Bacteria-virus interactions in the vaginal microbiome reduce herpes virus infectivity
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Abstract

The vaginal microbiome is an important determinant of host health and the first barrier encountered by sexually transmitted pathogens during infection. Among the vaginal
microbiome, Lactobacilli are associated with reduced susceptibility to viral infection, but the mechanisms by which various Lactobacilli strains reduce viral infectivity remain poorly
understood. Using a collection of human vaginal microbial strains, we show that the prominent vaginal strain, Lactobacillus crispatus reduces infectivity of sexually transmitted
pathogen Herpes Simplex Virus (HSV). Reduction of HSV infectivity is species specific, with L. crispatus reducing infection and disease better than gut-associated L. reuteri. Active
cell metabolism is not required as UV-killed L. crispatus retain the ability to reduce herpes infection. Since one of the most abundant structures on the outside of the L. crispatus
cell is peptidoglycan, we assessed whether peptidoglycan could reduce HSV infection. We found that commercially available purified peptidoglycan from multiple bacterial sources
reduced herpes infection in vitro and in vivo in a mouse model of genital herpes infection. Mice were susceptible to reinfection, indicating that immunological memory is not
activated. Cleavage of the glycosidic linkages in the peptidoglycan chain with lysozyme restored virus infectivity in vitro and in vivo suggesting that antiviral effects are dependent
on longer peptidoglycan chains. Current studies aim to determine how Lactobacilli peptidoglycan contributes to a reduction in HSV infectivity focusing on HSV entry receptors and
what species-specific peptidoglycan modifications allow L. crispatus to reduce infectivity better than other Lactobacilli. Such results provide a greater understanding of the ways
that the vaginal microbiome serves as a physical barrier to infection and why some vaginal communities promote better antiviral protection than others.

The vaginal microbiome as a primary defense against pathogens

B Figure 1. (A) The vaginal mucosa is colonized by an
ecosystem of microbes that protect the host from

tegument invading pathogens, including viruses. The

CX0 ? xf'}:_;-«\ N microbiome, which is largely dominated by
— & S 2 nucelocapsid Lactobacillus species, is the first barrier encountered
O Py o Y by an exogenous pathogen. The vaginal microbiome

dsDNA genome can secrete molecules that interact with pathogens or
the host to influence invasion. Loss of Lactobacilli
spp. is linked to increased risk for viral disease,
including herpes. (B) Herpes is an enveloped
neurotropic dsDNA virus that infects the mucosal
epitheia and establishes a lifelong latent infection in
the dorsal root ganglia. In the work presented here,
we investigate mechanisms by which the vaginal
microbimoe influences herpes infection.

What makes some vaginal microbiomes better at protecting against herpes infection than others?
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Vaginal Lactobacilli reduce HSV-2 infection in vitro
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Figure 2. (A-B) Live vaginal- and intestinal-derived Lactobacilli were co-incubated with HSV-2 (4 x 10* 1.5 10° PFU 0 ' ! J ' '
+ 107 - 108 CFU, normalized by OD_) for four hours in 1x PBS at 37C with HSV-2 alone in 1x PBS as a control. 3 (\\ ’&9 {\\ ‘@ ‘009
Mixtures were then pelleted at 5009 to remove bacteria and supernatants plated onto confluent Vero cell o(‘ & @ Q‘b 0’@ ’&@ \)\
monolayers at different dilutions. Cells were then incubated for 48 hours in growth limiting conditions with human 45" V) {\9 < 09 ((\
IgG. Cells were fixed in crystal violet and plaques counted to determine supernatant infectivity. Counts were \2‘6 A\ ‘0 AV .\Q\' v
normalized to the average of HSV-2 alone. (B) Both vaginal and intestinal Lactobacilli suppressed HSV-2 infectivity, vV v
with vaginal Lactobacilli suppressing more than intestinal Lactobacilli. Significance was determined with ordinary | : | : |
one-way anova without multiple corrections, p-value <0.0001 **** and <0.001 ***. N= 5-8 across 3 independent Vaginal Intestinal
expeirments. Error bars represent the average with the SEM.
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Figure 3. Vaginal Lactobacilli were normalized by OD600, washed 2x in PBS, and then UV killed before supernatants XY o d < >
were incubated with HSV-2 for one hour at 37C (40,000 PFU + up to 108 CFU) with HSV-2 alone in PBS as a control. oo\ ‘b\\“\ 6@'3' ,b\\4 o
Infectious HSV-2 particles were quantified using a plaque assay on veros. Percent infectivity was quantified and 4:" \)q, 5 © (,6
normalized to the average of HSV-2 only. Error bars show the mean and the SEM and one-way anova reveals significance 2) Q\» » \(\e ,00
with a p-value of <0.0001 **** or <0.05 *. > {@Q {@Q Voo
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Figure 4. (A) Lactobacilli are gram+ positive bacteria with surface exposed peptidoglycan (PG). In gram-
bacteria, PG is not surface exposed and lies between the inner and outer membrane. Thus, herpes

» virions could potentially interact with the PG of gram+ bacteria and the outer membrane and its surface
structures in gram- bacteria. PG is typically made up of repeating units of N-acetyl-muramic acid (NAM)
and N-acetyl-glucosamine (NAG). These glycan chains are linked via peptides. Lysozyme is able to
cleave peptidoglycan by hydrolyzing the 31-4 linkage between NAG and NAM in susceptible bacteria,
including Lactobacilli. Some bacteria, like Staphylococcus aureus (Sa), are not susceptible to lysozyme
activity due to protective modifications on the PG. (B-C) To test the effect of PG on HSV-2 infectivity,
HSV-2 was incubated with commercially available Sa PG and added to vero cells before plaquing to
quantify HSV-2 infectivity (C). Sa PG reduced HSV-2 infectivity in a dose dependent manner (C). (D) To

was mixed with HSV-2 and added directly to veros. Bs PG reduced HSV-2 infectivity more than

| _Quantify"infectious_
HSV-2 in supernatant

Incubate veros at the same time. Sa PG reduction of HSV-2 infectivity was not reduced by lysozyme. Overall,

these data suggest that PG is able to reduce HSV-2 infectivity in vitro, and that this reduction requires
intact PG NAG NAM bonds. Error bars show the mean and the SEM and one-way anova reveals
significance with a p-value of <0.0001****, <0.001***, or <0.01 **.

test the effect of PG on HSV-2 infectivity in the absence of pre-incubation, [0.2mg/ml] PG from Bs and Sa

equivalent amounts of SaPG and this effect was reduced for Bs when 10mM lysozyme was added on the

Peptidoglycan reduces HSV-1 infectivity in vitro
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Figure 5. (A-D) To determine if PG could reduce infectivity
MO110 MOL 1 MO10.1 MOI10 MOl 1 MOI 0.1 of the herpes strain HSV-1, HSV-1 expressing a
*xkk %k k% GFP-tagged capsid (GFP-VP26) was combined with
[ ] _ I _ -
1001 s sk 100 - 100 - 100 100 deddk 100 [0.2mg/ml, 50 ug) Bs PG and added to immunocompetent
] 80 - 804 80 - 80 - 80 human foreskin fibroblasts. After infection, GFP+ cells were
+ 80 b N quantified using flow cytometry (BD FACSymphony). (B-C)
3 60+ 60 60 5 60 60 At 6 hours post infection (P.1.), in the absence of PG, 80% of
T 40- 40 XEX* 40- ns T 40- 40 - 40- cells at multiplicity of infection (MOI) 10 were GFP+. Cells
S s S that were incubated with 50ug PG were uninfected. (D) As
20 20 ] 20+ |£| 20 oo 207 20 the infection progressed 24 hours, 20% of live PG-treated
0 0122 s e 0L ote ome e 0 | 0 0- cells were GFP+. These results demonstrate that PG can
0 10 50 0 10 50 0 10 50 0 10 0 10 0 10 reduce HSV-1 infectivity in vitro. Error bars show the mean
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Figure 6. (A-G) To determine if PG could reduce HSV-2 infection in vivo, mice were infected intravaginally with a lethal dose of HSV-2 (10,000 PFU) with or without 50ug of B.
Bs or Sa PG. (A) To synchronize disease progression, mouse estrous cycles are synchronized with 2mg of medroxyprogesterone injected subcutaneously 5-7 days before
infection. Early in infection, the virus replicates in mucosal epithelial cells and infectious virus titers can be evaluated by collecting vaginal lavage daily and conducting plaque
assays on Veros. Four days P.l., the virus infects enervating neurons and travels to the dorsal root ganglion. In humans, the virus enters latency, but in mice, the virus continues
to replicate, traveling down neurons to fresh epithelial sites where viral infection results in inflammation and morbidity that can be scored. (B) All mice that received HSV-2 alone
died within 14 days P.l. (n=5-10) (B-C) All the mice that received 50ug of Bs PG survived and only one Sa mouse died. In the experiment shown in (B), no Bs treated mice
showed signs of disease, whereas some Sa treated mice did show symptoms, though these were statistically significantly different from the untreated mice. (D) In a separate
experiment, to determine if the NAG-NAM linkage was required for this protection in vivo, mice were infected with HSV-2, 50ug Bs PG, and 10mM lysozyme (n=5). Mice that
were treated with Bs PG showed significantly less disease burden than untreated mice. Mice that were treated with Bs PG and lysozyme showed signficantly more disease than
mice treated with Bs PG alone, suggesting that the NAM-NAM linkage is imporatant for PG protection from HSV-2 infection in vivo. (E) Among the Bs PG/lysozyme treated mice,
most of the mice were symptomatic, which is in contrast to the mice treated with Bs mice treated alone which were largely asymptomatic. (F) Viral titer tracking from vaginal
lavage in all four treatments within the the 5 day window critical for disease establishment revealed that Bs PG treated mice were able to clear the virus by day one P.I. Mice
treated with Bs PG and lysozyme did not clear the virus within the first few days P.l. This suggests that Bs PG blocks early viral establishment. (G) Curves represent the vaginal
viral titers for a single mouse, revealing the heterogeneity in progression of virus establishment in individual mice treated with PG. The limit of detection for PFUs is 4 plaques
(dotted line). Disease scores were compared using 2-way anova with multiple comparisons with p-value <0.0001 ****, <0.001 ***, <0.01 **, and <0.05 *. Kaplan-Meier survival
curves were evaluated with Mantel-Cox test, p-value <0.001 **.
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Future directions

