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Dietary fiber and the microbiome
.

Nutrients and compounds from diet can directly influence the gut 
microbiome and microbial metabolism of these compounds can in 
turn  influence the host. Metabolism of dietary fiber by the  
microbiome provides several health-relevant metabolites such as 
short chain fatty acids (SCFAs) which participate in intestinal 
homeostasis and immune regulation, and fiber-released compounds  
that affect gastrointestinal physiology. Dietary fiber interventions in 
both humans and dogs have shown  alterations to microbiome struc-
ture and metabolism. However, differentiating the effects of individual 
fibers in humans with complex diets and heterogeneous lifetsyles is 
challenging. Companion animals provide a particularly relevant 
context to study diet-microbiome interactions due to more 
consistent foods and environments. In this work, we  investigated the 
gut microbial and metabolomic responses to various dietary fiber 
sources and quantities using a canine colony population. This design 
allowed us to study the association of specific microbial and metabolic 
responses with different carbohydrates including fiber and starch as 
well as the consistency of these associations across subjects.          

Design of dietary fiber study

We examined the extent to which microbiomes and metabolomes changed in 
response  to food. Microbiomes/metabolomes following consumpution of a particular 
food were compared to those in response to control food (initial) and preceding food.   

Strength of associations with fiber
varies by food group and subject

Conclusions
(1) Canine gut microbiomes and metabolomes change in response to diet. 
Similar foods are more likely to elicit similar metabolomic than microbiome 
responses. This suggests that different microbiomes can provide conver-
gent metabolic potential to yield similar metabolomes from similar foods.
(2) Features are associated with fiber intake include SCFA producing spe-
cies, SCFAs, and metabolites that are released upon fiber degradation 
such as acylglycerols and polyphenols.The strength of associations varies 
by both the type and quantity of fiber.
(3) Responses to fiber are subject-specific and cannot be predicted from 
intake or microbiome composition.
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Fiber affects the metabolome more
than microbiome composition
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12 foods containing dif-
ferent sources and 
amounts of fiber were 
tested. They were 
classfied into 3 groups - 
high starch low fiber 
(HSLF) (n = 7), medium 
starch medium fiber  
(MSMF) (n = 3), and 
low starch high fiber 
(LSHF) (n = 2).

18 dogs were fed the 
12 foods in a random 
order for 7 days each. 
HSLF_Con (control) 
was fed twice. Fecal 
samples collected on 
the last day of each 
treatment were used for 
metagenomic and me-
tabolomic analyses.           
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Lactobacillus acidophilus
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Firmicutes bacterium CAG 646
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Baseline microbiomes and
metabolomes are diverse
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(a) Collinsella and Bifidobacterium sp were the most abundant 
species in baseline gut microbiomes of dogs followed by Firmic-
utes(36.98%) and Bacteroidetes(3.23%), Proteobacteria(0.44%), and 
Fusobacteria (0.005%). (b) Abundances of 818 metabolites were 
assayed from the same samples. Inter-individual variation in metabo-
lomes was concordant with variation in microbiomes.           

Procrustes r  = 0.7, p < 0.001
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Similar foods give rise to similar metabolomes but not microbiomes

MSMF_FR microbiome was 
most similar to HSLF_Con1. 
Microbiomes in response to 
only 2 of the remaining 6 HSLF 
foods appeared to be similar to 
HSLF_Con1. Adjacent similar 
foods did not result in similar 
microbiomes. On the other 
hand, metabolomes following 
consumption of similar foods 
were similar.        
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We examined the extent to which microbiomes and metabolomes changed in 
response  to food. Microbiomes/metabolomes following consumpution of a particular 
food were compared to those in response to control food (initial) and preceding food.   

(a) Among the macronutrients, starch and insoluble fiber explained most of the vari-
ance in metabolomes. (b)  Bray-Curtis distance based ordination shows similarity 
only of metabolomes in response to test foods (colored by group). 

a

Food explains the largest component of variation in profiles  

Macronutrient-metabolite associations are stronger and 
more numerous than macronutrient-microbial feature associations  
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(a) Associations were determined 
using univariate linear models. 19 
species, 569 metabolites, and 10 fatty 
acids were significantly (q < 0.25) 
associated with total dietary fiber. 
Fiber-enriched features included 
SCFA producers such as Butyricicoc-
cus and Bacteroidetes sp, SCFAs, 
acylglycerols, and polyphenols.       
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Associations of fiber-responsive species and metabolites
are more pronounced in low starch high fiber (LSHF) foods
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(a) One-way ANOVA shows that most SCFA 
producers that are positively associated with 
fiber (red) are more abundant in LSHF foods.       

Response to fiber is highly personalized 
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- Associations between metabolic/ micro-
bial features and fiber observed at the 
population level were stratified by sub-
ject. 

- Of the 18 subjects, 3 were responders 
(i.e. retained significance for at least 
25% of species-fiber associations), and 
8 were non-responders (i.e. did not 
retain signifcance for any species-fiber 
associations) (examples shown).

- Some subjects that had poor microbi-
ome response (e.g. subjects 10, 12) re-
tained significance for >50% metabo-
lite-fiber associations.

- Microbial response to fiber did not 
always translate into a strong metabo-
lome response (e.g. subject 6).

(b) Butyrate (EC 2.7.1.45; 4.2.1.55) 
and propionate (EC 4.1.1.41) 
synthesis enzymes were also 
enriched in response to fiber intake.      

q < 0.1: **
q < 0.01: **
q < 0.001: ***

(b) Enrichment of SCFA producers in LSHF 
foods is reflected in significant associations 
between SCFAs and fiber intake.        

