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Early-life exposure to microorganisms plays a crucial role in shaping children’s health by instructing
immune maturation and modulating the risk of disease development. Most preschool-aged children spend
seven to ten hours a day in childcare centers, yet the microbial communities in childcare settings and how
they interact with human and human-associated microbiomes have yet to be fully elucidated. A limited
number of previous studies have primarily focused on bacterial communities, using amplicon-based profil-
ing methods, largely due to the low biomass of these communities in this built-environment setting. These
studies thus omit functional or genetic information and non-bacterial community members. Additionally,
none of the prior research has incorporated host-associated phenotypes and microbial profiles to investi-
gate transmission. Expanding upon these efforts, we collected a variety of indoor and outdoor environ-
mental samples from two childcare centers, as well as nasal and oral swabs from 34 participating children
aged two to four. We profiled all samples using PacBio full-length 16S rRNA gene and internal transcribed
spacer (ITS) sequencing, respectively, for bacterial and fungal community members, and a subset of
pooled samples using shotgun metagenomic sequencing including both short- and long-read metage-
nomics. This approach not only offered enhanced resolution to identify previously unknown aspects of the
microbial communities in childcare environments, but also provided additional insight regarding the func-
tional potential in the ecosystem. Current results revealed distinct microbial profiles associated with differ-
ent host-associated and environmental communities. Most of shared species between host and environ-
mental communities were identified to be specific host-associated ones, including those associated with
host food consumption, such as Lactococcus lactis and Streptococcus thermophilus. These results sug-
gest potential microbial transmission and interactions via host shedding. Our work thus expands the un-
derstanding of microbial ecology in childcare environments and these communities' relevance to child-
hood health. The knowledge gained from this study can allow us to identify potential environmental reser-
voirs of pathogens, track microbial transmission routes, and develop targeted interventions to benefit ear-
ly-life human health.

Study design and sample collection
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Host samples (n = 68)
34 children of age 2-4
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» Filter low depth samples and . Short read: bioBakery workflow
putative contam ASVs (Decontam) * Long read: hifiasm
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In total, we collected177 samples and 7 controls from two Harvard-affiliated childcare cen-
ters. Following sample and data filtering, 109 FL-16S and 61 FL-ITS samples were selected
for subsequent amplicon-based analyses, respectively.

Full-length 16S amplicons greatly improves
species-level resolution
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* FL-16S data yields ASVs which are approximately 3 times that from in silico V4 amplicons.

« Both types of amplicons are comparable in ASV taxonomic assignment at higer taxonomic
levels, but diverge down to species level; FL-16 is found able to assign 30% more compared to
V4 amplicons.

Full-length amplicons reconstructs bacterial
and fungal phylogeny
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*Non-interactive environments include Drain, Sink, and Soil. Interactive environments include the rest of sample types.

» Environmrntal microbial communities exhibit greater phylogenetic diversity across different envi-
ronmental sample types compared to host-associated communities.

* Full-length 16S and ITS amplicons generally reconstruct consistent phylogenetic relationships.

» Bacterial ASVs are found commonly shared between both oral/nasal communities and environ-
ments, whereas shared fungal ASVs are mostly restricted to nasal communities.

Microbial interactions mainly driven by
host shedding
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Among the top 5 abundant and/or prevalent species, approximately one-third comprise ASVs uni-
versally shared between hosts and environments. The majority of these are host-associated,
while those lacking shared ASVs predominantly consist of environmental ASVs. This suggests
the shedding of host-associated microbial community members into the environment, with mini-

mal uptake from environmental communities into the host microbiome.
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Motivating Data Example

MSK allogeneic hematopoietic cell transplant (allo-HCT) 16S rRNA data
- 8,967 samples collected from 1,415 patients between transplant day [-30,730]

- Survival endpoints: overall survival (OS), transplant-related mortality (TRM),
GvHD-related mortality (GRM); TRM/GRM formulated as competing risks

Research question: Whether and how the longitudinal microbial taxa features are
assoclated with survival endpoints?

FLORAL: Fit a LOg-RAtio Lasso
Part 1: Zero-Sum Lasso Model Fitting with Compositional Taxa Features

Augmented Lagrangian algorithm
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Part 2: Feature Selection Based on Cross-Validation and a Step 2 Procedure
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Variable Selection Performance by Simulation
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Methods
Figure 1: Median F score, median number of false positive features, median number of false negative features, and me-

dian false discovery rate (FDR) obtained by lasso and differential abundance (DA) methods for linear, binary, survival,
and competing risk models out of 100 simulations, where there were 10 true features out of p = 500 features in each
simulation run. For each type of regression model, metrics across all methods were scaled for color visualization. For the
DA methods, the censoring indicator of the survival outcomes were used to define patient groups except for LDM.

Taxa Selection for MSK Allo-HCT Cohort
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Figure 2: Probabilities of genera being selected by FLORAL with A\ = A, and two-stage variable selection from the
MSKCC allo-HCT cohort data, based on 100 repeats of 5-fold cross-validation with random fold split for Cox model
of overall survival with A. peri-engraftment samples and D. longitudinal samples; Fine-Gray model of transplant-related
mortality with B. peri-engraftment samples and E. longitudinal samples; Fine-Gray model of GvHD-related mortality
with C. peri-engraftment samples and F. longitudinal samples. The color scheme represents the average lasso coefficient
estimates of the corresponding genus at \() = A\ overi = 1, ..., 100 repeats.
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False Positive Rates on 39 Publicly Available Datasets
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Figure 3: A. Data characteristics of the 39 publicly available 16S microbiome datasets, including sample size (n), num-
ber of genera (p), and ratio between the sizes of comparison groups. The color scheme represents scaled characteristics
across all datasets. B. Number of selected taxa from the 39 publicly available 16S microbiome datasets by feature se-
lection methods, with comparison group labels randomly shuffled. Part of data were unavailable for ALDEx2 due to
memory overflow. The color scheme represents the percentage of selected taxa out of all taxa in a certain data set.
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Background

Infants born prematurely have an abnormal set of birth conditions that lead
to a sparse, low-diversity population of microbes initially colonizing their guts.

