �fth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E

(�e1=�and �e0=�) that are being compared. The user must also input in the third line of the code the value of
the covariates C at which the proportion attributable to interaction is to be calculated (�cc1=�, �cc2�and �cc3=�).
Alternatively the mean value of these covariates in the sample could be inputted on this line as a summary measure
(in a case-control study, these means should be computed only among the controls).
The output will include the proportion of the total e¤ect of E that is attributable to interaction, along with a

95% con�dence interval; the remaining proportion is that attributable to E when G is set to g0.
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proc nlmixed data=mydata;
parms b0=1 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0 a0=0 ac1=0 ac2=0 ac3=0 ss_g=1;
g1=1; g0=0; e1=1; e0=0; cc1=10; cc2=10; cc3=20;
p_y=(1+exp(-(b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
mu_g =a0 + ac1*C1 + ac2*C2 + ac3*C3;
ll_g=-((g-mu_g)**2)/(2*ss_g)-0.5*log(ss_g);
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
ll_o= ll_g + ll_y;
model Y ~general(ll_o);
estimate �PAI_E� (exp(-g0*b1+(e1-e0)*b2-g0*e0*b3+(b1+e1*b3)*(mu_g)+0.5*ss_g*(b1+e1*b3)**2)
- exp(-g0*b1-g0*e0*b3+(b1+e0*b3)*(mu_g)+0.5*ss_g*(b1+e0*b3)**2)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1)
/ ( exp(-g0*b1+(e1-e0)*b2-g0*e0*b3+(b1+e1*b3)*(mu_g)+0.5*ss_g*(b1+e1*b3)**2)
- exp(-g0*b1-g0*e0*b3+(b1+e0*b3)*(mu_g)+0.5*ss_g*(b1+e0*b3)**2) );
run;

2.4. SAS and Stata Code to Implement Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to
Interaction

To estimate the proportion of the joint e¤ect of both exposures on binary outcome Y due to each exposure
alone and due to interaction, when logistic regression model (A1) is used, one can use the code below. We again
suppose we have a SAS dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and three
covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second and
fourth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E (�e1=�

and �e0=�) that are being compared. The output gives the proportions due to G alone, the proportion due to E
alone, and the proportion due to the interaction; 95% con�dence intervals are also given for these three proportions.
The three proportions will sum to 100%. The decomposition applies even if one of the exposures a¤ects the other.

proc nlmixed data=mydata;
parms b0=1 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0;
g1=1; g0=0; e1=1; e0=0;
p_y=(1+exp(-(b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
model Y ~general(ll_y);
estimate �PaG� (exp((g1-g0)*b1+(g1-g0)*e0*b3) - 1) / (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3) - 1);
estimate �PaE� (exp((e1-e0)*b2+(e1-e0)*g0*b3) - 1) / (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3) - 1);
estimate �Pa_INT� (exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3)-exp((g1-g0)*b1+(g1-g0)*e0*b3)-exp((e1-e0)*b2+(e1-e0)*g0*b3)+1)
/(exp((g1-g0)*b1+(e1-e0)*b2+(g1*e1-g0*e0)*b3) - 1);
run;

The equivalent Stata code would be as follows (with the output �rst giving the proportion of joint e¤ect due to
G alone, then due to E alone, and then that due to their interaction):

generate g1=1
generate g0=0
generate e1=1
generate e0=0

generate Ige = g*e
logit y g e Ige c1 c2 c3

nlcom (exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige]) - 1) / (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige]) - 1)
nlcom (exp((e1-e0)*_b[e]+(e1-e0)*g0*_b[Ige]) - 1) / (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige]) - 1)
nlcom (exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige])-exp((g1-g0)*_b[g]+(g1-g0)*e0*_b[Ige])-exp((e1-e0)*_b[e]

+(e1-e0)*g0*_b[Ige])+1)/(exp((g1-g0)*_b[g]+(e1-e0)*_b[e]+(g1*e1-g0*e0)*_b[Ige]) - 1)
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3. Continous Outcomes and Binary or Continuous Exposures