Circles indicate enrichment in one group only

(1) Canine gut microbiomes and metabolomes change in response to diet. 
Similar foods are more likely to elicit similar metabolomic than microbiome 
responses. This suggests that different microbiomes can provide conver-
gent metabolic potential to yield similar metabolomes from similar foods.
(2) Features are associated with fiber intake include SCFA producing spe-
cies, SCFAs, and metabolites that are released upon fiber degradation 
such as acylglycerols and polyphenols.The strength of associations varies 
by both the type and quantity of fiber.
(3) Responses to fiber are subject-specific and cannot be predicted from 
intake or microbiome composition.
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Host-Childcare Microbiome Interactions Highlighted by Using 
Long Read Sequencing

Study design and sample collection
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Full-length amplicons reconstructs bacterial
and fungal phylogeny 
 

Early-life exposure to microorganisms plays a crucial role in shaping children’s health by instructing 
immune maturation and modulating the risk of disease development. Most preschool-aged children spend 
seven to ten hours a day in childcare centers, yet the microbial communities in childcare settings and how 
they interact with human and human-associated microbiomes have yet to be fully elucidated. A limited 
number of previous studies have primarily focused on bacterial communities, using amplicon-based profil-
ing methods, largely due to the low biomass of these communities in this built-environment setting. These 
studies thus omit functional or genetic information and non-bacterial community members. Additionally, 
none of the prior research has incorporated host-associated phenotypes and microbial profiles to investi-
gate transmission. Expanding upon these efforts, we collected a variety of indoor and outdoor environ-
mental samples from two childcare centers, as well as nasal and oral swabs from 34 participating children 
aged two to four. We profiled all samples using PacBio full-length 16S rRNA gene and internal transcribed 
spacer (ITS) sequencing, respectively, for bacterial and fungal community members, and a subset of 
pooled samples using shotgun metagenomic sequencing including both short- and long-read metage-
nomics. This approach not only offered enhanced resolution to identify previously unknown aspects of the 
microbial communities in childcare environments, but also provided additional insight regarding the func-
tional potential in the ecosystem. Current results revealed distinct microbial profiles associated with differ-
ent host-associated and environmental communities. Most of shared species between host and environ-
mental communities were identified to be specific host-associated ones, including those associated with 
host food consumption, such as Lactococcus lactis and Streptococcus thermophilus. These results sug-
gest potential microbial transmission and interactions via host shedding. Our work thus expands the un-
derstanding of microbial ecology in childcare environments and these communities' relevance to child-
hood health. The knowledge gained from this study can allow us to identify potential environmental reser-
voirs of pathogens, track microbial transmission routes, and develop targeted interventions to benefit ear-
ly-life human health. • FL-16S data yields ASVs which are approximately 3 times that from in silico V4 amplicons. 

• Both types of amplicons are comparable in ASV taxonomic assignment at higer taxonomic 
levels, but diverge down to species level; FL-16 is found able to assign 30% more compared to 
V4 amplicons.
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Several food-associated species exhibit high levels of shar-
ing, with ASVs (strains) likely originating from dairy prod-
ucts or other food sources. This is evidenced by their closer 
phylogenetic proximity to (non)dairy-associated reference 
sequences compared to the non-food outgroup.
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In total, we collected177 samples and 7 controls from two Harvard-affiliated childcare cen-
ters. Following sample and data filtering, 109 FL-16S and 61 FL-ITS samples were selected 
for subsequent amplicon-based analyses, respectively. 

• Environmrntal microbial communities exhibit greater phylogenetic diversity across different envi-
ronmental sample types compared to host-associated communities.
• Full-length 16S and ITS amplicons generally reconstruct consistent phylogenetic relationships.
• Bacterial ASVs are found commonly shared between both oral/nasal communities and environ-
ments, whereas shared fungal ASVs are mostly restricted to nasal communities.

*Non-interactive environments include Drain, Sink, and Soil. Interactive environments include the rest of sample types.
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Among the top 5 abundant and/or prevalent species, approximately one-third comprise ASVs uni-
versally shared between hosts and environments. The majority of these are host-associated, 
while those lacking shared ASVs predominantly consist of environmental ASVs. This suggests 
the shedding of host-associated microbial community members into the environment, with mini-
mal uptake from environmental communities into the host microbiome.

Microbial interactions mainly driven by
host shedding 
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Acetoacetate Regulates Anti-Tumor Immunity 

Results
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Summary Ongoing and Future Work Acknowledgements

Background Colorectal Cancer Model and Immune Regulation
• Ketogenic diets and β-hydroxybutyrate (βHB) have been studied extensively as potential cancer therapy, but the 

effects of acetoacetate (AcAc) on tumor growth and anti-tumor immunity remains unclear.

• In vivo administration of an esterized acetoacetate (EAA) increases serum AcAc and reduces tumor growth in a 
genetic model of colorectal cancer (see panel right). 

• EAA promotes expansion of mucosal associated invariant T (MAIT) cells and increased cytotoxic effectors (right).

• We investigated alterations to the fecal microbiota and tumor, colon, fecal and serum metabolites in response to 
AcAc. We also performed in vivo stable isotope tracing with 13C EAA to assess how AcAc is utilized in each tissue. 

• Overall, we seek to  identify altered microbial and host metabolic pathways affecting AcAc-mediated  regulation of  
tumorigenesis

EAA treatment alters the fecal microbiota of cAPC mice EAA alters the metabolome in a site-specific manner Oral 13C EAA administration yields  
detectable signal in AcAc and βHB
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A. EAA treatment alters the composition of the fecal microbiota in cAPC 
mice. 16S rRNA amplicon sequencing was carried out on fecal samples. 
Bifidobacteria was the most increased taxa. B. Enrichment of B. 
pseudolongum was determined by BLAST and validated by qPCR. C. AcAc, 
but not βHB, increased the growth of B. pseudolongum but was not 
affected by. B. pseudolongum was cultured in MRS media in an anaerobic 
chamber with LiAcAc, LiCl control, NaβHB or media only for 30hrs. CFU 
was quantified by plating culture media on MRS plates.
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• In vitro co-cultures of immune and cancer cells, with ketones

• Metabolomics and 13C tracing on purified cell populations and culture 
supernatant

• Analysis of intra-tumoral microbiota using shotgun sequencing

• In vitro and in vivo gnotobiotic studies of intra-tumoral bacterial strains 

• Spatial transcriptomics and mass spectrometry imaging of tumors to 
identify co-localization of cells and metabolites of interest.
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Acetoacetate increases Bifidobacteria growth in culture

13C EAA labels a small proportion of several TCA 
intermediates, amino acids and nucleobases 

Bdh1
Bdh2

A. EAA treatment increases AcAc in the serum, feces and tumor. B. 
Untargeted LC-MS/MS analysis identified 346 differentially abundant 
metabolites between EAA and Vehicle treated animals across four tissues. 
Only 32 of these are shared between tissues, and two are identified. C. Each 
tissue reveals distinct profiles of differentially abundant metabolites.