Prior studies have shown the ability of probiotic treatments to shift the

preterm microbiome to resemble that of a healthy, term infant, however, there is

still little known about the functional mechanisms that underlie probiotic’'s

therapeutic effects.

All data used in this project is from the BLOOM study, a longitudinal study on

preterm infants run by the University of Calgary

Objective: Use metagenomic and metadata from the BLOOM study to construct

metabolic models of the preterm gut community to better understand the probiotic

treatment’s impact on the maturation of the preterm infant gut microbiota.

Genome-Scale Metabolic Models

Flux Balance Analysis of a Species-level GEM

Assume a cell can be

approximated by the

network of its
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INPUTS:

Genome-scale
metabolic model of

Environmental
conditions (diet)

1. Taxonomic profiling from preterm infants

cAlbeda 2

BLOOM
o s

patient
treatment
data

Species Abundance
curated GEMs

3.. Construct
single-species
models for each
probiotic strain refined probiotic
strain models

raw genomic data

OUTPUTS:

Predicted fluxes

of metabolites
produced and

consumed

2. Map each species to
AGORA, a database of

Species-level
Models

.
e
.y

4. Combine all species level models for each sample into a
community level model using steady-state modeling techniques

(Microbiome Modeling Toolbox in Python)

PCOA_2 (18%)

metabolites

Taxonomic and Metabolic Maturity Signatures

0.4
M - cluster 1
A = cluster 2
0.2 ot
., 0, D = cluster 3 C species-metabolite linkage alpha diversity
o !
® ¢
s ol 5.0 \
OO 1 @ o (@] :
P, .
o x 4.5 I\\
Q
O -8 | ]
8@ b 4.0 \\| /
-0.2 o)
O, i))o E !:u'
o8 > B '(C(: 3.5 1y
%8&
&) R° ® F0
-0.4 &> 2pate®
» 2.5 , , ,
-0.4 -0.2 0.0 0.2 : duszters .
PCOA_1 (21%)
community metabolite alpha diversit
shannon alpha diversity of three clusters D ty P . y
3.0 3.8
3.5 /\
2.5 H
} < 3.4 |
. -8 i
% = 3.2 \ ' / :
k) c
215 S |
c Y
5 c 3.0 .
c <
210 8 e I
0.5
: 2.6
0.0 , r y
1 2 3
clusters

8000 ;

6000 ;

4000 1

2000 -

PCOA_2 (18%)

—2000 1

—4000 1

—6000 |

—8000 1

community metabolite PCOA plot TAXONOMY F

PCOA 2 (11%)

0

5000

10000

PCOA 1 (31%)

15000

4000 1

3000+

2000 -

1000 1

—1000 1

—2000 1

—3000 1

species-metabolite linkage PCOA plot

—2000 0 2000

PCOA 1 (19%)

—4000

A) Three clusters of species abundance data were identified using hierarchical
clustering applied to the Bray-Curtis Dissimilarity matrix after dimension reduction
using Principal Coordinate Analysis (PCoA). B) Comparison of species richness
(Shannon diversity) across clusters . C) The Shannon index was calculated from the
species-level fluxes as a measure of metabolic diversity. D) The Shannon index was
calculated from the community level fluxes as a measure of metabolic diversity.
Dimension reduction using Principal Coordinate Analysis (PCoA) was done on the
community level metabolite fluxes (E) and the species-level metabolite fluxes (F). The
the three taxonomic clusters were overlayed.

Species-Metabolite Linkages of Differentially Produced Metabolites
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Conclusion

Our preliminary result support the feasibility of this study, and they will serve as a platform for large-

Next Steps:

scale computational studies of the host-microbiota interactions

« Large-scale simulations: Analyze all control vs probiotic microbiomes from BLOOM
« Test breastmilk vs formula diet in gut microbiome flux simulations
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Background

Several studies have reported the importance
of the human microbiome in the overall health
of its host. While recent studies have
explored the microbiome’s role in various
types of cancer compared to healthy patients,
this study narrows the focus to pancreatic
cancer. This study aims to characterize the
skin microbiomes on the forehead and cheek
of individuals from three groups: 1) patients
with pancreatic cancer, 2) patients with other
forms of cancer, and 3) patients without any
form of cancer. The goal is to determine if the
results from this trial could provide insight on
associations of microbial flora with the state
or severity of cancer, status of host immune
system, or progress of an ongoing therapy,
which could have therapeutic applications.

Methods

A total of 58 participants were enrolled in the
study. Participants were given a
guestionnaire that prompted them to provide
information including age, gender, ethnicity,
race, weight, height, and status of skin
health. An additional 60 control samples were
drawn from an existing broader database of
healthy skin samples at Proderml|Q to
supplement the analysis. The participants
were enrolled from three groups: cancer
patients with pancreatic cancer, cancer
patients with other types of cancer, and
individuals without cancer. Skin microbiome
samples from the forehead and cheek
collection sites were processed and then
analyzed by incorporating both statistical
methods and machine learning techniques.
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Subject Demographics

Pancreatic Other Cancer No Cancer
Cancer (n=23) (n=21) (n=14)
Average Age (yr.) 65.8 59.8 39.6
Gender (M/F/Unlisted) 12/11/0 5/16/0 3/7/4
Smoker (Y/N/Unlisted) 1/22/0 0/21/0 0/10/4
Ethnicity (Caucasian/Hispanic
or Latino/Asian/African
American/Native
American/Unlisted) 20/1/0/1/0/0 13/5/3/0/0/0  8/0/0/1/1/4
Results