3.1. Proportion of a Total E¤ect Attributable to Interaction

As discussed in the Appendix to the text, for continuous exposures, when the e¤ect of E on Y is unconfounded
conditional on (C;G) then the total e¤ect of E on Y , E[Ye1 jc]�E[Ye0 jc], could be decomposed into two components
as: E[Ye1 jc]� E[Ye0 jc]

= E[Y jg0; e1; c]� E[Y jg0; e0; c] +
Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc):

Under the linear model

E[Y jG = g;E = e; C = c] = �0 + �1g + �2e+ �3eg + �04c; (A3)

these two components are:

E[Y jg; e1; c]� E[Y jg; e0; c] = (�2 + g�3)(e1 � e0)Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc) = �3fE[Gjc]� g0g(e1 � e0)

and the proportion due to interaction is then �3fE[Gjc]�g0g
(�2+�3E[Gjc]) .

This decomposition above marginalized over the distribution P (c) gives: E[Ye1 ]� E[Ye0 ]

=

Z
fE[Y jg0; e1; c]�E[Y jg0; e0; c]gdP (c) +

Z
fE[Y jg; e1; c]�E[Y jg; e0; c]�E[Y jg0; e1; c] +E[Y jg0; e0; c]gdP (g; c)

and under model (A3) the components are:

E[Y jg; e1; c]� E[Y jg; e0; c] = (�2 + g�3)(e1 � e0)Z
fE[Y jg; e1; c]� E[Y jg; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]gdP (gjc) = �3fE[G]� g0g(e1 � e0)

and the proportion due to interaction is then �3fE[G]�g0g
(�2+�3E[G])

. In section 3.3 SAS code is given for this latter decom-
position.

3.2. Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to Interaction

As also discussed in the Appendix to the text, if the joint e¤ects of G and E are unconfounded conditional on
C we can empirically decompose the joint e¤ects of both exposures combined as follows:

E[Y jg1; e1; c]� E[Y jg0; e0; c] = fE[Y jg1; e0; c]� E[Y jg0; e0; c]g+ fE[Y jg0; e1; c]� E[Y jg0; e0; c]g
+fE[Y jg1; e1; c]� E[Y jg1; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]g:

We can then also compute the proportion of the joint e¤ect due G alone as E[Y jg1;e0;c]�E[Y jg0;e0;c]
E[Y jg1;e1;c]�E[Y jg0;e0;c] , due to E alone

as E[Y jg0;e1;c]�E[Y jg0;e0;c]
E[Y jg1;e1;c]�E[Y jg0;e0;c] , and due to their interaction as

E[Y jg1;e1;c]�E[Y jg1;e0;c]�E[Y jg0;e1;c]+E[Y jg0;e0;c]
E[Y jg1;e1;c]�E[Y jg0;e0;c] .

On a di¤erence scale, under the linear model

E[Y jG = g;E = e; C = c] = �0 + �1g + �2e+ �3eg + �04c;
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these three proportions are given by:

E[Y jg1; e0; c]� E[Y jg0; e0; c]
E[Y jg1; e1; c]� E[Y jg0; e0; c]

=
(�1 + �3e0)(g1 � g0)

�1(g1 � g0) + �2(e1 � e0) + �3(g1e1 � g0e0)
E[Y jg0; e1; c]� E[Y jg0; e0; c]
E[Y jg1; e1; c]� E[Y jg0; e0; c]

=
(�2 + �3g0)(e1 � e0)

�1(g1 � g0) + �2(e1 � e0) + �3(g1e1 � g0e0)
E[Y jg1; e1; c]� E[Y jg1; e0; c]� E[Y jg0; e1; c] + E[Y jg0; e0; c]

E[Y jg1; e1; c]� E[Y jg0; e0; c]
=

�3(g1e1 � g1e0 � g0e1 + g0e0)
�1(g1 � g0) + �2(e1 � e0) + �3(g1e1 � g0e0)

:

3.3. SAS and Stata Code to Implement Proportion of a Total E¤ect Attributable to Interaction

To estimate the proportion of the total e¤ect of E on continuous outcome Y due to E when G is �xed to g0 and
the proportion due to interaction, and logistic regression model (A3) is used, one can use the code below. Suppose
we have a dataset named �mydata�with outcome variable �y�, exposure variables �e�and �g�and three covariates
�c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second and fourth lines
of the code below to include these covariates.
The user must input in the third line of code the level g0 to which G will be �xed (�g0=�) when carrying out

the decomposition of the total e¤ect of E into the proportion due to E when G is �xed to g0 and the proportion
due to interaction when G. The user must also input in the third line of the code the mean value of G in the
population (�exg=�). For the standard error to be valid it is assumed that the mean of G is known; alternatively,
standard errors and con�dence interval can be interpretted as that for the proportion attributable to interaction in
a population which had the same underlying e¤ects as the sample in question, but had a mean of G equal to the
mean of G in the sample.
The output will include the proportion of the total e¤ect of E that is attributable to interaction, along with a

95% con�dence interval; the remaining proportion is that attributable to E when G is set to g0.

proc nlmixed data=mydata;
parms b0=0 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0 ss_y=1;
g0=0; exg=0.5;
mu_y = b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3;
ll_y=-((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
model Y ~general(ll_y);
estimate �PAI_E� (b3*exg-g0)/(b2+b3*exg);
run;

The equivalent Stata code would be:

generate g0=0
generate exg=0.5

generate Ige = g*e
reg y g e Ige c1 c2 c3

nlcom (_b[Ige]*exg-g0)/(_b[e]+_b[Ige]*exg)

3.4. SAS and Stata Code to Implement Proportion of a Joint E¤ect Attributable to Either Exposure Alone and to
Interaction

To estimate the proportion of the joint e¤ect of both exposures on continuous outcome Y due to each exposure
alone and due to interaction, when logistic regression model (A3) is used, one can use the code below. We again
suppose we have a dataset named �mydata�with outcome variable �y�, exposure variables �e� and �g� and three
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covariates �c1�, �c2�and �c3�. If there were more or fewer covariates the user would have to modify the second and
fourth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of G (�g1=�and �g0=�) and the two levels of E (�e1=�

and �e0=�) that are being compared. The output gives the proportions due to G alone, the proportion due to E
alone, and the proportion due to the interaction; 95% con�dence intervals are also given for these three proportions.
The three proportions will sum to 100%. The decomposition applies even if one of the exposures a¤ects the other.

proc nlmixed data=mydata;
parms b0=0 b1=0 b2=0 b3=0 bc1=0 bc2=0 bc3=0 ss_y=1;
g1=1; g0=0; e1=1; e0=0;
mu_y = b0 + b1*G + b2*E + b3*G*E + bc1*C1 + bc2*C2 + bc3*C3;
ll_y=-((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
model Y ~general(ll_y);
estimate �PaG� (b1+b3*e0)*(g1-g0)/( b1*(g1-g0) + b2*(e1-e0) + b3*(g1*e1-g0*e0) );
estimate �PaE� (b2+b3*g0)*(e1-e0)/( b1*(g1-g0) + b2*(e1-e0) + b3*(g1*e1-g0*e0) );
estimate �Pa_INT� b3*(g1*e1-g1*e0-g0*e1+g0*e0)/( b1*(g1-g0) + b2*(e1-e0) + b3*(g1*e1-g0*e0) );
run;

The equivalent Stata code would be as follows (with the output �rst giving the proportion of joint e¤ect due to
G alone, then due to E alone, and then that due to their interaction):

generate g1=1
generate g0=0
generate e1=1
generate e0=0

generate Ige = g*e
reg y g e Ige c1 c2 c3

nlcom (_b[g]+_b[Ige]*e0)*(g1-g0)/( _b[g]*(g1-g0) + _b[e]*(e1-e0) + _b[Ige]*(g1*e1-g0*e0) )
nlcom (_b[e]+_b[Ige]*g0)*(e1-e0)/( _b[g]*(g1-g0) + _b[e]*(e1-e0) + _b[Ige]*(g1*e1-g0*e0) )
nlcom _b[Ige]*(g1*e1-g1*e0-g0*e1+g0*e0)/( _b[g]*(g1-g0) + _b[e]*(e1-e0) + _b[Ige]*(g1*e1-g0*e0) )
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