Moving forward, we are excited to dissect the interactions between vaginal viruses and the microbial cell surface of Lactobacilli and other
clinically important vaginal microbes. We are keenly interested in determining what makes certain vaginal bacteria better or worse at
protecting from viral disease by purifying and characterizing the structure of the cell surface using microscopy, chemistry, and glycobiology.

Lactobacillus reuteri HM-102 Lactobacillus iners HM-704  Lactobacillus crispatus HM-637

-
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Figure 7. Lactobacilli were washed 1x in PBS
and fixed in paraformaldehyde and
gluteraldehyde and sectioned into 70nm slices
for TEM. Cells were imaged using Tecnai G2
Spirit Bio-Twin TEM with NANOSPRT43
camera, 3000x direct magnification.
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Dietary fiber and the microbiome

Macronutrient

d

Relative Abundance

Nutrients and compounds from diet can directly influence the gut
microbiome and microbial metabolism of these compounds can in
turn  influence the host. Metabolism of dietary fiber by the
microbiome provides several health-relevant metabolites such as
short chain fatty acids (SCFAs) which participate in intestinal
homeostasis and immune regulation, and fiber-released compounds
that affect gastrointestinal physiology. Dietary fiber interventions in
both humans and dogs have shown alterations to microbiome struc-
ture and metabolism. However, differentiating the effects of individual
fibers in humans with complex diets and heterogeneous lifetsyles is
challenging. Companion animals provide a particularly relevant
context to study diet-microbiome interactions due to more
consistent foods and environments. In this work, we investigated the
gut microbial and metabolomic responses to various dietary fiber
sources and quantities using a canine colony population. This design
allowed us to study the association of specific microbial and metabolic
responses with different carbohydrates including fiber and starch as
well as the consistency of these associations across subjects.

Design of dietary fiber study
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(@) Collinsella and Bifidobacterium sp were the most abundant
species in baseline gut microbiomes of dogs followed by Firmic-
utes(36.98%) and Bacteroidetes(3.23%), Proteobacteria(0.44%), and
Fusobacteria (0.005%). (b) Abundances of 818 metabolites were
assayed from the same samples. Inter-individual variation in metabo-
lomes was concordant with variation In  microbiomes.

Fiber affects the metabolome more
than microbiome composition

Similar foods give rise to similar metabolomes but not microbiomes

We examined the extent to which microbiomes and metabolomes changed
response to food. Microbiomes/metabolomes following consumpution of a particular
food were compared to those in response to control food (initial) and preceding food.
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(@) Among the macronutrients, starch and insoluble fiber explained most of the vari-
ance in metabolomes. (b) Bray-Curtis distance based ordination shows similarity
only of metabolomes in response to test foods (colored by group).

Macronutrient-metabolite associations are stronger and
more numerous than macronutrient-microbial feature associations

d Proteobactega bactte”rlum 8?(63 {138519 L ** ]  — (a) ASSOCiationS were determined
I_:e;/d()eP?e?/%tega;ccopr/- RaRNL Sl using univariate linear models. 19
Firmicutes bacterium CAG 646 - species, 569 metabolites, and 10 fatty

Firmicutes bacterium CAG 4241 *

** * ‘ ‘ * ‘ ** *kk | k%%
* *kk | k%%

Faecalibaculum rodentium -
Butyricicoccus pullicaecorum -

acids were significantly (g < 0.25)

Bifidobacterium animalis || 18| associated with total dietary fiber.

b pibael == wewe| | Fiber-enriched features included
B P ocola | SCFA producers such as Butyricicoc-

Asaccharobacter celatus ]
Adlercreutzia equolifaciens - — — cus and Bacteroidetes SP, SCFAS,
. Bl bkl acylglycerols, and polyphenols.

*%* *%*

sel0adg

**
**

*
*
* * %

*k*k

*
*
*
*

spermine -

spermidine -

sinensetin -

S-methylcysteine -
oleoyl-linoleoyl-glycerol (18:1/18:2) [2]
oleoyl-linoleoyl-glycerol (18:1/18:2) [1] T
N(1)-acetylspermine -
linoleoyl-linoleoyl-glycerol (18:2/18:2) [2]* -
ferulate

enterodiol -

chrysoeriol -

chenodeoxycholic acid sulfate (2) -
4-hydroxycinnamate -
3-dehydroshikimate -
3-(3-hydroxyphenyl)propionate sulfate
2-oleoylglycerol (18:1) -
2-linoleoylglycerol (18:2)

* % *k*k

*
*
*
X Kk X
*
*
*
*
*

* k%

*
*
*
*
*
*
*
*
*
*
*
*

*%* *%*

. ol ol b EC 2.7.1.45 EC 4.2.1.55 EC 4.1.1.41

*k%k | *kkk

* %

* %

** * %% * ‘ *k*k | k%

*k*k | kk*k
* %% **‘ *k*k | kk*k

> \\
=
(7))
C
QAA
©
* %% * ** **

*k*k | k% *%* *%*
* k% *k*k | kk*k I I I I I I I I I I I I

S ETT o 1. 2 3 40 1 2 3 O 1 2 3 4

* % * %

. *hk | KAK |Og10(RPKM)

*kk | k%%

**
**
**

*
*
*
*
w X B X ¥ *
*
*
*

salljoqels|N

* k%
*%*
* % * k%
*%*
*%*
*%*

XK X Ok ok X X A *
*
x_
*

*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

X ok X O X X *
*
*
*
*

*
*
*
*

* * %

Valeric acid -

Total SCFA - *xx *kx kKK | kk | KKK

Total BCFA - * Kk *h* xEF | KK | KK

Isovaleric acid *kk *k K *kk | Kk | Kk*®

. Isobutyric acid | *rE *xE FEK | KK | FEE

q<0.1: Hexanoic acid -

g <0.01: ** Co C3 - | | | ***
< 0.001: *** Acetic acid -

: 2-Methylbutyric acid - Fx *rE FEK | KK | KHK

N (b) Butyrate (EC 2.7.1.45; 4.2.1.55)

&)
1

N Ol ~N
o0 O
1

spioe Ane4

—/

o
1

Prop. of zeros (%)

®/~

coef-sign * -log1o(g-value) <<fo <<‘</ e}

10 C}
0 O 0 6\
-10 AN
20 &O

e &7’\\@@ o@@é@ and propionate (EC 4.1.1.41)
synthesis enzymes were also
enriched in response to fiber intake.

