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Genetic effects across
the genome may exhibit
context dependence
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* Polygenic GXE is one
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Polygenic GXE may explain variable prediction
accuracy of polygenic scores within an ancestry
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Major questions remain about the
contribution of GxE to disease heritability

* How widespread are context dependent genetic effects?

* What is the contribution of polygenic GXE to disease heritability?



GXE can arise through different scenarios
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GXE can arise through different scenarios

Imperfect genetic Varying genetic
correlation variance
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GXE can arise through different scenarios

Imperfect genetic Varying genetic Proportional

correlation variance amplification
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GXE can arise through different scenarios

Imperfect genetic Varying genetic Proportional

correlation variance amplification

2 2 2 2 - 02 | 2

= W o, ¥ o - W o, U o - g Oe

2 — h2
2 _ 2 h - h H

i h g, lowE — h g, high E a hzg, low E g hzg, high E _ & Ioer =1 8 high £

%<1 %=1 &

Variance
1

Low High Low High Low High

Locus dependent GxE Non-locus dependent GxE



GXE can arise through different scenarios

Imperfect genetic Varying genetic Proportional
correlation variance amplification
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GXE can arise through different scenarios

Imperfect genetic Varying genetic Proportional
correlation variance amplification
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We can distinguish between polygenic GXE scenarios
with three metrics
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Prop. of sig. tests

LDSC genetic correlation is well-powered to
detect r, <97% across E bins in Scenario 1
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n? estimation across E bins and PRSxE regression are well-
nowered to detect heritability differences between E bins

> 2% In Scenario 2
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PRSXE regression is well-powered to detect proportional
ohenotype amplification >5% in Scenario 3
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Inferring the contribution of GxE in UKBiobank data

1. We analyzed 33 complex diseases and traits across 10 E variables
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Inferring the contribution of GxE in UKBiobank data

1. We analyzed 33 complex diseases and traits across 10 E variables
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Inferring the contribution of GxE in UKBiobank data

1. We analyzed 33 complex diseases and traits across 10 E variables
* Diet
» Sleep
* Alcohol
* Smoking
* Physical activity
* Sex

2. For h?and r, we binned individuals into 5 bins (or 2 bins for binary E
variables) according to their E variables:

* r, and h?: N=67K per bin
* PRSxE: N=47K (PRS trained on 337K)



Outline

Background on gene-environment interactions
Methods

Simulations

Results

Lk W E

Summary



We find examples of Genetic
all three Scenarios of

GXE
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GXE explains 3% of trait variance on average across
traits
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We flnd examp|es Of Genetic Heritability PRSxE

correlation by E regression
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GxSex explains 4% of trait variance on average across

traits
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Our results point to a model where E variables
interact with genetics at several levels
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Our results point to a model where E variables
interact with genetics at several levels

Measured E variable
interaction —=—p X4
(Scenario 1: Imperfect +
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genetic correlation)
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Summary and conclusions

* For many diseases, the genetic effects are context-dependent

* We find evidence for polygenic GxE arising from locus dependent
interactions

* We also find evidence for polygenic GxE arising from non-locus
dependent interactions
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