H2O EAA

• EAA alters colonic microbial composition and increases B. pseudolongum abundance

• AcAc but not βHB increases growth of B. pseudolongum

• Treatment increases AcAc in serum, feces and tumors, and alters the metabolome of 
specific sites with distinct profiles of differentially abundant metabolites

• Oral administration of 13C EAA allows tracing of several TCA intermediates, amino 
acids and nucleobases- although at low proportions of the total pool

• Questions remain about how distinct cell populations utilize AcAc, and how the 
spatial distribution of metabolites relates to the location of immune populations
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A. Oral administration of 13C EAA allows tracing of 13C in AcAc and βHB. This 
is consistent with interconversion via Bdh1 (see inset). The highest labelling 
is detected in serum, while lowest labelling is detected in the tumor and 
adjacent colon. B. Stable isotope tracing shows 13C incorporation into a 
range of metabolites including TCA cycle intermediates, amino acids, and 
uracil, although at a low proportion of the total pool for each metabolite.

 
0

2

4

6

8

10

  

%
 o

f T
 c

el
ls

✱✱

H2O EAA

Tumor MAIT cells



Enhanced Feature Selection for Microbiome Data using FLORAL
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Motivating Data Example

MSK allogeneic hematopoietic cell transplant (allo-HCT) 16S rRNA data
· 8,967 samples collected from 1,415 patients between transplant day [-30,730]
· Survival endpoints: overall survival (OS), transplant-related mortality (TRM),
GvHD-related mortality (GRM); TRM/GRM formulated as competing risks

Research question: Whether and how the longitudinal microbial taxa features are
associated with survival endpoints?

FLORAL: Fit a LOg-RAtio Lasso

Part 1: Zero-Sum Lasso Model Fitting with Compositional Taxa Features

Part 2: Feature Selection Based on Cross-Validation and a Step 2 Procedure

Variable Selection Performance by Simulation
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Figure 1: Median F1 score, median number of false positive features, median number of false negative features, and me-
dian false discovery rate (FDR) obtained by lasso and differential abundance (DA) methods for linear, binary, survival,
and competing risk models out of 100 simulations, where there were 10 true features out of p = 500 features in each
simulation run. For each type of regression model, metrics across all methods were scaled for color visualization. For the
DA methods, the censoring indicator of the survival outcomes were used to define patient groups except for LDM.

Taxa Selection for MSK Allo-HCT Cohort
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Figure 2: Probabilities of genera being selected by FLORAL with λ = λ1se and two-stage variable selection from the
MSKCC allo-HCT cohort data, based on 100 repeats of 5-fold cross-validation with random fold split for Cox model
of overall survival with A. peri-engraftment samples and D. longitudinal samples; Fine-Gray model of transplant-related
mortality with B. peri-engraftment samples and E. longitudinal samples; Fine-Gray model of GvHD-related mortality
with C. peri-engraftment samples and F. longitudinal samples. The color scheme represents the average lasso coefficient
estimates of the corresponding genus at λ(i) = λ1se over i = 1, . . . , 100 repeats.

False Positive Rates on 39 Publicly Available Datasets
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Figure 3: A. Data characteristics of the 39 publicly available 16S microbiome datasets, including sample size (n), num-
ber of genera (p), and ratio between the sizes of comparison groups. The color scheme represents scaled characteristics
across all datasets. B. Number of selected taxa from the 39 publicly available 16S microbiome datasets by feature se-
lection methods, with comparison group labels randomly shuffled. Part of data were unavailable for ALDEx2 due to
memory overflow. The color scheme represents the percentage of selected taxa out of all taxa in a certain data set.

Software Availability: https://github.com/vdblab/FLORAL
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Background Taxonomic and Metabolic Maturity Signatures 

Methods

Conclusion

Objective: Use metagenomic and metadata from the BLOOM study to construct 
metabolic models of the preterm gut community to better understand the probiotic 
treatment’s impact on the maturation of the preterm infant gut microbiota. 

• Infants born prematurely have an abnormal set of birth conditions that lead 
to a sparse, low-diversity population of microbes initially colonizing their guts. 

• Prior studies have shown the ability of probiotic treatments to shift the 
preterm microbiome to resemble that of a healthy, term infant, however, there is 
still little known about the functional mechanisms that underlie probiotic’s 
therapeutic effects. 

• All data used in this project is from the BLOOM study, a longitudinal study on 
preterm infants run by the University of Calgary

Next Steps: 
• Large-scale simulations: Analyze all control vs probiotic microbiomes from BLOOM
• Test breastmilk vs formula diet in gut microbiome flux simulations 

A) Three clusters of species abundance data were identified using hierarchical 
clustering applied to the Bray-Curtis Dissimilarity matrix after dimension reduction 
using Principal Coordinate Analysis (PCoA). B) Comparison of species richness 
(Shannon diversity) across clusters . C) The Shannon index was calculated from the 
species-level fluxes as a measure of metabolic diversity. D) The Shannon index was 
calculated from the community level fluxes as a measure of metabolic diversity. 
Dimension reduction using Principal Coordinate Analysis (PCoA) was done on the 
community level metabolite fluxes (E) and the species-level metabolite fluxes (F). The 
the three taxonomic clusters were overlayed.

Our preliminary result support the feasibility of this study, and they will serve as a platform for large-
scale computational studies of the host-microbiota interactions 

• Assume a cell can be 
approximated by the 
network of its 
metabolic pathways 
and can be analyzed 
to trace a metabolite’s 
production back to a 
specific microbial 
species in the gut. 

Genome-Scale Metabolic Models

Species-Metabolite Linkages of Differentially Produced Metabolites

A) Fold change of metabolites only 
produced in probiotic or untreated group 
(a positive value indicates production in 
probiotic group) across four time bins. B) 
The three SCFAs were tracked at the 
community level and the species that 
contribute to their production at each 
time point are listed below 
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A total of 58 participants were enrolled in the 
study. Participants were given a 
questionnaire that prompted them to provide 
information including age, gender, ethnicity, 
race, weight, height, and status of skin 
health. An additional 60 control samples were 
drawn from an existing broader database of 
healthy skin samples at ProdermIQ to 
supplement the analysis. The participants 
were enrolled from three groups: cancer 
patients with pancreatic cancer, cancer 
patients with other types of cancer, and 
individuals without cancer. Skin microbiome 
samples from the forehead and cheek 
collection sites were processed and then 
analyzed by incorporating both statistical 
methods and machine learning techniques. 

