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Genetic effects across 
the genome may exhibit 
context dependence
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Data replotted from Shi et al 2021 Nat Commun

• European-East Asian 
cohort genetic correlation 
is less than 1 (average: 
85% SE: 1%) across a wide 
range of traits

• Polygenic GxE is one 
possible explanation



Polygenic GxE may explain variable prediction 
accuracy of polygenic scores within an ancestry

Mostafavi et al 2020 eLife

• Incremental R2 changes as a 
function of E variables

• Could be due to interactions, 
among other explanations



Major questions remain about the 
contribution of GxE to disease heritability

• How widespread are context dependent genetic effects?

• What is the contribution of polygenic GxE to disease heritability?



GxE can arise through different scenarios
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with three metrics
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LDSC genetic correlation is well-powered to 
detect rg < 97% across E bins in Scenario 1

N=67K per bin N=67K per bin
N=337K training
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h2 estimation across E bins and PRSxE regression are well-
powered to detect heritability differences between E bins 
> 2% in Scenario 2

N=67K per bin N=67K per bin
N=337K training

N=47K test
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PRSxE regression is well-powered to detect proportional 
phenotype amplification >5% in Scenario 3

N=67K per bin N=67K per bin
N=337K training

N=47K test

Genetic correlation
across E bins

SNP-heritability
across E bins

PRSxE 
regression
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Inferring the contribution of GxE in UKBiobank data

1. We analyzed 33 complex diseases and traits across 10 E variables
• Diet
• Sleep
• Alcohol 
• Smoking
• Physical activity

2. For h2 and rg we binned individuals into 5 bins according to their E 
variables (PRSxE analysis was not binned)
• PRSxE: N=47K (PRS trained on 337K)
• rg  and h2 : N=67K per bin
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Inferring the contribution of GxE in UKBiobank data

1. We analyzed 33 complex diseases and traits across 10 E variables
• Diet
• Sleep
• Alcohol 
• Smoking
• Physical activity
• Sex

2. For h2 and rg we binned individuals into 5 bins according to their E 
variables (PRSxE analysis was not binned)
• PRSxE: N=47K (PRS trained on 337K)
• rg  and h2 : N=67K per bin

Average E variable h2 = 6% 
Max = 15% (Smoking)



Inferring the contribution of GxE in UKBiobank data

1. We analyzed 33 complex diseases and traits across 10 E variables
• Diet
• Sleep
• Alcohol 
• Smoking
• Physical activity
• Sex

2. For h2 and rg we binned individuals into 5 bins (or 2 bins for binary E 
variables) according to their E variables:
• rg  and h2 : N=67K per bin
• PRSxE: N=47K (PRS trained on 337K)
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We find examples of 
all three Scenarios of 
GxE Scenario 1:

Imperfect Genetic correlation

Scenario 2:
Varying Genetic variance

Scenario 3:
Proportional amplification



GxE explains 3% of trait variance on average across 
traits
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GxSex explains 4% of trait variance on average across 
traits
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Summary and conclusions

• For many diseases, the genetic effects are context-dependent

• We find evidence for polygenic GxE arising from locus dependent 
interactions
• Suggests the possibility of detecting single locus GxE effects like FTO x Diet

• We also find evidence for polygenic GxE arising from non-locus 
dependent interactions

• Differences in h2 implies differences in genetic signal across E bins
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