Strength of associations with fiber
varies by food group and subject

Associations of fiber-responsive species and metabolites

are more pronounced in low starch high fiber (LSHF) foods

(@) One-way ANOVA shows that most SCFA
producers that are positively associated with
fiber (red) are more abundant in LSHF foods.

d Ruminococcus gnavus -
Proteobacteria bacterium CAG 139 -
Prevotella sp CAG 891

Prevotella copri -

. HSLF MSMF LSHF
Megasphaera elsdenii b 4000

Lachnospira pectinoschiza - oo R=-0.09, p=0.29 Ri=0.097, p=0.5 R=0.44, p=0.0082

Firmicutes bacterium CAG 646 - ey

pioe ouAing

@ I : 2000 1 . RIS ’ 1
.S_JJ Firmicutes bacterium CAG 424 4 —t % | .. PEP
°o 9 2ol ° %, . L
(] —~ ® ° ° i -
Q Dorea sp CAG 317 - = 10007 . T e
@ 2
Butyricicoccus pullicaecorum A :(’ 5000
< ]
Blautia sp CAG 257 - 8 R=-0.083, p=0.33 R=012,p= 0..39 R=0.35, p=0.042
4000 - .

Bifidobacterium pullorum - . o . . pte
o . 3000 - e . 35—
Bifidobacterium pseudolongum - ° %o ° .,

|
pioe oluoidoid

: 2000 -
Bacteroides vulgatus

. , {000 -
Bacteroides plebeius 000

: 2 3 1 2 3 20 25 3.0 35 40 45
Insoluble fiber (g/MBW)

(b) Enrichment of SCFA producers in LSHF
0 foods is reflected in significant associations
3 o petween SCFAs and fiber intake.

Circles indicate enrichment in one group only

Bacteroides coprocola -

log2(mean(Rel. Abun.))
3

Response to fiber is highly personalized

2 :‘ - Associations between metabolic/ micro-

5 243 bial features and fiber observed at the
2] . | . .
S m : population level were stratified by sub-
£ ] A 22 243 c%) jeCt'
8 2 . B S - Ofthe 18 subjects, 3 were responders
§ ~ : o 3 (l.e. retained significance for at least

3 A o w8 = 25% of species-fiber associations), and

- ; 2 § 8 were non-responders (i.e. did not
A E ‘ = 8  retain signifcance for any species-fiber
T |o . o 2 associations) (examples shown).
Q = ; § - Some subjects that had poor microbi-
3|5 : ‘ 30 —< ome response (e.g. subjects 10, 12) re-
T - B o <& tained significance for >50% metabo-
S = § ! 70 lite-fiber associations.

3 : l 5 - Microbial response to fiber did not

43290 1 o always translate into a strong metabo-
log1o(q value) lome response (e.g. subject 6).
[ Metabolites B Species
Conclusions

(1) Canine gut microbiomes and metabolomes change in response to diet.
Similar foods are more likely to elicit similar metabolomic than microbiome
responses. This suggests that different microbiomes can provide conver-
gent metabolic potential to yield similar metabolomes from similar foods.
(2) Features are associated with fiber intake include SCFA producing spe-
cies, SCFAs, and metabolites that are released upon fiber degradation
such as acylglycerols and polyphenols.The strength of associations varies
by both the type and quantity of fiber.

(3) Responses to fiber are subject-specific and cannot be predicted from
iIntake or microbiome composition.

Acknowledgements

We thank Hill’'s Pet Nutrition Inc. and the National Institutes of Health for
funding this study and all of the pet partners and those who care for them.
http://huttenhower.sph.harvard.edu







"=;> Using machine learning and longitudinal multi-omics microbiome data
e to predict celiac disease development

lvan Duran®%3, Maureen M. Leonard’?, Alessio Fasano'?, Ali R. Zomorrodi'*

'Mucosal Inmunology and Biology Research Center, Pediatrics Department, Massachusetts General Hospital, 2Harvard Medical School, *Harvard FAS

1. Abstract 4. Multi-omics microbiome data and clinical metadata to predict CD

The gut microbiome is intrinsically dynamic and studies that collect longitudinal microbiome data to assess the dynamics of the Stool

gut microbiota during disease development or progression, or after a therapeutic intervention are increasing in frequency.

However, efficient computational tools to harness multi-omics longitudinal microbiome data to predict clinical outcomes are

underdeveloped. In this project, we aim to develop new machine learning (ML) tools to predict clinical outcomes by making use Metabolomics
of time-series microbiome multi-omics data. As a case study, we used longitudinal metagenomic and metabolomic data from a

Clinical
prospective, longitudinal birth cohort study of children at high risk of Celiac Disease (CD) and sought to predict CD development M eianaay *
In these subjects using pre-onset data. To this end, we trained Random Forest classifiers combined with an efficient feature s ik
selection scheme using several pieces of clinical metadata along with species, strains, pathways, and metabolites abundance @
data before disease onset as features (predictors). Our analyses revealed that clinical metadata alone are not accurate
predictors of disease development (F1-score = 68.67%, 10-fold C.V.). However, we were able to achieve a high prediction
performance of 93% (F1-score, 10-fold C.V.) using the abundance of only one pathway at 9 months of age and 100% (F1-score,

Host/microbiome data

ﬁl T T 1T 111 Predictive model using
machine learning

10-fold C.V.) using the abundance of only seven microbial strains at 15 months of age. This pilot study demonstrates the utility W OO o R R ) Newsubject 70%
of ML for inferring key temporal microbiome signatures that are highly predictive of host clinical status. It also lays the Y :> §gt§$§>g§ | :> develops
foundation for building early predictive tools that would enable physicians to plan for preventive strategies before the clinical ¥ o g§gg §g 22
manifestation of disease. : \ e

2. Celiac disease (CD) and the gut microbiome

50 features (% 2 features (%

Too many Feat. 1 | Feat. 2 | Feat. # | Feat. 50 Feat. 2 | Feat. 50 Feature
features selection
can worsen . Subj. 1 i fHift i )l | i can remove
Stomach . - -
P> S nall Intestine —— ] predICtlve 8 SUbJ 2 0 0 HiH Feature . SUbj 2 0 HitH features and
| power g selection increase
A Y Large Intestine 0N SUbJ # 0 0 HiH SUbJ 3 0 HiHt predictive
Large Intestine T o A g
‘ . ower
il . O |Swi20 | w | ww | st Subj. 4 |t | P
Anus Rectum
e CD is an autoimmune disorder where immune cells reacting to ingested gluten damage microvilli in the small intestine.
metadata
° ~2 mllllOn peOple in the US and 1% Of the glObaI pOpUIatiOn have CD 359 microbial species per time point 109 pathways per time point 63 metabolites per time point / 544 features per time point \

e Although genetic risk and gluten exposure are necessary, they are not sufficient to trigger the onset.
Feat

selec
Recent studies show that the gut microbiome also has role In its pathogenesis

=

Random Forests (RF) Random Forests (RF) k /

3. Stool samples from the CDGEMM study m} m}
N @ - & 359 microbial species per time point 109 pathways per time point 63 metabolites per time point / 544 features per time point \

— S

¥oom Yoom Yoo Yoo Yoo oo {’Ff W [’ff W
toorm Yoom Yoom Woom Woom foomm oNSET O . )

F1 score = 68.67%

/. Summary and conclusions

: | | » | e A machine learning algorithm (Random Forests) was built based on fecal samples to predict who will develop CD
10 CONTROLS I > (@ ® ® ® 8 ® e Clinical metadata alone are not good predictors of CD onset

e \We will scale up machine learning analyses and increase our findings using a more comprehensive, complex dataset
Acknowledgments: CDGEMM Team, Zomorrodi Lab Members
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Cross-Kingdom Interactions between Candida albicans and
Enterococcus faecalis in the Gut Microbiome
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Relationship between Candida albicans and Enterococcus faecalis Additionally, in previously published screens, many of these transcription
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Inferring the effect of microbial strains on
host health outcomes with ANPAN

1,2,3
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Strain variation can strongly influence the impact of microbes on their MOdeling aSSOCiatiOnS Of micrObiaI RandOm effeCts pathway mOdEI

environments, however methods for quantifying these important . = =
differences have been lacking. Sequencing-based microbiome data genes Wlth Cllnlcal OUtComes log_pwy_abd ~ log_species_abd + (1|pwy) + (@+group|pwy) .
with strain-level resolution has several features that make traditional _ _ _ | | To infer the impact of a gene( | | | S
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individual-specific strain carriage, and complex phylogenetic analyzed alongside relevant covariates using either: phenotype, a random effects| _ | © .3 25 | 75 R
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Background Differential Production of Metabolites on Probiotic Treatment

« Infants born prematurely have an abnormal set of birth conditions that lead

to a sparse, low-diversity population of microbes initially colonizing their guts. A Ex;;;;:"g:;;f;;ﬁ;;;q;:;;; B cxchange of L Masionin. .

Exchange of L-Methionine

* Prior studies have shown the ability of probiotic treatments to shift the T achange o Falate

Exchange of 1, 4-Butanediammonium 1
Exchange of Cysteinyl-Glycine |

preterm microbiome to resemble that of a healthy, term infant, however, there is
still little known about the functional mechanisms that underlie probiotic’s
therapeutic effects.