Several studies have reported the importance 
of the human microbiome in the overall health 
of its host. While recent studies have 
explored the microbiome’s role in various 
types of cancer compared to healthy patients, 
this study narrows the focus to pancreatic 
cancer. This study aims to characterize the 
skin microbiomes on the forehead and cheek 
of individuals from three groups: 1) patients 
with pancreatic cancer, 2) patients with other 
forms of cancer, and 3) patients without any 
form of cancer. The goal is to determine if the 
results from this trial could provide insight on 
associations of microbial flora with the state 
or severity of cancer, status of host immune 
system, or progress of an ongoing therapy, 
which could have therapeutic applications.

A total of 150 samples were analyzed, including 79 samples 
from subjects with cancer and 71 samples from control 
subjects. The mean age of the control group was 60 years, 
and the mean age of the cancer group was 63 years. 
Characterization of the two analysis groups was further 
refined using observed features and alpha diversity metrics. 
The cancer group displayed a significantly higher mean alpha 
diversity compared to the control group. Our analysis showed 
15 dominant organisms as seen in the bottom figure. 
Organisms such as Streptococcus mitis SK642, Snograssella 
alvi wkB12, and Streptococcus gordonii Challis CH1 were 
seen in abundance within the pancreatic and other cancer 
groups but not within the no cancer group. Streptococcus 
porci DSM 23759 and Kingella oralis UB-38 were seen 
significantly within the pancreatic and no cancer group but not 
within the other cancer group. Additionally, a machine learning 
classification model built on the microbiome data 
demonstrated a median F1 Score of 0.761 for accurately 
classifying the cancer (all types) versus control samples. Given 
that F1 scores above 0.70 are generally regarded as 
satisfactory, this result indicates the skin microbiome can be 
predictive of cancer status. 

This analysis showed that there were significant differences in 
the skin microbiome of cancer patients versus patients without 
cancer. The cancer groups showed an increase in alpha 
diversity versus the no cancer group, and the machine learning 
model achieved a satisfactory F1 Score for differentiating the 
control and cancer samples . This could indicate the presence 
of dysbiosis in cancer subjects' skin microbiomes due to their 
clear differentiation from the healthy skin microbiomes. 
Additional research could provide potential opportunities to 
develop biomarkers that can identify pancreatic and other types 
of cancer. 

Background

Comparative Analysis of Skin Microbiome in Pancreatic Cancer Patients, 
Individuals with Other Cancers, and Cancer-Free Controls: A Pilot Study

Methods

Taylor Davis1, Katherine Decker2, Dana Hosseini2, Gayle Jameson1, Erkut Borazanci1

1: HonorHealth Research Institute; 2: ProdermIQ, Inc.
Supportive Fundations: HonorHealth Foundation 

Results

Pancreatic 
Cancer (n=23)

Other Cancer 

(n=21)

No Cancer 

(n=14)

Average Age (yr.) 65.8 59.8 39.6

Gender (M/F/Unlisted) 12/11/0 5/16/0 3/7/4

Smoker (Y/N/Unlisted) 1/22/0 0/21/0 0/10/4

Ethnicity (Caucasian/Hispanic 

or Latino/Asian/African 

American/Native 

American/Unlisted) 20/1/0/1/0/0 13/5/3/0/0/0 8/0/0/1/1/4

Conclusion
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The skin microbiome 
of cancer subjects is 

more diverse than that 
of subjects without 

cancer, as indicated by 
various alpha diversity 

measures.

A machine learning 
classification model trained 
on the skin microbiome data 
achieved a good F1 Score 
(≥0.7) for predicting the 
status of cancer.
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The Microbiome Collection Core at the Harvard T.H. Chan School of Public 
Health (HCMCC) was established in response to a strong demand among 
the research community for validated microbiome sample collection kit 
configurations and easy usability for in-home sampling. Under the umbrella 
of the Harvard Chan Microbiome in Public Health Center (HCMPH), 
HCMCC aims to support population-scale microbiome sample collection 
and expand our understanding of the microbiome to improve population 
health. The HCMCC has developed a multi carrier-compatible home stool 
and oral sample collection kit that permits cost-effective multi'omic 
microbiome studies, leveraging the intellectual and infrastructure 
foundation laid by the HMP2 (the 2nd phase of the NIH Human Microbiome 
Project) and the MLSC (Massachusetts Life Sciences Center)-funded 
MICRO-N (MICRObiome Among Nurses) collection. By providing this 
customizable microbiome collection kit, we enable researchers to perform 
multiple different molecular assays and tailor collection plan to study­
specific needs. 

HCMCC services 
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Microbiome sample collection 
plan development - Collection kit 

configuration - Kit distribution & 
logistics - Sample transport plan­
Sample handling & storage plan 

Streamlined post-collection 
assistance - Automated aliquoting -
Barcode tracking - -so·c storage in 

the BiOS Freezer - Fast sample 
retrieval - Sample shipment to 

sequencing labs for meta'omics & 
metabolomic profiling 

➔ 

Kit ordering & shipment - Kit 
customization & implementation 
Ambient temperature shipping - to 

selected clinical sites - direct to 
participants 

At-home sample collection 

Pre-paid return shipment 

THE HARVARD CHAN 

MICROBIOME COLLECTION CORE 

The Microbiome Collection Core is a part of the Harvard 
Chan Microbiome in Public Health Center (HCMPH). Want to 
learn more? Visit https://hcmph.sph.harvard.edu 

A scalable gut and oral microbiome 
sample collection platform 

Kit Contents 
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This customizable microbiome sample collection kit avoids the need for 
expensive, bulky, and inconvenient ice packs by providing several different room 
temperature storage media that are also compatible with multiple different 
molecular assays including any combination of amplicon (16S), metagenomic, 
metatranscriptomic sequencing, metabolomics, and other molecular 
assays. This kit further includes a collection method that uses anaerobic 
transport media that yields live microbes for culture or gnotobiotic research. 
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In addition to storage media, this sample collection kit includes user-friendly 
instructions and toilet accessories to maximumly facilitate and smooth the in­
home stool sample collection experience. Standardized questionnaires, as 
companions to collected samples, are included to capture recent medications, 
diet, anthropometric measurements, and gastrointestinal health status 
measured by the Bristol Stool Scale. The modularity of this kit allows 
researchers to tailor kit components to study-specific needs and conduct cost­
effective microbiome research ranging from pilot studies to large-scale studies
involving 10,000s of participants. 