A total of 150 samples were analyzed, including 79 samples
from subjects with cancer and 71 samples from control
subjects. The mean age of the control group was 60 years,
and the mean age of the cancer group was 63 years.
Characterization of the two analysis groups was further
refined using observed features and alpha diversity metrics.
The cancer group displayed a significantly higher mean alpha
diversity compared to the control group. Our analysis showed
15 dominant organisms as seen in the bottom figure.
Organisms such as Streptococcus mitis SK642, Snograssella
alvi wkB12, and Streptococcus gordonii Challis CH1 were
seen in abundance within the pancreatic and other cancer
groups but not within the no cancer group. Streptococcus
porci DSM 23759 and Kingella oralis UB-38 were seen
significantly within the pancreatic and no cancer group but not
within the other cancer group. Additionally, a machine learning
classification model built on the microbiome data
demonstrated a median F1 Score of 0.761 for accurately
classifying the cancer (all types) versus control samples. Given
that F1 scores above 0.70 are generally regarded as
satisfactory, this result indicates the skin microbiome can be
predictive of cancer status.

Conclusion

This analysis showed that there were significant differences in
the skin microbiome of cancer patients versus patients without
cancer. The cancer groups showed an increase in alpha
diversity versus the no cancer group, and the machine learning
model achieved a satisfactory F1 Score for differentiating the
control and cancer samples . This could indicate the presence
of dysbiosis in cancer subjects' skin microbiomes due to their
clear differentiation from the healthy skin microbiomes.
Additional research could provide potential opportunities to
develop biomarkers that can identify pancreatic and other types
of cancer.
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HCMPH MICROBIOME CENTER

The Microbiome Collection Core at the Harvard T.H. Chan School of Public
Health (HCMCC) was established in response to a strong demand among
the research community for validated microbiome sample collection kit
configurations and easy usability for in-home sampling. Under the umbrella
of the Harvard Chan Microbiome in Public Health Center (HCMPH),
HCMCC aims to support population-scale microbiome sample collection
and expand our understanding of the microbiome to improve population
health. The HCMCC has developed a multi carrier-compatible home stool
and oral sample collection kit that permits cost-effective multiomic
microbiome studies, leveraging the intellectual and infrastructure
foundation laid by the HMP2 (the 2nd phase of the NIH Human Microbiome
Project) and the MLSC (Massachusetts Life Sciences Center)-funded
MICRO-N (MICRObiome Among Nurses) collection. By providing this
customizable microbiome collection kit, we enable researchers to perform
multiple different molecular assays and tailor collection plan to study-
specific needs.

HCMCC services

O >
L3 B

Microbiome sample collection
plan development - Collection kit
configuration - Kit distribution &
logistics - Sample transport plan-
Sample handling & storage plan

Kit ordering & shipment - Kit
customization & implementation -
Ambient temperature shipping - to

selected clinical sites - direct to
participants

Streamlined post-collection
assistance - Automated aliquoting -
Barcode tracking - -80°C storage in

the BiOS Freezer - Fast sample
retrieval - Sample shipment to
sequencing labs for meta’omics &
metabolomic profiling

D00

The Microbiome Collection Core is a part of the Harvard
Chan Microbiome in Public Health Center (HCMPH). Want to
learn more? Visit https://lhcmph.sph.harvard.edu

At-home sample collection

Pre-paid return shipment

THE HARVARD CHAN
MICROBIOME COLLECTION CORE

A scalable gut and oral microbiome
sample collection platform

Kit Contents

This customizable microbiome sample collection kit avoids the need for
expensive, bulky, and inconvenient ice packs by providing several different room
temperature storage media that are also compatible with multiple different
molecular assays including any combination of amplicon (16S), metagenomic,
metatranscriptomic sequencing, metabolomics, and other molecular
assays. This kit further includes a collection method that uses anaerobic
transport media that yields live microbes for culture or gnotobiotic research.

Stool Sample Questionnaire §
N 5 BIOM-Mass Microbiome Sample Collection

In addition to storage media, this sample collection kit includes user-friendly
instructions and toilet accessories to maximumly facilitate and smooth the in-
home stool sample collection experience. Standardized questionnaires, as
companions to collected samples, are included to capture recent medications,
diet, anthropometric measurements, and gastrointestinal health status
measured by the Bristol Stool Scale. The modularity of this kit allows
researchers to tailor kit components to study-specific needs and conduct cost-
effective microbiome research ranging from pilot studies to large-scale studies
involving 10,000s of participants.

HCMCC-supported study activities
within the BIOM-Mass platform

Pre-collection - Participant
enrollment - Kit ordering - Kit
distribution

Collection - Self-collection -
Sample return through pre
paid shipment

Post-collection - Sample
aliquoting via Hamilton
STAR automated liquid

handler - Long-term -80°C

storage via the BiOS
Freezer Core - Data
generation - Data analysis
via the Microbiome
Analysis Core

log10(Relative sbundancel

Microbiome population health
research opportunities

- Accessible microbiome population studies' data on the BIOM-Mass Data Portal
https://biom-mass.org

- Integrative microbiome informatics and analysis via the Harvard Chan
Microbiome Analysis Core https://hcmph.sph.harvard.edu/hcmac/

- Long-term sample storage via the Harvard Chan BiOS Freezer Core

- Gnotobiotic mice experiments via the Harvard Chan Gnotobiotic Center
for Mechanistic Microbiome Studies

- Course offerings on microbial communities and human microbiome research
via the Harvard Chan Microbiome in Public Health Center

Special thanks to the Massachusetts Life Sciences Center (MLSC), the Harvard
Chan Microbiome Platform Steering Committee, the Harvard Chan Freezer Core