All data used in this project is from the BLOOM study, a longitudinal study on
preterm infants run by the University of Calgary
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to trace a metabolite’s = r " PR Community Models of weeks 1, 4, and 8 preterm infant fecal sampling A ,B,C are the log fold change of the top 20 differentially produced metabolites
; \ pIoSucee and between infants on probiotic treatment and controls. They represent sampling from weeks 1,4, and 8 from birth, respectively. D represents the log fold
change of three metabolites differentially produced over the 8 weeks.
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Species-Metabolite Linkage Heatmaps scale computational studies of the function of probiotics on preterm infant microbiome development
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B Introduction

Chronic kidney disease (CKD) afflicts nearly 800 million
people worldwide and is one of the fastest growing causes
of mortality’. A key consequence of a diseased kidney is the
serum retention of toxic compounds, known as uremic
toxins, that have a broad impact on human physiology. One
of the most damaging uremic toxins is indoxyl sulfate (IS), a
metabolite produced through the gut microbial metabolism
of tryptophan by the enzyme tryptophanase (TIL)?> Previous
studies reveal that the genetic elimination of TIL in an
artificial microbiome of mice resulted in no detectable
serum levels of indoxyl sulfate and reduced kidney injury34.
Here we use classical biochemistry, protein crystallography,
and medicinal chemistry techniques to reduce the

production of IS with application for reducing uremic toxicity
in CKD.
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Optimization of a pan-acting, transition state analog of TILs

(3S) ALG-05

Oxindolyl-L-alanine (OxA), a pre-existing TIL inhibitor,

Ec TIL
e displays variable activity across diverse TILs. OxA was
0.45- used as the starting scaffold for our medicinal chemistry
campaign which resulted in the identification of ALG-05.
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B Conclusion

Gut microbial TILs display nearly identical structural and functional
characteristics despite harboring low sequence identity and deriving
from diverse taxa. Here, we leverage this homogeneity to aid in the
creation of a pan-acting transition state analog. (35S) ALG-05 is non-
lethal to microbes at physiologically relevant doses and successftully
reduces serum IS levels in mice. Thus, it represents a promising
targeted therapeutic to reduce gut-derived uremic toxins in CKD.
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WHAT DOES THE RATIO BETWEEN BLOOD BACTERIAL AND FUNGAL MICROBIOME ABUNDANCE

TELL US ABOUT FUNGAL-BACTERIAL INTERACTIONS?

i Yordan Hodzhev, Borislava Tsafarova, Vladimir Tolchkov, Reni Kalfin, Stefan Panaiotov
National Center of Infectious and Parasitic Diseases, Bulgaria, e-mail: [T Eie Y@L TN ETIRRN11] [nstitute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
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The human body is home to a diverse range of microorganisms,

0o . FUNGIOME
including bacteria (bacteriome), fungi (fungiome), archaea (archaeaome) 5
and viruses (viriome, including phageome). These microorganisms are O E
collectively referred to as the human microbiome. They interact in various O LL]
: . . e . < O
ways, and these interactions can have significant impacts on human health mi Y
R o
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VIRAL-BACTERIAL ADAPTATION BACTERIOME
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(2) Individually, the B/F ratio varied significantly across
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subjects spanning from full fungal dominance to an almost
complete lack of fungal sequences.
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\/ |y / AlIM e (3) The mean B/F ratio was
QUORUM The aim of the present meta-analysis was to explore possible 5 higher for males
SENSING FUNGIOME interactions between microbial and fungal communities. o - (mean B/F=0.95) as
Blood group and gender data were included to assess the L1 compared to females
METABOLIC COMPETITION findings' biological relevance. - ! i (mean BF = 0.18; P<0.001).
INTERACTIONS MUTUALISM > 0-
METHODS M F /

3 ml of venous whole blood was collected from 28 subjects (14 females, 7 of each blood group —
- A, B, AB, O). Blood was lysed in d. water and the human DNA was treated with \
DNase. Microbial DNA was isolated by applying treatment with 4% SDS for microbial lysis. | BLOOD TYPE vs. GENDER

N[

The dynamics of interactions among bacteria, fungi, archaea, and viruses

Within the human.bOdy are Complex .and multifa(':eted. They C.an be solated DNA was div_ided in_to tw_o subsamples an_d 16S and ITS metagenomic analysis was
influenced by various factors, including the host's genetics, diet, age, applied for each subject. Microbial total and relative abundance were calculated. Then the
' ' bacterial vs. f | (B/F o| tiow lyzed. Data w bjected t tri
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N 7 N i - Signed Rank Test In conclusion, despite the overall fungal dominance the B/F
O - —— 7 =383 P<0.001 )’ ratio showed high individual variability ranging from almost
BACTERI’IOME | ’ ' ' full fugal dominance to negligible fungal presence. The
\ FUNGIO“@ dependence of the B/F by gender and blood group
suggests that it reflects the physiological status of the
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BAQLaVa Methodology

Capturing an accurate representation of the viral members of a
microbial community presents significant experimental and
computational challenges. To address these Ilimitations, we
developed BAQLaVa (Bioinformatic Application for Quantification
and Labeling of Viral taxonomy), which integrates both reference-
and assembly-based methods to generate viral profiles from
shotgun DNA or RNA sequencing. Here, we have evaluated
BAQLaVa with 1) in silico simulated data representing virus across
all viral realms, 2) synthetic gut viromes, and 3) human gut
metagenomes and metatranscriptomes.

Nucleotide Search Translated Search

Assembly Machine or Deep Learning

BAQLaVa employs a tiered reference-based search, first to a
nucleotide database, and subsequently to a protein database. In
parallel, reads are assembled into contigs and classified with a
neural net trained to predict viral taxonomy at the genus level.

Evaluation of BAQLaVa with complex meta’omes

Right A set of viral synthetic meta’'omes
were created by clustering all RefSeq &
GenBank viral genomes deposited after
Jan 1, 2021. Gut-specific synthetic
viromes were made from predicted viral
genomes identified from a set of MAGs
assembled from human gut
metagenomes (Benler et al. 2021).

Viral Synthetic Samples Gut-like S.S.
RNA

DNA

[T sacterial RnA - [ viral RNA - [] Bacterial onaA - [ Viral DNA

100% Viral 50% Viral 10% Viral

TPR, FPR, and F1 scores for synthetic

: Left We observed high
meta’ome mapping to BAQLaVa databases

true positive and low
false positive rates
across nucleic acid
types, compositions,
and simulated sources
from reads mapped to
the BAQLaVa
nucleotide and protein
databases.

After this high-
performance mapping,
downstream filters are
applied by BAQLaVa to
prevent false-positive
species observations.

True Positive Rate

50% Viral 10% Viral

100% Viral

DNA (MGX) RNA (MTX)  DNA+RNA (MVX) Gut DNA (MGX) E1 Score

The gut virome Is abundant but
underrepresented in databases

BAQLaVa identifies characterized viruses from RefSeq (nucleotide) and
ICTV (translated) databases, as well as uncharacterized viruses by

mapping to viral MAG databases (nucleotide).

We used BAQLaVa to profile ten metagenome (MGX, top) and
metatranscriptome (MTX, bottom) samples from paired human gut
samples (ibdmdb.org). Bacterial abundances were obtained for the
same samples via upstream analysis with MetaPhlAn and HUMANN.

Metagenome & metatranscriptome
viral mapping through BAQLaVa
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Our results show we
can often capture a 1:1
and potentially higher
virus:bacteria ratio with
BAQLaVa.

A large fraction of virus
identified by BAQLaVa
originates from viral
MAG databases,
indicating that an
abundance of virus in
the gut has not yet been
well-studied. Use of
novel databases can
boost sensitivity and
overcome this limitation
that would otherwise
severely restrict viral
profiling.

CrAssphage are
abundant in the gut:
Among the shared
genera observed highly
present in both MGX &
MTX samples were
Culoivirus, Blohavirus,
Cohcovirus, and
Carjivirus, all members
of the novel
Crassvirales order.

BAQLaVa combines approaches
for improved performance

Nucleotide mapping of
synthetic metagenomes

True
Positive
Rate

False
Negative
Rate

Genome coverage (C)

.+  Left Nucleotide search as a
0, function of genome

s coverage reveals that even
s at low coverages, BAQLaVa
o+« |s able to report viral

2 assignments for a majority
2> of viral reads.

Multi-step translated approach
prevents false positive calls

We defined an ICTV species'
panproteome as all UniRef90 protein
families that map to an ICTV genome
with > 80% protein coverage and

> 90% identity. Requiring 50% of a
species' proteins to be detected avoids
false positive detections from homology
with minimal impact to sensitivity. | sharigacross

Right Protein set abundances from two
species of the same genus, one present
in a simple synthetic metagenome (top)

and the other absent (bottom).