HCMCC-supported study activities 
within the BIOM-Mass platform 
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Pre-collection - Participant 
enrollment - Kit ordering - Kit 

distribution 

Collection - Self-collection -
Sample return through pre 

paid shipment 

Post-collection - Sample 
aliquoting via Hamilton 
STAR automated liquid 

handler - Long-term -so·c

storage via the BiOS 
Freezer Core - Data 

generation - Data analysis 
via the Microbiome 

Analysis Core 

Microbiome population health 
research opportunities 
- Accessible microbiome population studies' data on the BIOM-Mass Data Portal 

https://biom-mass.org 
- Integrative microbiome informatics and analysis via the Harvard Chan 

Microbiome Analysis Core https://hcmph.sph.harvard.edu/hcmac/ 
- Long-term sample storage via the Harvard Chan BiOS Freezer Core 
- Gnotobiotic mice experiments via the Harvard Chan Gnotobiotic Center 

for Mechanistic Microbiome Studies 
- Course offerings on microbial communities and human microbiome research 

via the Harvard Chan Microbiome in Public Health Center 

Special thanks to the Massachusetts Life Sciences Center (MLSC), the Harvard 
Chan Microbiome Platform Steering Committee, the Harvard Chan Freezer Core 
Director John Obrycki, and the BWH/Harvard Cohorts Biorepository
Laboratory Manager Christine Everett. 

Contact us: 
hcmcc@hsph
Manger: Steven Medina 

.harvard.edu 

Scientific Director: Curtis Huttenhower 

https://hcmph.sph.harvard.edu/hcmcc (i)
Follow us on Twitter @hutlab (ii)
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Phylogeny within Roseburia inulinivorans associated
with T2D and indolepropionate

The gut microbiome, interacting with dietary intake, modulates host
metabolism and contributes to the pathogenesis of type 2 diabetes (T2D).
Yet, large-scale multi-omics studies to examine these complex interactions
are limited. Applying a validated data harmonization pipeline, we conducted
a comprehensive study that integrates data on long-term habitual diet, gut
microbiome, and circulating metabolomes from six studies of 4,563
participants with T2D, prediabetes, and normoglycemic status in the US,
Europe, and Israel. Our analysis identified diet- and host-derived metabolites
(e.g., quinate) and microbial-host co-metabolites (e.g., cinnamoylglycine and
indole propionate) associated with T2D, independent of major risk factors.
We also identified interactions between microbe and metabolite implicated
in T2D risk. In addition, the inter-individual difference in the association of
species (such as Roseburia inulinivorans) with T2D risk could potentially be
explained by the strain-specific processing of metabolite implicated in the
pathogenesis of T2D. Our study offers robust insights into the intricate
interplay of diet, gut microbes, and their metabolites underlying the
development of T2D in diverse populations.

For any questions, please contact
Dr. Zhendong Mei: nhzme@channing.harvard.edu
Dr. Dong D. Wang: dow471@mail.harvard.edu
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Overview of metagenomic, metabolomic, and phenotypic data in 1259
T2D patients, 1577 prediabetic and 1727 normoglycemic individuals

PERMANOVA P<0.001 PERMANOVA P<0.001

Substantial proportions of variation in plasma metabolome
are explained by the gut microbiome and habitual diet

T2D is significantly associated with overall gut microbiome (a)
and plasma metabolome (b) although not a major driver

Metabolites from various pathways are constantly linked with T2D
across studies, highlighting the systematic nature of T2D pathogenesis

The beta coefficients were estimated using the linear regression model with adjustment for
age, sex, and BMI in MaAsLin2. Metabolites with FDR q value<0.05 were shown.

Phylogenetically and functionally diverse species linked to T2D

The beta coefficients were estimated using the linear regression model with adjustment for
age, sex, and BMI in MaAsLin2. Species with FDR q value<0.25 were highlighted with colors.
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Phenotype data

Stool samples

Fasting blood 
samples

• Demographic data
• Food frequency Questionnaire
• Medication use

• Shotgun gut metagenomics
• LC-MS fecal metabolomics

• Curculating biomarkers
- Glucose homeostasis (n=3)
- Lipid metabolism (n=4)
- Inflammation (n=1)

• LC-MS circulating metabolomics
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Harvard T.H. Chan School of Public Health
Microbiome Analysis Core

Xochitl C. Morgan1, Lauren J. McIver1, Thomas Kuntz1,  Curtis Huttenhower1,2

1Department of Biostatistics, Harvard T.H. Chan School of Public Health  2Broad Institute of MIT and Harvard

The Microbiome Analysis Core at the Harvard T.H. Chan School of Public 
Health was established in response to the rapidly emerging field of 
microbiome research and its potential to affect studies across the 
biomedical sciences. The Core’s goal is to aid researchers with 
microbiome study design and interpretation, reducing the gap between 
primary data and translatable biology. The Microbiome Analysis Core 
provides end-to-end support for microbial community and human 
microbiome research, from experimental design through data generation, 
bioinformatics, and statistics. This includes general consulting, power 
calculations, selection of data generation options, and analysis of data 
from amplicon (16S/18S/ITS), shotgun metagenomic sequencing, 
metatranscriptomics, metabolomics, and other molecular assays. The 
Microbiome Analysis Core has extensive experience with microbiome 
profiles in diverse populations, including taxonomic and functional profiles 
from large cohorts, qualitative ecology, multi'omics and meta-analysis, and 
microbial systems and human epidemiological analysis. By integrating 
microbial community profiles with host clinical and environmental 
information, we enable researchers to interpret molecular activities of the 
microbiota and assess its impact on human health.

 
 

  

Consultation for microbiome 
project development. 
We provide consultation on 
experimental design, sample 
collection and sequencing, grant 
proposal development, study power 
estimation, bioinformatics, and 
statistical data analysis.
 
Validated end-to-end meta’omic 
analysis of microbial community 
data.
Using open-source analytical methods 
developed in the Huttenhower 
laboratory and by other leaders in the 
field, we provide cutting-edge 
microbiome informatics and analysis.
 
Fully-collaborative support for all 
stages of  funded investigations
  
From preliminary data development to  
hypothesis formulation, grant narrative 
development, data analysis and 
inference, custom software 
development, and co-authored 
dissemination of findings.

Core services

The Harvard Chan Microbiome Analysis Core is a part of the Harvard Chan Microbiome in Public Health Center (HCMPH). Want 
to learn more? Visit https://hcmph.sph.harvard.edu

 

 

  

https://hcmph.sph.harvard.edu/hcmac        http://huttenhower.sph.harvard.edu

McIver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics, 34:7, 1235-1237 (2018). 