Director John Obrycki, and the BWH/Harvard Cohorts Biorepository
Laboratory Manager Christine Everett.
Contact us:

hemec@hsph.harvard.edu
Manger” Steven Medina @
Scientific Director” Curtis Huttenhower

https //hcmph.sph.harvard.edu/hcmcc (i)
Follow us on Twitter @hutlab (ji)
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The gut microbiome, interacting with dietary intake, modulates host
metabolism and contributes to the pathogenesis of type 2 diabetes (T2D).
Yet, large-scale multi-omics studies to examine these complex interactions
are limited. Applying a validated data harmonization pipeline, we conducted
a comprehensive study that integrates data on long-term habitual diet, gut
microbiome, and circulating metabolomes from six studies of 4,563
participants with T2D, prediabetes, and normoglycemic status in the US,
Europe, and Israel. Our analysis identified diet- and host-derived metabolites
(e.g., quinate) and microbial-host co-metabolites (e.g., cinnamoylglycine and
indole propionate) associated with T2D, independent of major risk factors.
We also identified interactions between microbe and metabolite implicated
in T2D risk. In addition, the inter-individual difference in the association of
species (such as Roseburia inulinivorans) with T2D risk could potentially be
explained by the strain-specific processing of metabolite implicated in the
pathogenesis of T2D. Our study offers robust insights into the intricate
interplay of diet, gut microbes, and their metabolites underlying the

development of T2D in diverse populations.

Overview of metagenomic, metabolomic, and phenotypic data in 1259
T2D patients, 1577 prediabetic and 1727 normoglycemic individuals
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Substantial proportions of variation in plasma metabolome
are explained by the gut microbiome and habitual diet
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T2D is significantly associated with overall gut microbiome (a)
and plasma metabolome (b) although not a major driver
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Metabolites from various pathways are constantly linked with T2D
across studies, highlighting the systematic nature of T2D pathogenesis
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The beta coefficients were estimated using the linear regression model with adjustment for

age, sex, and BMI in MaAsLin2. Metabolites with FDR g value<0.05 were shown.

Phylogenetically and functionally diverse species linked to T2D

Phylum

Firmicutes bacterium CAG 95 B Acinobacteria  Beta

Acidaminococcus intestini

— e P Bacteroidetes 1.0
.’ T Euryarchaeota -
7 - Firmicutes 0.5
: ) h - Lentisphaerae 0.0
Bacteroides plebeius Proteobacteria
- Synergistetes —0.5

- Verrucomicrobia . -1.0

) ) Streptococcus_parasanquinis

" Intestinibacter_bartlettii

Clostridium sp CAG 253

- |
’ ““‘:
Coprobacter secundus o wm
| | - i Eubacterium eligens
Collinsella aerofaciens’™ v.: - . mmmm | J

| | . ___ Flavonifractor plautii
| Faecalibacterium_prausnitzii
| f

| Eubacterium_siraeum
~ + Ruminococcus_lactaris

Lusicatenibacter saccharivorans
—— Dorea_longicatena

Bifidobacterium bifidum

Eubacterium_rectale

Escherichia coli Meta-analysis \
4 DIRECT-PLUS

MBS \ > ‘

Bilophila wadsworthia

s : \ ™~ Clostridium_clostridioforme
MetaCardis -
soL ) Clostridium_bolteae

Talmor-Barkan_2022 \ Roseburia sp CAG_309

Roseburia sp CAG_182

The beta coefficients were estimated using the linear regression model with adjustment for
age, sex, and BMI in MaAsLin2. Species with FDR g value<0.25 were highlighted with colors.

Phylogeny within Roseburia inulinivorans associated
with T2D and indolepropionate

Posterior mean
phylogenetic effects

Posterior mean
phylogenetic effects

Roseburia inulinivorans
and indolepropionate

Roseburia inulinivorans
and T2D

-0.5

Lower levels of
indolpropionate

1.0
| ffl 0.4
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0.0 0.0
‘.‘\;i‘\\&“\“a“.,h |
o
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® Controls

e Higher levels of
indolpropionate

ACKNOWLEDGEMENT

N/

** This research was funded by the National Institutes of Health (RO1NR01999,
ROODK119412, P30DK046200, U01CA167552, RO1HL035464, and U0O1CA176726) and
the National Cancer Institute (PO1CA055075). HCHS/SOL was funded by NHLB
(HHSN2682013000011/N01-HC-65233, HHSN2682013000041/N01-HC-65234,
HHSN2682013000021/N01-HC-65235, HHSN2682013000031/N01-HC-65236,
HHSN2682013000051/N01-HC-65237). DIRECT-PLUS was funded by the Deutsche
Forschungsgemeinschaft (209933838).

** We sincerely thank all participants and staff of MBS, MLVS, HCHS/SOL, and DIRECT-

PLUS for their great contributions to this research.

For any questions, please contact
Dr. Zhendong Mei: nhzme@channing.harvard.edu
Dr. Dong D. Wang: dow471@mail.harvard.edu



mailto:nhzme@channing.harvard.edu
mailto:dow471@mail.harvard.edu

OAD

STITUT E

2

Harvard T.H. Chan School of Public Health

Microbiome Analysis Core

Xochitl C. Morgan', Lauren J. Mclver', Thomas Kuntz',
"Department of Biostatistics, Harvard T.H. Chan School of Public Health “Broad Institute of MIT and Harvard

Curtis Huttenhower'-2

OE®

HCMPH MICROBIOME CENTER

VIE @R [

The Microbiome Analysis Core at the Harvard T.H. Chan School of Public
Health was established in response to the rapidly emerging field of
microbiome research and its potential to affect studies across the
biomedical sciences. The Core’'s goal is to aid researchers with
microbiome study design and interpretation, reducing the gap between
primary data and translatable biology. The Microbiome Analysis Core
provides end-to-end support for microbial community and human
microbiome research, from experimental design through data generation,
bioinformatics, and statistics. This includes general consulting, power
calculations, selection of data generation options, and analysis of data
from amplicon (16S/18S/ITS), shotgun metagenomic sequencing,
metatranscriptomics, metabolomics, and other molecular assays. The
Microbiome Analysis Core has extensive experience with microbiome
profiles in diverse populations, including taxonomic and functional profiles
from large cohorts, qualitative ecology, multi'omics and meta-analysis, and
microbial systems and human epidemiological analysis. By integrating
microbial community profiles with host clinical and environmental
information, we enable researchers to interpret molecular activities of the
microbiota and assess its impact on human health.