Trichoplusia ni single nucleopolyhedrovirus

Abundance (RPK)

Abundance-sorted UniRef90s from spiked panproteome

Chrysodeixis includens nucleopolyhedrovirus

207 This species is absent but protein
[ species of the
same genus occurs at a high rate.
BAQLaVa utilizes multiple filtering
8071 steps to prevent a virus like this
from being called as present,
607 which would otherwise be a

false positive identification.

Abundance (RPK)

Abundance-sorted UniRef90s from spiked panproteome

Deep learning complements limitations
of reference-based viral search

Confusion Matrix for
Genus-level Classification

Truth

I |

0.5

Prediction

0

Correct
Classification
(Percent)

Results from direct reference observation
are complemented by taxonomic
predictions generated via deep learning.
This achieves an expanded viral profile.

Left A neural net, deepG, was trained to
predict genus-level taxonomy for 474
ICTV genera (all with at least 10 unique
species). Predicting on assembled contigs
of > 2kb produced the highest balanced
accuracy across genera.

Normalized Abundance: Bacterial and viral abundances in RPK were
normalized to the total potential bacterial coverage (red line), which
was calculated based on a model bacterial genome length of 4.6

Mbp (E. coli). Relative Abundance: Virome community profiles are
shown at the genus level.
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Dissecting the role of the human microbiome in COVID-19
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m \Y et h Od San d \Y/ ate ria |S * nrMAGs accurately predict the progression of COVID-19 (Fig.4).

, , , , o , , And we observed some opportunistic pathogens were associated with
Coronavirus disease 2019 (COVID-19) 1s often accompanied by We collected the raw WMS sequencing data of 514 microbiome the progression of COVID-19, including ntMAGs from Klebsiella
gastrointestinal symptoms. However, little 1s known about the samples (359 individuals) and 341 microbiome samples (278 quasivariicola, Klebsiella pneumoniae, and Escherichia coli.
relation between the human microbiome and COVID-19. Here we individuals) from 6 and 3 publicly available datasets with different
used whole-metagenome shotgun sequencing data together with technical settings, respectively (Fig.1).
assembly and binning strategies to reconstruct metagenome- We applied state-of-the-art metagenome assembly and binning
assembled genomes (MAGs) from 514 COVID-19 related strategies to reconstruct microbial population genomes directly from
nasopharyngeal and fecal samples in six independent cohorts. We microbiome samples of COVID-19 patients and controls 1n the
reconstructed a total of 11,584 medium-and high-quality microbaial discovery cohorts.

MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with
strain-level resolution. We found that there 1s a significant reduction
of strain richness for many species 1n the gut microbiome of COVID-

19 patients. The gut microbiome signatures can accurately distinguish * After quality control, we performed metagenomic assembly and
COVID-19 cases from healthy controls and predict the progression of binning on those microbiome samples tfrom the discovery cohorts
COVID-19. Moreover, we identified a set of nrMAGs with a putative and recovered 11,584 MAGs, 872 SGBs, and 5403 non-redundant
causal role in the clinical manifestations of COVID-19 and revealed MAGs (ntMAGs) (Fig.2).

their functional pathways that potentially interact with SARS-CoV-2
infection. Finally, we demonstrated that the main findings of our

a Sample distribution b MAGs dlstrlbutlon c nrMAGs distribution

Zuo et al. (9 01 / ) Liu et al. o\ Z(gf’z%f)" Liu et al
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Figure 4. Machine learning model predicts the progression of COVID-19.
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To better understand the relationship between the human microbiome Y - = 2 v
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and COVID-19, we applied state-of-the-art metagenome assembly
and binning strategies to reconstruct microbial population genomes
directly from microbiome samples of COVID-19 patients and
controls. Our major goals were to construct a COVID-19 related
metagenomic genome catalog to identify novel taxa and strain-level
differences that are likely related to the clinical manifestations of

SARS-COV-2 infection.
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Phyla
. Non-COVID-19 patient . . . . . . » 1
| | | (NCBI, ENA, GSA) Figure 2. Reconstruction of MAGs from the discovery cohorts. * We identified a set of ntMAGs with a putative causal role in the
—— clinical manifestations of COVID-19 using GMPT pipeline (Fig.5a)
, and revealed their functional pathway (1.e., pentose phosphate
b D pathway ) that potentially interact with SARS-CoV-2 infection
0 ‘)é(),é) y il Pailio] - —— (Fig.Sb-C)
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* COVID-19 patients lost many strains of multiple microbial species The presented results highlight the importance of incorporating the
Figure 1. Conceptual framework of study. (Fig.3). human gut microbiome in our understanding of COVID-109.
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Functional diversification of plant small molecules by the gut microbiome tunes intestinal homeostasis
Gavin A. Kuziel', Gabriel L. Lozano?!, Corina Simian?, Emmanuel Stephen-Victor?, Talal A. Chatila’, Jing-Ke Weng?, Seth Rakoff-Nahoum

Department of Pediatrics, Harvard Medical School, Boston MA

Department of Biology, Massachusetts Institute of Technology, Cambridge MA °

Introduction

Diet is instrumental in driving the composition and dynamics of the gut microbiome
and in the development and prevention of human disease. Unlike our
understanding of carbohydrate-microbe interactions, there is a dearth of knowledge
as to plant small molecule (phytochemical)-microbe interactions, whether these
molecules are metabolized by gut bacteria and how products of phytochemical
catabolism affect microbiome composition or host physiology. Here we show that
diverse gut symbionts leverage distinct genetic systems to bioactivate dietary
phytochemicals to immunomodulatory metabolites. Our findings provide new
insight into the role of the microbiome in the activation of abundant dietary
phytochemicals and the effects of these metabolic transformations on the
maintenance of intestinal homeostasis and protection from enteric disease.

Approach

« Determine the scope of phytochemical metabolism across prominent human
gut bacteria utilizing techniques within microbiology and culturomics
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« Assess the pro- or anti-homeostatic effects of phytochemical metabolism
on host physiology using coupled in vitro and in vivo models of intestinal
disease such as colitis or colorectal cancer
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Bacteroides species leverage divergent genetic mechanisms
for phytochemical metabolism

Bacteroides

ovatus

gghR

-log10(pvalue)

-8 -6 -4 -2 0 2

Bacteroides uniformis

6- ® gshD
gshA 6
gshB

.gshC

-log10(pvalue)

O____l____l__"l' ' -

g
" e
H

I R I R

-2 0
log2FC
gshA,  gshB, gshC

................

2 4 6 8

gshD

.
0"
.........

putative esterase GH family 3

OD600

OD600

121 PC1

"0 12 24

36

Time (hr)
2 PC3
0.8+
0.4
,vx;\_,—v—\_/—v-\_/w
0.04 r r .
0 12 24 36
Time (hr)
o WT
1.5- PC1

121 PC2

"0 12 24 36

Time (hr)
.21 PC4
0.8
DCO
O 0.4
0.0+

0 12 24 36
Time (hr)
AgghR AgghA

AgghB -@ AgghC -@ AgghD

"o 12 24

Time (hr)
15 PC3
1.0

0.51

0.0+

36

0 12 24
Time (hr)

36

1.5+ PC2

1.04

OD6OO

0.51

0.0 Ll Ll Ll Ll
0 12 24 36
Time (hr)

5 PC4

1.04

OD600

0.54

o0-0-0-00 0000000000

0.0+ r r .
0 12 24 36
Time (hr)

- WT - AgshD AgshD AgghC
AgshD AgshG -@ AgshD AgshG AgghC

TNF-a (pg/mL)

Phytochemical bioactivation by a Bacteroides metabolic
specialist differentially tunes intestinal homeostasis

E 3 3 3
— 501 |
X kKoK 4- kk  kk
| ||

S 401 &m s ®

. 2 5 0 @ WT
—~ O

% 20 S 3 | ® AgshD AgshG AgghC
LL

S 10- 1 e @Po

(V)