Once profiled, microbial 
communities are amenable 
to downstream statistics 
and visualization much like 
other molecular 
epidemiology data such as 
human genetic or 
transcriptional profiles. Like 
these other data types, 
microbial communities 
often require tailored 
statistics for environmental, 
exposure, or phenotype 
association (MaAsLin 2.0, 
MMUPHIN) or for 
ecological interaction 
discovery (BAnOCC). The 
Harvard Chan Microbiome 
Analysis Core provides a 
variety of analyses for 
researchers working in the 
microbiome space.

Director: Xochitl  Morgan
Senior Software Developer: Lauren McIver
Data Analyst: Thomas Kuntz
Scientific Director: Curtis Huttenhower

Contact us at: hcmac@hsph.harvard.edu

Microbial community profiling

Downstream analysis and statistics

Trimming and contaminant removal

1

Statistical analysis, 
multi’omic integrations, 
and visualizations

Strain and pangenome 
profiling

Genome / Metagenome 
AssemblyKneadData

MetaPhlAn HUMAnN

The first step in 
microbiome molecular 
data analysis is quality 
control (KneadData) 
and profiling to 
transform raw data into 
biologically 
interpretable features 
using a reproducible 
workflow (AnADAMA/
bioBakery). This 
includes identifying 
microbial species 
(MetaPhlAn) and 
strains (PanPhlAn/
StrainPhlAn), 
characterizing their 
functional potential or 
activity (HUMAnN), 
and integrating 
metagenomics with 
other data types.

What are
they doing?



 

, 
1

Broad Institute of Harvard and MIT - 2Harvard T.H. Chan School of Public Health - 3 Harvard Chan Microbiome in Public Health Center - 4 Science & Technology Center, Hill’s Pet Nutrition
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Preserving and Assimilating Region-specific Ambiguities in Taxonomic 
Hierarchical Assignments for Amplicons - PARATHAA

Institute for Clinical Research and Health Policy Studies, Tufts Medical Center5

Jacob T. Nearing1,2,3, Kelsey N. Thompson1,2,3, Amrisha Bhosle1,2,3, Tobyn Branck1,3, 
Eric A. Franzosa1,2,3, Dayakar Badri4, Christoph Brockel4, Curtis Huttenhower1,2,3, Meghan I. Short5

PARATHAA Workflow

Identification of Optimal Taxonomic 
Distance Thresholds

PARATHAA Assigns Similar Genera but more 
Species on Real Microbiome Datasets 

PARATHAA Maintains Precision While Being More 
Sensitive Than State-of-the-art Assignment Methods

Taxonomic Assignment of Internal Tree Nodes

Taxonomic Assignment of New Query Seqeunces

PARATHAA Performs Comparably to Other 
Methods on Mock Communty Data

• For each taxonomic level PARATHAA selects multiple distance thresholds to test (3 dotted lines)

• For each distance the over-grouping and over-splitting error is summed to a total error

▪ Over-grouping: areas in the tree where multiple different labels are under the chosen distance

▪ Over-splitting: areas in the tree where the same label is split-up under the chosen distance

• The total error is then normalized to a score between 0 and 1. The distance with the lowest score is 

chosen as the optimal distance threshold for that variable region (top right hand plots)

• We next want to assign taxonomy to the internal 

nodes of the primer-specific phylogenetic tree 

• For each taxonomic level:

▪ Nodes that are above the optimal distance cutoff 

for that taxonomic level are left unassigned

▪ Nodes that are below the threshold are assigned 

taxonomy based on the underlying dominate tip 

labels

◦ When multiple differing taxonomies are present 

the dominant label is chosen based on a 

binomial error model that allows for multiple 

assignments (see node C;D).

• Placed sequences (using pplacer) are then assigned 

taxonomy using the following criteria:

▪ If the maximum distance to child nodes is smaller 

than the species threshold:

◦  Taxonomy is assigned to the placed nodes 

species

◦ A neighborhood search is then used to eliminate 

assignments when conflicting labels (from nearby 

tips) are within a small radius of the placed tip

▪ If the maximum distance is larger: 

◦ Taxonomy is assigned at the level where the 

maximum distance is below that taxonomic level’s 

optimal threshold

• Synthetic sequences that 

are not represented in the 

seed database that 

PARATHAA uses were 

chosen from SILVA to be 

assigned taxonomy by 

PARATHAA and DADA2

• PARATHAA and DADA2 were used to 

assign ASVs using the SILVA SEED 

database from a publicly available 

dataset on autism spectrum disorder. 

• Genus level relative abundance 

profiles were similar between 

PARATHAA and DADA2

• Species profiles revealed a higher 

proportion of abundance being 

assigned by PARATHAA

Short read amplicon sequencing is a common strategy to taxonomically profile 
microbial communities. This involves the PCR amplification of specific variable 
regions on markers such as the 16S rRNA gene. While this is relatively low cost and 
high-throughput, it does suffer from drawbacks such as bias associated with usage 
of differing variable regions. Additionally, short variable regions do not always differ 
among taxa, introducing further ambiguity. 
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• PARATHAA assigns reads to a similar number of species (V1V2) or more (V4V5) compared to 

DADA2 on a published mock community. 

• The mock community is composed of DNA from 20 species in equal quantities (5% relative 

abundance).  

• Species with less than 0.1% relative abundance are listed as “Other”.

PARATHAA Allows for Better Interpretation of 
Seqeunce Assignment 

▪ Sequences were chosen from genera but not necessarily species that were represented 

within the seed database

▪ For each given genera at least 20 sequences were chosen (all sequences not in the seed 

database were chosen when there was less than 20)

▪ Query sequences were then trimmed to the V1V2 region

▪ DADA2 assignments were completed using the same seed database that PARATHAA uses

Assignment: Bacteria;Firmicutes;Bacilli;Lactobacillales;Aerococcaceae;Carnobacteriaceae;NA;NA 

• PARATHAA allows users to 

plot query sequences in the 

context of the primer 

specific phylogenetic tree

• Plotting allows users to determine why their sequence receive the assignment given 

allowing for better interpretation then other black box machine learning methods



Jiaxian Shen1,2, Etienne Nzabarushimana1,2, Hanseul Kim1,2, Hannah VanEvery, Yiqing Wang2, Kelsey N. Thompson1,3, Andrew T. 
Chan1,2, Curtis Huttenhower1,3, Long H. Nguyen1,2

1Harvard T.H. Chan School of Public Health  2Massachusetts General Hospital and Harvard Medical School  3Broad Institute of MIT and Harvard 

Concurrent and Habitual Diets Differentially Associate with Microbial 
Multi-Omic Profiles in Inflammatory Bowel Disease (IBD)

• Studies have linked diet to the risk and severity of IBD and its subtypes, 
Crohn’s disease (CD) and ulcerative colitis (UC).