Core services Study Design

Consultation for microbiome * Consultation
project development. * Grant assistance
We provide consultation on * Power analysis
experimental design, sample * Collection methods
collecton and sequencing, grant * Wetlab

proposal development, study power * Drylab

estimation, bioinformatics, and

statistical data analysis. ]
Y Analysis

e Bioinformatics (raw
data processing,
taxonomic and
functional profiling)

* Downstream analysis
and statistics

Validated end-to-end meta’omic
analysis of microbial community
data.

Using open-source analytical methods
developed In the Huttenhower
laboratory and by other leaders in the
field, we provide cutting-edge
microbiome informatics and analysis.

Interpretation

Fully-collaborative support for all
stages of funded investigations

Results

Discussion

Manuscript
writing/editing
Response to reviewers

From preliminary data development to
hypothesis formulation, grant narrative

development, data analysis and
inference, custom software
development, and co-authored

dissemination of findings.

Director: Xochitl Morgan

Senior Software Developer: Lauren Mclver
Data Analyst: Thomas Kuntz

Scientific Director: Curtis Huttenhower

HARVARD
TH.CHAN

SCHOOL OF PUBLIC HEALTH

Microbiome Analysis Core Contact us at: hcmac@hsph.harvard.edu

KneadData

Trimming and contaminant removal

Sequencing

data

Top 15 species by average abundance

Quality
control

—

Microbial community profiling

Statistical analysis,
multi‘'omic integrations,
and visualizations
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Strain and pangenome
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Genome / Metagenome
Assembly
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Functional
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Taxonomic
profiling

Downstream

analysis

Downstream analysis and statistics

Features with top loadings
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The Harvard Chan Microbiome Analysis Core is a part of the Harvard Chan Microbiome in Public Health Center (HCMPH). Want

https://lhcmph.sph.harvard.edu/hcmac

to learn more? Visit https://hcmph.sph.harvard.edu

http://huttenhower.sph.harvard.edu

The first step in
microbiome molecular
data analysis is quality
control (KneadData)
and profiling to
transform raw data into
biologically
interpretable features
using a reproducible
workflow (AnADAMA/
bioBakery). This
iIncludes identifying
microbial species
(MetaPhlAn) and
strains (PanPhlAn/
StrainPhlAn),
characterizing their
functional potential or
activity (HUMANN),
and integrating
metagenomics with
other data types.

Once profiled, microbial
communities are amenable
to downstream statistics
and visualization much like
other molecular
epidemiology data such as
human genetic or
transcriptional profiles. Like
these other data types,
microbial communities
often require tailored
statistics for environmental,
exposure, or phenotype
association (MaAsLin 2.0,

MMUPHIN) or for
ecological Interaction
discovery (BAnOCC). The

Harvard Chan Microbiome
Analysis Core provides a
variety of analyses for
researchers working in the
microbiome space.
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INSTITUTE

Short read amplicon sequencing is a common strategy to taxonomically profile
microbial communities. This involves the PCR amplification of specific variable
regions on markers such as the 16S rRNA gene. While this is relatively low cost and
high-throughput, it does suffer from drawbacks such as bias associated with usage
of differing variable regions. Additionally, short variable regions do not always differ
among taxa, introducing further ambiguity.

PARATHAA Workflow

Key: Outputs,
Processes, Intermediates
mothur
Trimmed SILVA seed
database
l FastTree

Primer-specific
phylogenetic tree

l Distance-based algorithm for
taxonomic assignment

Primer—specific tree with
taxonomy-assigned tip

and internal nodes

l pplacer
Best placement(s) of
query read
l Further resolution
(if needed)

Most specific available
assignment for read

Identification of Optimal Taxonomic
Distance Thresholds

V1V2 V4V5
C ot Phylum
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[ 3 1 }
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]
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| e e
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Level

~
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Scores

‘:'- E i g o f 0.2- :- E i ’ J’ > Genus
9 : ] R ! — : .
0.2- ! | :° K XRP Species
s 0.1- ‘4_.
: o . . 00- 11, | .
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Threshold Threshold
A A A B o o o 0 L L Over-grouping Error Over-splitting Error Total Error
1 A B:C;D 2 0 2
3 Al || A2 || A3 B C D 0 2 2

* For each taxonomic level PARATHAA selects multiple distance thresholds to test (3 dotted lines)

* For each distance the over-grouping and over-splitting error is summed to a total error

» Over-grouping: areas in the tree where multiple different labels are under the chosen distance
» Over-splitting: areas in the tree where the same label is split-up under the chosen distance

 The total error is then normalized to a score between 0 and 1. The distance with the lowest score is

chosen as the optimal distance threshold for that variable region (top right hand plots)

Preserving and Assimilating Region-specific Ambiguities in Taxonomic
Hierarchical Assignments for Amplicons - PARATHAA

Jacob T. Nearing"+°, Kelsey N. Thompson'<°, Amrisha Bhosle"+°, Tobyn Branck"”,
Eric A. Franzosa'43, Dayakar Badri*, Christoph Brockel*, Curtis Huttenhower'23 Meghan I. Short>

E:é BROAD ' Broad Institute of Harvard and MIT -*Harvard T.H. Chan School of Public Health - * Harvard Chan Microbiome in Public Health Center - * Science & Technology Center, Hill's Pet Nutrition
> Institute for Clinical Research and Health Policy Studies, Tufts Medical Center

Taxonomic Assignment of Internal Tree Nodes

* We next want to assign taxonomy to the internal

unassiened nodes of the primer-specific phylogenetic tree

 For each taxonomic level:

* Nodes that are above the optimal distance cutoff

unassigned
...................................... N

A A C;D

for that taxonomic level are left unassigned

* Nodes that are below the threshold are assigned

D taxonomy based on the underlying dominate tip

B labels

- When multiple differing taxonomies are present

L the dominant label is chosen based on a
binomial error model that allows for multiple

assignments (see node C;D).