Ny =D o-—&@—ﬁ—@ @

0 3 5
Hours Post PC3 Gavage

kokok
1101 .’ dokkk  kokokok
—~ @
;\3 g i | -‘- PBS
= 1001 <= @- Dpss
) o 8
K : S % @- Dss+ @ +PC3
= * 3 @) ®
5 90- st 5 r DSS++PCB
2 X |% Q
- O 4 @- Dss+
80 :
1 2 3 4 5 6 7 8
Day
PC3 PC3’ PC3 PC3’
8000+ 8000 2000 - 2000
60001 0 ou 4o g g 60001 o 5 15001 8% n o @b o 5 15001 o
- m ~~ ~~
40001 £ 4000+ 2 1000- 2 1000-
7 < 2
L Y 1
2000- Z 2000+ n = 500+ = 500+
ol LIl 1L 0Ll a2 ﬂ oL Ll LI 1L 0 L
SIS \qﬁaQ@ﬁa O Q0 %9 <o OO 0.0 \(f;@fa OO v qf) ("Q‘bq'
Concentration (mM) Concentration (mM) Concentration (mM) Concentration (mM)
kKK
110- 12 KKk dkkokok
S 5 | eg ‘ @ rss
e
e - @
O 100+ D 8 ® { ) DSS
KO) c
= g @ Dss-+ @+ PC3
> = @)
© S
Q 90 % $]$ 5 { ) DSS+ <j>+PC1
M * % O Q
4 -‘- DSS +
80

Day

Future Directions

« l|dentify the cellular and molecular circuitry underlying PC3’-mediated
protection from DSS-induced experimental colitis

 Determine whether microbial bioactivation of phytochemicals protects
against other diseases such as infection, cancer, or food allergy

gkuziel@g.harvard.edu

. : : . : - Food Allergy
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Genetic diversity of commensal Blastocystis gut protists reveals
strain-specific changes in host-interfacing pathways

Abigail Lind!, Ami Bhatt?, and Katie Pollard’

'Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, ?Department of Genetics, Stanford University, Stanford, CA

Eukaryotes in the human gut microbiome Blastocystis is the most common gut eukaryote, correlates
with health & differences in microbiota

The stramenopile protist Blastocystis is the most prevalent commensal eukaryotic gut colonizer
(Figure 2). Blastocystis is more common in individuals without gut inflammation and correlates with
lowered markers of gut inflammation and metabolic syndrome3s. Certain microbiota co-occur and co-

exclude with Blastocystis (Figure 3).
Figure 2.
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Figure 3. Bacteria that co-occur or co-exclude with
Blastocystis in the human microbiome. Numbers indicate
relative abundance. Data from PREDICT?:

Figure 1. The eukaryotic tree of life'. Species belonging to
taxonomic groups marked with red arrows are found in human gut
microbiomes.

Blastocystis is genetically diverse with a derived morphology High-quality genomes spanning the diversity
of the Blastocystis genus

We cultured 6 Blastocystis strains and used long-read Nanopore

The Blastocystis genus is comprised of over 20
known subtypes that colonize the gastrointestinal
tract of animals.

Blastocystis is a stramenopile, but does not
have characteristic stramenopile morphology. It
lacks flagella, and in culture appears in multiple

ST14 @
o o different cell forms (large central vacuole, sequencing, Illymlng DNA and _RNA sequencing, and for one strain (BT1)
stz1e amoeboid-like protrusions) (Figure 5). Phase Genqmlcs Hi-C scaffolding to generate highly continguous, annotated
ST5 ® T genomes (Figure X).
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Figure 6. Genome assembly statistics. (A)
Assembly size. (B) Number of annotated protein-
coding genes. (C) Percentage of contigs that have
telomere-like repeats at the ends, as a proxy for
genome completeness. (D) GC content of
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Figure 4. 18S rRNA phylogeny of all described
Blastocystis subtypes. Proteromonas lacertae is

Figure 5. Blastocystis morphology. (A)
Vacuolar ST1 (JDR) (B) Amoeboid ST3 (DL)

used as an outgroup. Branches with bootstrap in co-culture with bacteria, (C) Vacuolar and ) ettt Blastocystis genomes compared to close
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Blastocystis has lost morphological genes related to cell ¢

Expanded diversity of glycosyltransferases

body shape and flagella - crsily Of Sy _
underlying antigenic diversity in Blastocystis

All Blastocystis subtypes have lost most flagellal genes, reduced their molecular motors, and lost
ion channels that protists use to move flagellal hairs. These gene losses underly the change in cell

morphology seen in Blastocystis relative to other stramenopile protists. Glycosyltransterases expanded in Blastocystis

Human subtypes of Blastocystis
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Figure 7. Morphological genes lost in Blastocystis.
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The Harvard T.H. Chan School of Public Health

Microbiome Collection Core

Steven Medina’, Curtis Huttenhower'?

'Department of Bistatistitcs, Harvard TH. Chan School of Public Health,
“Department of Immunology and Infecteous Diseases, Harvard T.H. Chan School of Public Health

The Microbiome Collection Core at the Harvard T.H. Chan School of Public
Health (HCMCC) was established in response to a strong demand among
the research community for validated microbiome sample collection kit
configurations and easy usability for in-home sampling. Under the umbrella
of the Harvard Chan Microbiome in Public Health Center (HCMPH),
HCMCC aims to support population-scale microbiome sample collection
and expand our understanding of the microbiome to improve population
health. The HCMCC has developed a multi carrier-compatible home stool
and oral sample collection kit that permits cost-effective multi'omic
microbiome studies, leveraging the intellectual and infrastructure
foundation laid by the HMP2 (the 2nd phase of the NIH Human Microbiome
Project) and the MLSC (Massachusetts Life Sciences Center)-funded
MICRO-N (MICRObiome Among Nurses) collection. By providing this
customizable microbiome collection kit, we enable researchers to perform
multiple different molecular assays and tailor collection plan to study-
specific needs.

HCMCC services
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Microbiome sample collection Kit ordering & shipment - Kit
plan development - Collection kit customization & implementation -
configuration - Kit distribution & Ambient temperature shipping - to
logistics - Sample transport plan- selected clinical sites - direct to
Sample handling & storage plan participants

0
|
deck ~am
|ojogo |:||

[ %
Streamlined post-collection " \ A

assistance - Automated aliquoting -
Barcode tracking - -80°C storage in

the BiOS Freezer - Fast sample At-home sample collection
retrieval - Sample shipment to
sequencing labs for meta’omics &
metabolomic profiling

Pre-paid return shipment

The Microbiome Collection Core is a part of the Harvard
Chan Microbiome in Public Health Center (HCMPH). Want to
learn more? Visit https://hcmph.sph.harvard.edu

A scalable gut and oral microbiome HCMCC-supported study activities
sample collection platform within the BIOM-Mass platform

Pre-collection - Participant
enrollment - Kit ordering - Kit
distribution

Collection - Self-collection -
Sample return through pre
L paid shipment

Post-collection - Sample
aliquoting via Hamilton
STAR automated liquid
handler - Long-term -80°C
This customizable microbiome sample collection kit avoids the need for — storage via the BiOS
expensive, bulky, and inconvenient ice packs by providing several different room T Freezer Core - Data
temperature storage media that are also compatible with muiltiple different generation - Data analysis
molecular assays including any combination of amplicon (16S), metagenomic, mﬁ N e

metatranscriptomic sequencing, metabolomics, and other molecular .
assays. This kit further includes a collection method that uses anaerobic Analysis Core
transport media that yields live microbes for culture or gnotobiotic research.
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s mp\ (e798)

Microbiome population health
research opportunities

- Accessible microbiome population studies' data on the BIOM-Mass Data Portal
https://biom-mass.org

- Integrative microbiome informatics and analysis via the Harvard Chan
Microbiome Analysis Core https://hcmph.sph.harvard.edu/hcmac/

- Long-term sample storage via the Harvard Chan BiOS Freezer Core

- Gnotobiotic mice experiments via the Harvard Chan Gnotobiotic Center
for Mechanistic Microbiome Studies

- Course offerings on microbial communities and human microbiome research
via the Harvard Chan Microbiome in Public Health Center

Special thanks to the the Massachusetts Life Sciences Center (MLSC), the
Harvard Chan Microbiome Platform Steering Committee, the Harvard Chan
BiOS Freezer Director Eric Rimm, the BWH/Harvard Cohorts Blorep03|tory
Laboratory Manager Christine Everett.

Contact us: hcmcc@hsph.harvard.edu )

In addition to storage media, this sample collection kit includes user-friendly Microbiome Collection Core Manager: Steven Medina

instructions and toilet accessories to maximumly acilitate and smooth the in-
home stool sample collection experience. Standardized questionnaires, as || Microbiome Analysis Core Director: Xochitl Morgan
companions to collected samples, are included to capture recent medications, HCMPH Co-Directors: Wendy Garret, Curtis Hunntenhower
diet, anthropometric measurements, and gastrointestinal health status
measured by the Bristol Stool Scale. The modularity of this kit allows Follow us on Twitter @hutlab
researchers to tailor kit components to study-specific needs and conduct cost- || Follow us on Mastodon

effective microbiome research ranging from pilot studies to large-scale studies

(ii)

(i)

involving 10,000s of participants. @hutlab.mstdn.science™




Incorporating metabolic activity, taxonomy and community structure to

improve microbiome-based predictive models for host phenotype prediction
Mahsa Monshizadeh and Yuzhen Ye

Computer Science Department, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington

Abstract

The human gut microbiome play key roles in human health and diseases.
We developed MicroKPNN, a prior-knowledge guided interpretable neural
network for microbiome-based human host phenotype prediction. The
prior-knowledge used in MicroKPNN includes the metabolic activities of

Optimization of MicroKPNN and comparison with other methods

Table 2. Comparison of MicroKPNN with different methods including NNs
that are fully connected (fc-NN) in averaged AUC and standard deviation
(in parenthesis).