• Similarly robust evidence has associated disease activity to characteristic 
alterations in gut microbial taxonomy (metagenomics, MGX), community 
functions (metatranscriptomics, MTX), and microbial metabolites 
(metabolomics, MBX). 

• However, in IBD, explorations into how these multi-omic readouts are affected 
by concurrent/short-term vs. habitual/long-term diets are limited.

Background

Study population and analysis design

Integrative Human 
Microbiome Project 

(HMP2)

Concurrent Diet
7-day dietary record
Converted to servings per day

Habitual Diet
Modeled using a decaying average 
of concurrent food records

• We explored different decay formulas, which vary the duration and extent of 
the influence from a past diet.

• h1→h12: Decay became more gradual generally. 
• For example, with “importance weight= 2-t”, habitual diet of a sample was 

calculated as a decaying average weighted by 2-n for the nth prior week of food 
records, accounting for all available data points.

We linked diet and microbiome matrices via intra-individual Mantel tests, 
quantifying associations within participants only. 
• Significance: 4,999 permutations
• Robustness: 4,999 bootstraps

Omic

sa
m

pl
e feature Distance 

matrix

Keep 
intraindividual 

distance

P1
P2

Diet

Correlation

sa
m

pl
e feature Distance 

matrix

Keep 
intraindividual 

distance

P1
P2

Habitual diets had a significantly stronger 
correlation with taxonomy and functional potential
Compared to concurrent, habitual diets had a significantly stronger correlation 
with MGX taxonomy, MGX functional potential, and MTX functional potential.

• The pattern was more prominent for pathways than enzyme profiles. 
• When functions were stratified by contributing microorganisms, no differences 

emerged between concurrent and habitual diets. 
• This suggests that although habitual diet more significantly shapes community-

level functions than concurrent diet, it does not predict which species 
contribute to specific functions. 

MTX functional activities exhibited patterns 
consistent with MGX only at the community-level

Neither habitual nor concurrent diets had additive 
effects on shaping MBX

• This might be an actual biological pattern or potentially technical noise in MBX 
data, as the association tests were less stable during bootstrapping. 

• The coupling between diet and MBX became tighter at a log scale and was 
more pronounced for characterized metabolites, as opposed to all chemical 
compounds.

Disease activity metrics were modestly correlated
• Correlation: CD < UC < nonIBD
• CSR, ERP, and fecal calprotectin correlated the best.

Calculating dysbiosis scores using HMP1-II 
stool samples as reference increased the 
correlation between dysbiosis scores and 
the other disease activity metrics.

A. Data acquisition

B. Construction of dietary profiles

C. Quantification of associations

Correlation increased as the decay 
became more gradual and plateaued 
at h5, which followed a decay formula 
of weight=1/sqrt(t+1). 

* MTX functional activities were assess by normalizing MTX against DNA gene copy number; 
Distance: Euclidean; Log_residual: log transformation was conducted before residual calculation.

* Distance: Bray-Curtis; Abbreviation: con, concurrent diet; h1~h12, habitual diets.

* Associations shown were based on metabolomics intensity.

* Abbreviation: dys_score, dysbiosis score; fecal_cal, fecal calprotectin; CRP, C-
Reactive Protein; ESR, Erythrocyte Sedimentation Rate; HBI, Harvey-Bradshaw 
Index; SCCAI, Simple Clinical Colitis Activity Index. Dysbiosis score was calculated 
using nonIBD sub-cohort as reference.

https://huttenhower.sph.harvard.edu/
https://www.mghcteu.org/
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Using housekeeping gene cpn60 as a marker for microbial 
 community profiling and viability assessment
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 A comprehensive database with cpn60 
protein and nucleotide sequences

Ongoing works

While high-throughput metagenomic sequencing has transformed microbial 
community studies, it remains challenging to discern between "alive" and "dead" 
microbes. This limits our understanding of microbial community functions and 
their interactions with their surroundings and human health. To address this, we 
introduced a novel protein-coding marker gene approach using the cpn60 gene 
for comprehensive microbial community profiling and functional activity 
assessment via metagenomic and metatranscriptomic sequencing. We first 
constructed an extensive database integrating cpn60 protein and enriched cpn60 
nucleotide sequences. Using cpn60 protein IDs for protein-based taxonomy 
inference in the Human Microbiome Project II dataset, we found strong agreement 
between cpn60-protein-based taxonomy and shotgun metagenomic results. This 
would suggest cpn60 being a discriminative marker for taxonomy profiling. 
Additionally, we explored cpn60 protein expression in metatranscriptomic data as 
an indicator of bacterial species' activity. The cpn60-protein-based analysis 
correlated positively with growth rates estimated using the bPTR method, 
suggesting cpn60 proteins as robust markers indicating the activity of microbial 
community. These findings suggest cpn60's potential as a discriminative marker 
for microbial community taxonomy profiling and viability characterization, offering 
insights into microbial community dynamics. This study underscores the promise 
of marker gene approaches in advancing microbial viability assessment and 
functional activity profiling.

Cpn60-amplicon-sequencing can be used 
as a supplement of 16S rRNA sequencing

Cpn60 transcripts can be used for 
community activity assessment

Cpn60-based analysis reveals different 
activity of gut vs. oral microbes in IBD

 

We are currently integrating additional house-keeping genes into marker 
gene-based microbial community characterization. This would enhance accuracy 
and provide a more comprehensive view of microbial community physiology, 
leading to refined sequencing workflows for more accurate and cost-effective 
community profiling and viability assessment processes,

The works has been supported by Grant U19AI110820 and the DFSA 
Incubation Award from the Harvard Chan Dean’s Fund for Scientific 
Advancement.

Gut species showed stable relative abundance profiles across Crohn’s Disease 
(CD), ulcerative colitis (UC), and healthy control conditions, whereas oral bugs 
exhibited elevated transcriptional activity in CD. Conversely, among oral species, 
K. pneumonia displayed increased transcription in CD but not in UC compared to 
healthy controls, while S. parasanguinis and P. mirabilis were increasingly 
transcribed in UC, but not CD, relative to healthy controls.