Taxonomic Assignment of New Query Segeunces

* Placed sequences (using pplacer) are then assigned

taxonomy using the following criteria:

- If the maximum distance 1o child nodes is smaller
Family
than the species threshold:

Enterobactienaceae

® ® Enterobacteriaceae;Erwiniaceae o Taxonomy IS assigned to the placed nodes

»  Erwiniaceae

species

pendant length > A neighborhood search is then used to eliminate

—® assignments when conflicting labels (from nearby
distal length tips) are within a small radius of the placed tip
s — » [f the maximum distance is larger:
— 9 o Taxonomy Is assigned at the level where the
maximum distance is below that taxonomic level’'s

optimal threshold

PARATHAA Maintains Precision While Being More
Sensitive Than State-of-the-art Assignment Methods

Metric VIV2 V4V5
Parathaa DADA2 DADAZ2 Parathaa DADA2 DADA2
(default) Multi (default) Multi
» Synthetic sequences that
Accuracy 0.781 0.689 0.697 0.820 0.757 0.809 |
are not represented in the
Precision 0.926 0.986 0.982 0.930 0.950 0.937
Recall 0.806 0.696 0.706 0.875 0.788 0.856 seed database that
F1 Score 0.877 0.816 0.822 0.901 0.862 0.894 PARATHAA uses were
Uniquely Correct | 0.123 0.039 0.039 0.146 0.128 0.128 chosen from SILVA to be
One-to-many | 0.024 0 0.011 0.065 0 0.065 assigned taxonomy by
Correct
Incorrect 0.031 0.010 0.013 0.062 0.040 0.054 PARATHAA and DADA2
Unassigned 0.633 0.651 0.648 0.609 0.629 0.616
Correct
Unassigned 0.188 0.301 0.290 0.117 0.203 0.137
Incorrect

» Sequences were chosen from genera but not necessarily species that were represented
within the seed database

» For each given genera at least 20 sequences were chosen (all sequences not in the seed
database were chosen when there was less than 20)

» Query sequences were then trimmed to the V1V2 region

 DADAZ2 assignments were completed using the same seed database that PARATHAA uses

Relative Abundance

I

N
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() NE HEALTH
~F

)

4 Microbiome Resource

PARATHAA Performs Comparably to Other
Methods on Mock Communty Data

[ —

Mock Community 16S Region
M Included M viv2
M Other V4V5

sqrt(Rel.
abundance)

1
IG.S

c
- Species

B Bacillus anthracis;Bacillus cereus;Bacillus thuringiensis
B cutibacterium acnes
B Lactobacillus gasseri
" Listeria innocua;Listeria monocytogenes
B Listeria monocytogenes
Staphylococcus aureus
Gy
A7
&

&
Relative Abundance

Other
W Staphylococcus epidermidis
Streptococcus agalacliae
Streptococcus agalactiae; Streptococcus suis
. Streptococcus mutans
B Streptococcus pneumoniae
B Unknown

W Neisseria meningitidis
B Staphylococcus aureus; Staphylococcus epidermidis

N 78 =

0504

.2 0.25+4
y 003 o

o >
V1V2 DADA2 &
Dy
V1V2 Parathaa Q

V4V5 DADAZ2
V4V5 Parathaa

« PARATHAA assigns reads to a similar number of species (V1V2) or more (V4V5) compared to
DADAZ2 on a published mock community.

* The mock community is composed of DNA from 20 species in equal quantities (5% relative
abundance).

» Species with less than 0.1% relative abundance are listed as “Other”.

PARATHAA Assigns Similar Genera but more
Species on Real Microbiome Datasets

« PARATHAA and DADAZ2 were used to
| |J’ = g?;;imfdes
Unknown
W Faecalibacterium

fm

o

assign ASVs using the SILVA SEED

”1 - W Blautia database from a publicly available
Bifidobacterium

Prevotella 7
{ B Lachnoclostridium
Tl Citrobacter
B Lachnospiraceae UCG-006

dataset on autism spectrum disorder.

Speci  Genus level relative abundance
pecies

Unknown
B Escherichia coli
Streptococcus salivarius
B Clostridium aff. innocuum CM970
0.50 1 Clostridium perfringens
B Citrobacter amalonaticus
Phyllobacterium myrsinacearum

Other » Species profiles revealed a higher

Streptococcus mutans

I
0.00 - LJU.ILHJAMMlh “ln e '[ | B Lactobacillus gasseri:Lactobacillus johnsonii
DADA2 Parathaa Lactococcus lactis

profiles were similar between

PARATHAA and DADAZ2

proportion of abundance being

assigned by PARATHAA

PARATHAA Allows for Better Interpretation of
Segeunce Assignment

Assignment: Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Carnobacteriaceae;NA;NA

sPlacement 1

 PARATHAA allows users to

Genus plot query sequences in the

Aerosphaera

context of the primer

—#®— Aerosphaera;Trichococcus

Trichococcus

specific phylogenetic tree
- NA

* Plotting allows users to determine why their sequence receive the assignment given

allowing for better interpretation then other black box machine learning methods

http://huttenhower.sph.harvard.edu
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Concurrent and Habitual Diets Differentially Associate with Microbial
Multi-Omic Profiles in Inflammatory Bowel Disease (IBD)

Jiaxian Shen'4, Etienne Nzabarushimana'-4, Hanseul Kim'2, Hannah VanEvery, Yiging Wang?, Kelsey N. Thompson'-3, Andrew T.