Table 1. Summary of best performing neural network architecture for each
dataset and their average AUC.

no. of nodes in different groups in the hidden layer

different bacterial species, phylogenetic relationships, and bacterial dataset all taxon (rank) metabolite community unknown avg. AUC
community structure. Application of MicroKPNN to seven gut microbiome IBD 519 176 (genus) 234 29 30 0.953 Dataset MicroKPNN _ fe-NN (keras) fc-NN (KPNN)  DeepMicro® EPCEN“
. . . . . . . . 2, IBD 0.953 (0.019) 0.865 (0.031)  0.678 (0.089)  0.873 (0.067 N
datasets (involving five different human diseases including inflammatory EW-T2D 309 54 (order) was . — 0,820 PTG il st el fheirE SR p e awe
C-T2D 365 27 (class) 240 38 60 0.753 820/(0.047) 0595 (0.065) 0580 (0.062)  0.829 (0.087)  0.789 (0.056)
bowel| disease, type 2 diabetes, liver cirrhosis, colorectal cancer, and — ; pe ‘ ; | C-T2D 0.753 (0.013)  0.675 (0.033) ~ 0.723 (0.019)  0.725 (0.056)  0.813 (0.024)
! ! ’ ! Cirrhosis 354 40 (order) 239 35 40 0.969 o i
. . . . . | , gk Cirrhosis  0.969 (0.009) 0.823 (0.022)  0.947 (0.021)  0.888 (0.025)  0.953 (0.007)
the microbiome-based host phenotype prediction. MicroKPNN o Ol?teSitY . ‘81;52’ 1134(1) ((gelius)) g*;g 33326 gg 8-229 Obesity — 0.699 (0.045)  0.539 (0.023)  0.608 (0.022)  0.674 (0.076) NA
: sity-mult ler ' 875 sity-multi - 0. ! . : . 045 . . ’
outperformed fully-connected neural network based approaches in all s A A 0 Obesity-multi  0.875 (0.017)  0.820 (0.014)  0.826 (0.045)  0.763 (0.042) NA
seven cases, with the most improvement of accuracy in the prediction of
type .2 diabetes. MicroKPNN oujcperforrr.\ed a recently developed. de(.ep- community| - il community/| I - community| - ID@ 1 community. el |
learning based approach DeepMicro, which selects the best combination
of autoencoder and machine learning approach to make predictions, in six unknown D@ o e unknown - - unknown T — unknown. B0 () m— |
out of the seven cases. More importantly, we showed that MicroKPNN |
provides a way for interpretation of the predictive models. Our results metabolite g metabolite| (- metabolite LIS metabolite - o
suggested that the metabolic potential of the bacterial speues.contrlbute.d taxon. ' E taxon| I+ taxon. M axon| < L) - - -
more than the two other sources of prior knowledge. MicroKPNN is 0b2  0ba 006 008 555 004 0.06 0.08 000 01 T 0TS o5 - . -

publicly available at https://github.com/mgtools/MicroKPNN.

Methods

Q productio.n '
Q consumption 'metabolites

macromolec
degradation

Q IS a
Q IS Iin

N\

OOOE
L'

\

~,

0. @o@@\o}!

0!
)
>

OQK

Figure 1. The neural network structure used in MicroKPNN. It is composed of
three layers (shown on the left). In the input layer, each node is a species,
and the hidden layer includes nodes of four different groups: metabolites
(red), taxa (blue), communities (green), and unknown hidden nodes (gray).
The links between the input nodes and the nodes in the hidden layer
represent different biological meanings (shown on the right).
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Figure 2. MicroKPNN uses bacterial communities that were inferred from a
microbiome association network (see Lam and Ye, 2022). In this network, nodes
(species) are colored by module resilience, a metric we proposed to quantify

the tendence of different bacterial species forming bacterial communities.
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Figure 3. Contributions of the different groups of hidden nodes to the prediction as measured by importance scores. (a) IBD (b) C_T2D (c) Obesity (d) Cirrhosis.

A case study: What can MicroKPNN tell about liver cirrhosis prediction?
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Figure 4. Importance scores of the hidden nodes for microbiome-based liver
cirrhosis prediction. The top five most important nodes of each group in the
hidden layer for prediction of cirrhosis are shown in the plot. The bars are
highlighted in different colors: yellow for unknown nodes, red for
metabolites, blue for taxa, and green for communities.

Discussion and Future Work

MicroKPNN uses a simple architecture, but by leveraging on prior
knowledge of microbial species, it provides promising predictions of host
phenotype based on microbiome composition as shown on all seven
datasets. Comparison of the importance scores of different prior
knowledge showed that the metabolic activities had the largest impact on
the performance of predictions. The difference between the relative
importance scores of the hidden nodes with that of the unknown nodes
indicates the knowledge gap between the microbial species and their
interaction with human hosts. The predictive models we built in this work
are based on species abundance. It has been shown (including our own
work) that using bacterial genes typically (not always) results in better
predictive models. A future direction of our work is to expand MicroKPNN
so that it can take gene abundance as the input for microbiome-based
prediction.

e L-ldonate, CO2, and mucin glycoprotein were the top three most
important metabolite nodes that contributed to the prediction.

e Among the bacterial species that are involved in mucin glycoprotein
degradation (i.e., mucin consumers), we observed that Ruminococcus
gnavus was highly elevated in cirrhosis patients. Increase of R. gnavus
was found to be implicated in the degradation of elements from the
mucus layer providing an explanation for the impaired intestinal barrier
function and systematic inflammation in LC patients.

e Lactate consumption and production were also picked up as important
nodes by MicroKPNN, suggesting the importance of the bacterial
species that produce and/or digest these metabolites.

e [t is well known that bacteria produce intermediate fermentation

oroducts including lactate, but these are normally detected at low

evels in feces from healthy individuals due to extensive utilization of
them by other bacteria.

e Among the taxon nodes, Bifidobacteria had the highest importance
score; previous studies have shown that patients with chronic liver
disease have varying degrees of intestinal microflora imbalance with a
decrease of total Bifidobacterial counts.
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ABSTRACT

Lateral gene transfer (LGT) is an important mechanism for genomic
diversification in microbial populations and communities?, including
the human microbiome?. While previous work has surveyed ancient
LGT events in human-associated microbial isolate genomess3, the
scope, and dynamics of novel LGT events in human microbiomes are
not well understood. We addressed this by developing and validating
a computational method (Workflow to Annotate Assemblies and Find
LGT Events or WAAFLE) to profile novel LGT events from assembled
metagenomes. We assessed WAAFLE on synthetic contigs
containing spiked LGTs and identified intergenus LGTs with >91%
sensitivity and >99.9% specificity. For more challenging intragenus
LGT (due to congeneric overlap), we report a still-respectable 51%
sensitivity. Applying WAAFLE to >2K human metagenomes from
diverse body sites, we identified >100K high-confidence putative,
novel LGT events. These events were enriched for mobile elements
(as expected), as well as restriction-modification and transport
functions, both being particularly intriguing areas for further study
given their putative role in viral/phage-mediated LGT defense. LGT
frequency was quantifiably influenced by biogeography, the
phylogenetic similarity of the involved taxa, and the ecological
abundance of the involved taxa. Our findings suggest that LGT is an
active process in the human microbiome, occurring far more
frequently than previously suspected
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CONCLUSIONS

* Novel methodology for culture-independent LGT detection and profiling in complex
microbial communities

= WAAFLE's focus on raw (unbinned) short-read metagenomic contigs improves
sensitivity and avoids the daunting technical challenge of assembling complete
microbial genomes from metagenomes

= New insights into the landscape of LGT events in the human microbiome:

= LGT is an active process in the human microbiome, occurring far more frequently
than previously suspected

= LGT frequency is quantifiably influenced by biogeography, the phylogenetic
similarity of the involved taxa, and the ecological abundance of the involved taxa

» LGTs are enriched for mobile elements, as well as restriction-modification and
transport functions typically associated with the destruction of foreign DNA (and a
theoretical impedance to LGT) and for which their relative overrepresentation may
suggest a selective advantage that ironically promoted their lateral dissemination
and fixation

sites were not sufficiently well represented among directed LGTs and were excluded from

represent species that occurred as
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Introduction

Breaches of
infection
control
practices in
nursing
homes
impacts the
larger
healthcare
ecosystem in
America.