Evaluate protein-based activity assessment using cpn60 Uniref90 and all 
Uniref90 IDs from HUMAnN 3.6, alongside the peak-to-trough (PTR) 
coverage ratio method in the iRep tool.
As sequencing depth exceeded 100, cpn60-based activity assessment 
increasingly correlated with bPTR values.
cpn60 transcript is a potential viability marker for discerning activity in 
complex microbial communities.

In HMP2 dataset, both MetaPhlAn 3.1 and cpn60 profiling showed high 
agreement at various taxonomic levels.
Genus-level relative abundances revealed strong agreement between the two 
methods (correlation coefficient = 0.96, p-value = 0.00).
Comparable compositional dissimilarity confirmed by Principal Coordinate 
Analysis, highlighting the compatibility of both approaches.

, Marina Chen1

3Harvard Chan Microbiome in Public Health Center   

We first constructed a comprehensive database that inculdes 23,006 unique 
cpn60 protein IDs and 20,556 nucleotide sequences.
 The updated database exhibits a taxonomic composition at the phylum level 
similar to cpnDB, with dominant phyla including Proteobacteria, Firmicutes, 
Actinobacteria, and Bacteroidetes.
 The protein database reveals a diverse array of taxonomies, including 
unclassified groups, bacteria, fungi, animals, plants, and other eukaryotic 
organisms.
 Multiple sequence alignment revealed multiple variable regions and 
conserved regions in cpn60 gene.

, Kelsey Thompson
Yancong Zhang1,2,3

, Meghan I. Short4

, Jacob Nearing1,2,3
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Taxonomy profiles differed notably between 16S-seq and cpn60-seq at the 
phylum level.
cpn60-based method identifying fewer Firmicutes, Bacteroidetes, Cyanobacteria, 
and Fusobacteria, but more Proteobacteria and Saccharibacteria.
Higher within-phylum identities compared to between-phyla identities for both 
methods.
Identities from 16S rRNA V4 region were generally higher than thosw from cpn60 
UT region.

Cpn60 is a reliable marker for taxonomy 
profiling in human stool microbiome
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Response of the gut microbiome to acute enteric 
pathogen infection and antibiotic treatment 
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Enterotoxigenic Escherichia coli (ETEC) is a major global cause of diarrheal 
illnesses, particularly in low- and middle-income countries. Despite its 
significance, our knowledge of how the gut ecosystem responds to ETEC 
infection and antibiotic treatment is limited. We conducted a comprehensive 
study on six adults, analyzing their gut microbiome before, during, and after 
controlled exposure to ETEC and antibiotic recovery. The gut microbiome's 
response varied widely among individuals. Some species, such as  
Ruminococcus bromii and Lachnospira eligens, were more abundant in 
severe cases, likely due to microbial growth dysfunction during diarrhea. 
Transcriptional changes revealed insights into how the gut microbiome 
reacts to pathogenic challenge and antibiotic treatment, with species-specific 
metabolic processes identified. This study enhances our understanding of 
the gut microbiome's role in responding to enteric pathogens and antibiotics, 
offering valuable insights for mitigating effects in both adults and vulnerable 
infant populations.

• ETEC challenge experiment
• Six adult participants
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metagenomics (MGX)
metatranscriptomics (MTX)
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E. coli H10407 Ciprofloxacin

One stool sample
Two stool samples

Study design

Microbial divergence changes over time

• Bray–Curtis 
dissimilarities at Pfam 
level within subjects 
as a function of inter-
vening time difference
• Greater variability 
among individuals
• Notable deviation 
observed during 
antibiotic treatment
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Individual-specific microbial profiles
• Cohort characteristics 
are linked to microbial 
measurements by 
PERMANOVA
• Individual diversity 
explained the largest 
variation across 
measurement types
• Disease severity 
accounted for a smaller 
portion of variability
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• Predict participant disease 
status from longitudinal 
microbiota data
• MITRE distinguished host 
disease severity with high 
confidence

Disruption of microbial profiles

Species abundance shifts among disease phenotypes

Differential expression (DE) of microbial functions

Normalized Enrichment Score
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treatment• 106 MGX and 102 MTX
• 1~2 biological replicates per subject
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Prevotella copri clade A

Roseburia faecis

Ruminococcus gnavus
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• Distinct dominant taxa in each participant during challenge
• Compositions rebounded post-antibiotic, showing variable stability linked to  
  disease severity
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• A feature-set enrichment 
analysis (FSEA) analysis 
for phenotypic enrichment
• Disease-linked microbes 
showed enriched specific 
phenotypes
• Gut microbes showed 
significant enrichment in 
strict anaerobic bacteria
• Oral bacteria showed 
significant negative 
enrichment

• Microbial species associations with 
disease severity were analyzed using 
linear mixed models
• Certain beneficial bacteria significantly 
increased in disease states compared to 
controls, e.g. R. bromii
• Certain oral bacteria were depleted in 
diseased conditions, e.g. V. atypica

• Most DE Pfams were upregulated
• DE Pfams from the same species 
frequently shared similar functions
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- Red lines: threshold slopes/abundances
- Black lines: median slopes/abundances
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Effect size

-   q < 0.25
*   q < 0.05
**  q < 0.01

***  q < 0.001

PF03652: Holliday junction resolvase|Clostridium asparagiforme
PF00199: Catalase|Eisenbergiella tayi
PF06628: Catalase−related immune−responsive|Eisenbergiella tayi
PF02357: Transcription termination factor nusG|Ruminococcus bromii
PF09633: Protein of unknown function (DUF2023)|Alistipes putredinis
PF00183: Hsp90 protein|Sutterella wadsworthensis
PF05036: Sporulation related domain|Blautia wexlerae
PF00310: Glutamine amidotransferases class−II|Bacteroides massiliensis
PF01493: GXGXG motif|Bacteroides massiliensis
PF01645: Glutamate synthase|Bacteroides massiliensis
PF04898: Glutamate synthase central domain|Bacteroides massiliensis
PF06283: Trehalose utilisation|Bacteroides cellulosilyticus
PF00035: Double−stranded RNA binding motif|Bacteroides dorei
PF12685: SpoIIIAH−like protein|Faecalibacterium prausnitzii
PF12730: ABC−2 family transporter protein|Clostridium citroniae
PF02416: mttA/Hcf106 family|Clostridium symbiosum
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