Chan'-2, Curtis Huttenhower':3, Long H. Nguyen?-2
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Background

« Studies have linked diet to the risk and severity of IBD and its subtypes,
Crohn’s disease (CD) and ulcerative colitis (UC).

* Similarly robust evidence has associated disease activity to characteristic
alterations in gut microbial taxonomy (metagenomics, MGX), community
functions (metatranscriptomics, MTX), and microbial metabolites
(metabolomics, MBX).

 However, in IBD, explorations into how these multi-omic readouts are affected
by concurrent/short-term vs. habitual/long-term diets are limited.

Study population and analysis design
A. Data acquisition

Integrative Human
Microbiome Project
w1
S
§ ® Short term diet survey ® Fecal Calprotectin
3 Baseline
- o o ® ® o ®
o FFQ o 000 0000000060000 000000000 00
z | 02 4 8 16 24 36 52 Week
s e 1
|"IIIIIIIIIIIIIIIIIIIIIIII
e 00 o0 o) o o e 0o 0 o
e 00 ° o) ® ® °
® Metagenomics @ Metatranscriptomics Metabolomics

(n = 1,638) (n = 835) (n = 546)

B. Construction of dietary profiles

— h1
h2

Concurrent Diet

v—« [-day dietary record £ —h3
vV - D h4
— Converted to servings per day = 5
S — h6

C
£ — h7
: : S h8
Habitual Diet £ — ho
= — 110

Modeled using a decaying average
of concurrent food records

— h11

—

- h12

0.00 1

t (Week)
* We explored different decay formulas, which vary the duration and extent of

the influence from a past diet.
 h1—h12: Decay became more gradual generally.

* For example, with “importance weight= 2", habitual diet of a sample was
calculated as a decaying average weighted by 2-" for the n'" prior week of food
records, accounting for all available data points.

C. Quantification of associations

We linked diet and microbiome matrices via intra-individual Mantel tests,
quantifying associations within participants only.

« Significance: 4,999 permutations
* Robustness: 4,999 bootstraps

Keep P1
o feature Distance Intraindividual P2
Diet |2 matrix distance |
& o o
% — Correlation
Keep P1
o feature Distance Intraindividual P2
Omic |2 matrix distance
& o o

Habitual diets had a significantly stronger

correlation with taxonomy and functional potential

Compared to concurrent, habitual diets had a significantly stronger correlation
with MGX taxonomy, MGX functional potential, and MTX functional potential.

03 Species SGB
Correlation increased as the decay
02" 'Y EYXX) $e ¢¢¢¢l | became more gradual and plateaued
01l ¢ ’ ¢ | at h5, which followed a decay formula
é ¢ 2 | of weight=1/sqrt(t+1).
0.0
-0.1
MGX functional potential MTX functional potential
Unstratified Stratified Unstratified Stratified
o 0.3 Significant
3 . Y
= 0.2- A N
) 'L EXXY. Ay
T 0.1 ¢ o ++ +++ ++ +++ % Diet
= ¢ %0049 + + 2 con
S 0.01%¢ ¢ + * hi
= A "
03 -®- h3
' h4
m h5
0.2- g o h6
'YX EX LY + + + + + © e h7
0.1 ¢ ¢ o $e4 } 8 | he
$,00%000¢ + S |-+ ho
0.0{é ¢ + + G |-e hi0
- | h1i
-90.1 4+t h12
S e e S e e e S S b S A S S b o A S
> O—=N>S O—=N>S O—=N>S @ )\e)

Diet
* Distance: Bray-Curtis; Abbreviation: con, concurrent diet; h1~h12, habitual diets.

MTX functional activities exhibited patterns

consistent with MGX only at the community-level

« The pattern was more prominent for pathways than enzyme profiles.

* When functions were stratified by contributing microorganisms, no differences
emerged between concurrent and habitual diets.

* This suggests that although habitual diet more significantly shapes community-
level functions than concurrent diet, it does not predict which species
contribute to specific functions.

Unstratified Stratified
Residual Log_residual Residual Log_residual
0.3 Significant
o Y
0.2+ A N
T
]
0.1 + ++ +++ S |Diet
PO IREL IR e TR IEE INERRSTON ORI R i
fd
2 00744 ! 4 .
S + h2
fd
D _03 - h3
E - h4
C h5
g 0.2- E @ h6
3
g - h7
0.1 ++ $44 ¢ S|« ne
+ + + g e h9
0.0- ++ +++ + 2. | o h10
+ + ' + ++ ¢ ¢ |- hi1
A
-9.1 4+ 4+ H+---—+——+--—++—+———+—yS—+ e h12
(@ D RED D NED NED RED NED Jub Nub RED R Ru R @ JED RED RED RED RED RED RED RED NEb Rub REb Rub R ¢p JED JED NED NED RED N REb Jub RED Nub Rub Rub R @ JED RED N NED D RED NED JED D RED N R
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* MTX functional activities were assess by normalizing MTX against DNA gene copy number;
Distance: Euclidean; Log_residual: log transformation was conducted before residual calculation.

Neither habitual nor concurrent diets had additive
effects on shaping MBX

* This might be an actual biological pattern or potentially technical noise in MBX
data, as the association tests were less stable during bootstrapping.

* The coupling between diet and MBX became tighter at a log scale and was
more pronounced for characterized metabolites, as opposed to all chemical

compounds. Significant
o Y
Bray—Curtis distance Log transformation & Euclidean distance A N
Chemical compound Characterized metabolites Chemical compound Characterized metabolites
0.3 Diet

RS con
-'(7) 02 .y ® ® ® -®- hi
= ? ¢ h2
S ? ? 77 o 3
D 0.1- . iy

)
- h5
© 0.0 o h6
= - h7
-o.1 -—4—ttt-tt -1+t h8
. QD000 0S0005 Q0553353355503 33333335 Q3 33333333355 e h9
O = NWROIMON00O=—== O 2 NWROIONO=2—== O 2 NWROIOON00O=2—=—= O = NWARTION0O=2 ==

=) O—=N > O—=N > oO=NS O—=N -e h10

Diet o hi1

* Associations shown were based on metabolomics intensity. h12

Disease activity metrics were modestly correlated
« Correlation: CD < UC < nonIBD

 CSR, ERP, and fecal calprotectin correlated the best.
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* Abbreviation: dys score, dysbiosis score; fecal cal, fecal calprotectin; CRP, C-

Reactive Protein; ESR, Erythrocyte Sedimentation Rate; HBI, Harvey-Bradshaw
Index; SCCAI, Simple Clinical Colitis Activity Index. Dysbiosis score was calculated
using nonlIBD sub-cohort as reference.
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While high-throughput metagenomic sequencing has transformed microbial
community studies, it remains challenging to discern between "alive" and "dead"
microbes. This limits our understanding of microbial community functions and
their interactions with their surroundings and human health. To address this, we
iIntroduced a novel protein-coding marker gene approach using the cpn60 gene
for comprehensive microbial community profiing and functional activity
assessment via metagenomic and metatranscriptomic sequencing. We first
constructed an extensive database integrating cpn60 protein and enriched cpn60
nucleotide sequences. Using cpn60 protein IDs for protein-based taxonomy
inference in the Human Microbiome Project || dataset, we found strong agreement
between cpn60-protein-based taxonomy and shotgun metagenomic results. This
would suggest cpn60 being a discriminative marker for taxonomy profiling.
Additionally, we explored cpn60 protein expression in metatranscriptomic data as
an indicator of bacterial species' activity. The cpn60-protein-based analysis
correlated positively with growth rates estimated using the bPTR method,
suggesting cpn60 proteins as robust markers indicating the activity of microbial
community. These findings suggest cpn60's potential as a discriminative marker
for microbial community taxonomy profiling and viability characterization, offering
iInsights into microbial community dynamics. This study underscores the promise
of marker gene approaches in advancing microbial viability assessment and

functional activity profiling.

A comprehensive database with cpn60
protein and nucleotide sequences

We first constructed a comprehensive database that inculdes 23,006 unique
cpn60 protein IDs and 20,556 nucleotide sequences.

« The updated database exhibits a taxonomic composition at the phylum level
similar to cpnDB, with dominant phyla including Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes.

« The protein database reveals a diverse array of taxonomies, including
unclassified groups, bacteria, fungi, animals, plants, and other eukaryotic
organisms.

« Multiple sequence alignment revealed multiple variable regions and

conserved regions in cpn60 gene.

........................................................................................................................................................
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Cpn60-amplicon-sequencing can be used
as a supplement of 16S rRNA sequencing
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« Taxonomy profiles differed notably between 16S-seq and cpn60-seq at the

phylum level.

« cpnb0-based method identifying fewer Firmicutes, Bacteroidetes, Cyanobacteria,
and Fusobacteria, but more Proteobacteria and Saccharibacteria.
« Higher within-phylum identities compared to between-phyla identities for both

methods.

 ldentities from 16S rRNA V4 region were generally higher than thosw from cpn60

UT region.

Cpn60 is a reliable marker for taxonomy
profiling in human stool microbiome
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MetaPhlAn 3.1 Relative Abundance
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0.50

cpn60 Uniref90 Relative Abundance

« In HMPZ2 dataset, both MetaPhlAn 3.1 and cpn60 profiling showed high
agreement at various taxonomic levels.
« Genus-level relative abundances revealed strong agreement between the two
methods (correlation coefficient = 0.96, p-value = 0.00).
« Comparable compositional dissimilarity confirmed by Principal Coordinate
Analysis, highlighting the compatibility of both approaches.
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Cpn60 transcripts can be used for
community activity assessment

« Evaluate protein-based activity assessment using cpn60 Uniref90 and all
Uniref90 IDs from HUMANN 3.6, alongside the peak-to-trough (PTR)
coverage ratio method in the iIRep tool.

« As sequencing depth exceeded 100, cpn60-based activity assessment
Increasingly correlated with bPTR values.

« ¢cpn60 transcript is a potential viability marker for discerning activity in
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Cpn60-based analysis reveals different
activity of gut vs. oral microbes in IBD
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Gut species showed stable relative abundance profiles across Crohn’s Disease
(CD), ulcerative colitis (UC), and healthy control conditions, whereas oral bugs
exhibited elevated transcriptional activity in CD. Conversely, among oral species,
K. pneumonia displayed increased transcription in CD but not in UC compared to
healthy controls, while S. parasanguinis and P. mirabilis were increasingly
transcribed in UC, but not CD, relative to healthy controls.

Ongoing works

We are currently integrating additional house-keeping genes into marker
gene-based microbial community characterization. This would enhance accuracy
and provide a more comprehensive view of microbial community physiology,
leading to refined sequencing workflows for more accurate and cost-effective
community profiling and viability assessment processes,
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Response of the gut microbiome to acute enteric
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Individual-specific microbial profiles

Enterotoxigenic Escherichia coli (ETEC) is a major global cause of diarrheal
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