CDC: Antibiotic Resistance Threats in the
United States, 2019

Methodology

- 36 nursing home patients
- Shotgun metagenomics (N=210)
- Whole genome sequencing (N=75)

Results

Genome resolved metagenomics
yields >300 near complete genomes
for Candida auris and the full ESKAPE

Candida auris and the great
ESKAPE: the skin as a reservoir for
antibiotic resistance and
transmission in American nursing
homes

Results

Many individuals harbor resistance
genes on skin sites that had been
identified by a clinical microbiology lab
in rectal or blood samples over 310
days prior, on average.

Similar results seen in 6 other
American nursing homes
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INTRODUCTION Mind-Body Study (MBS) Men's lifestyle Validation Study (MLVS)
4
Diet is known to alter the risk of depression. Increasing data also demonstrate a _ FDR 0.05
causal role of the gut microbiome in mental iliness, via the gut-brain axis. However, -
it remains unclear how diet and the microbiome mechanistically influence
depression risk in humans. £
c
&)
-
OBJECTIVES 5
We assessed how gut microbial species and features mediate the association
between depression and citrus, a food group that possibly protects against risk of 01 " r | |
' F.prausnitzii (asin sqrt)
M ETH O D S Depession LI No [ ]| Yes
_ _ | Among these 15 microbial species, Greater abundance of F. prausnitzii was
We conducted a prospective StUC_’y in the Nurses’ Health Study || (NHS”) betW?en F. prausnitzii were higher in non-depressed also associated with our metabolomics-
2003 and 2017 among 32,427 middle-aged women free of depression at baseline. individuals compared to depressed participants based depression-risk score in the MBS
Citrus intake was determined using validated food frequency questionnaires collected (p 0.027), and in the MLVS (p 0.039).
every 4 years. Depression was defined according to phyglglan-dlagn03|s apd SAM Cycle | | Human Microbiome Project 2 (HMP2)
antidepressant use. Between 2013-2014, 207 NHSII participants enrolled in a nested
substudy, providing up to 4 stool samples (profiled by shotgun metagenomics) and a
blood sample (profiled by LC-MS-based metabolomics). Cox proportional hazard
models were used to relate citrus intake with depression risk. Linear mixed effects
models were used to relate diet with gut microbial features, and microbial features with
depression. We also associated microbial features with a depression-risk score,
derived according to levels of circulating serotonin and GABA. All models were
adjusted for multiple dietary, medication and lifestyle variables including age, BMI,
calorie/alcohol intake, and diet quality. We validated our findings in the Men's lifestyle
Validation Study (MLVS), a subcohort of 307 men in the Health Professionals Follow-
up Study (HPFS). Finally, we used a linear mixed-effects model to examine the role of
gut microbial RNA with host transcriptomic gene expression from colon biopsies of
132 Human Microbiome Project 2 (HMP2) participants.
RESU LTS In an exploratory analysis of gut microbial pathways, Greater abundance of the SAM cycle |
_ S-Adenosyl-L-Methionine (SAM) cycle |, encoded by pathway was associated with decreased
Nurses’ Health Study Il (NHSII) Mind-Body Study (MBS) F. prausnitzii, was reduced in depressed participants. monoamine oxidase A (MAOA) gene
expression in colon
CONCLUSION
Citrus —  F prausnitziiand —— MAOA gene — Depression
its pathway(SAM cycle |)
Greater citrus intake was prospectively associated with lower risk of depression, and with
greater abundance of F. prausnitzii. Genes encoded by F. prausnitzii that produce SAM (a
compound known to have antidepressant properties) may help explain these findings, via
modulation of intestinal neurotransmitter production. These data offer a potential

mechanism by which diet influences the gut microbiome to reduce risk of depression.

o ACKNOWLEDGEMENTS
() Positive association
©  Negative association We would like to thank the participants and staff of the Nurses’ Health Study |l for their
valuable contribution.
Total citrus intake was associated with a
lower risk of incident depression (Pyeng We found 15 species out of 144 whose abundance CONTACT IN FORMATION
0.001), with a multivariable relative risk of was significantly associated with total citrus intake Chatpol Samuthpongtorn, M.D.
0.78 (95% CI, 0.66-0.90), comparing using linear mixed effects models (FDR = 0.25)

Research fellow at Clinical and Translational Epidemiology Unit (CTEU)
Email: csamuthpongtorn@mgh.harvard.edu

extreme quintiles.




Phylogenetic analysis of bacteria associated with HMO WELLESLEY
metabolism from gut metagenomes of US infants with eczema
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Background Results: Community Level Metrics

ad Human milk plays a key role in the development of the innate and 60- * * A g B B cohort
adaptive immune system and gut barrier integrity I;_g Mixed Feed: Bl resonce
d Human milk oligosaccharides (HMQOs) are indigestible by infants but " C
acts as a prebiotic to shape the infant gut microbiota %40_ O metabozng bactri o s orla Fed.
d Eczema is an inflammatory skin condition that affects up to 20% of US S — <
infants and is predictive of the development of later allergic diseases 3 — S oo e,
2 — P <
% W Escherichia col &_)
20+ Faecalibacterium p. t
E Zlebs.ie/la pneumoniae Breast Fed
: . k- o L
Age1
O.
. . 1.0 . . . . . -
M?E(;;l REsr?zN?gl1CE -1.0 0.5 5COA 1 ?7(?01%) 0.5 1.0 0.00 0.03 F(a)/\O26 0.09
Mean relative abundance of known Shannon diversity index shows lower alpha diversity for (A) Principal Coordinate Analysis using Bray-Curtis distances of MARCH and
Hypothesis: HMO metabolism (partially) drives the protective effect ot HMO metabolizers in the MARCH breastfed samples. Statistically signiticant differences in RESONANCE infant gut metagenomes Cohort and age (PERMANOVA,; R? = 0.018 p-
hu}nan breast milk from eczema and RESONANCE cohorts. alpha diversity observed by cohort and feed type value < 0.0001) have signitficant effects on sample beta diversity. (B) Taxonomic profile
(two-way ANOVA, p < 0.0001). PERMANOVA by cohort (* p < 0.05 ; ** p < 0.01; *** p <0.001).
Research Aim Results: Strain level analysis of select HMO metabolizing bacteria from MARCH cohort Conclusions
Aim: |dentify HMO metabolizing bacteria and t.he.specific genes that Bifidobacterium longum subsp. infantis (n = 60) Bifidobacterium longum subsp. longum (n = 18) O The MARCH and RESONANCE are
correlate with the development of AD/eczema in infants . | . 1 . . = | l distinct cohorts that span similar age groups
. —m ' ”_ermm . jj - ° of infancy with RESONANCE skewed towards
: o older infants.
Study Design & Characteristics | m‘ﬁﬂﬁ‘ m 02-
0.4-
MarcH Stool Metagenomic F} : d The two cohorts show differences in
Ichigan samples sequencing 00- . . .
G <1 year infants UJ—I_ | taxonomic alpha and beta diversity.
‘ Hial o . ! RESONANCE cohort has a lower mean
. ICropial taxonomic an - . .
o AGTCCCTOAATCGA functional proﬁ|es - eczema feedtype relat|Ve abundance Of HMO metabOhZGrS
[Eﬁggg éﬁgg] FaLse [ BreastFed ;;:, 2 0 | % #, than MARCH.
l e TRUE I FormulaFed ég 8-2 - | : ; ; | — j = : ==
d — ol Healh and st 0.0- ! Mixed 8 d B. infantis, B. longum and B. fragilis
‘ ot | assessmen o N .
‘ oo R Bacteroides fragilis (n = 18) assembled from the infant gut metagenomes
MARCH RESONANCE * 05- — do not show any clear associations with
anpan _® 0.4 - . l l=l._ eczema.
Formul —e I:l‘_\
:36 _Downstream analysis: community 03- == r_‘ [ | r
o et o S o diversity and strain level phylogenetics . Future Dire Ctl oNs
= 98 42 45 s 04
_Ig 42% 39% 42% E 2 0.0L L miliy| AREFRRES 1 5 ) 0.1-
§ | M MARCH |RESORANCE SE,, | 00- 0 Complete strain-level analysis of HMO
49% e & S 0 metabolizers in the MARCH and
€ 9 % 231 151 No obvious clade correlations between select HMO RESONANCE cohorts.
R » metabolizing bacteria and eczema status. Strain-level
phylogenetic analysis done with StrainPhlAn. 5 08 : : "
é 114 74 Phylogenetic linear mixed modeling using anpan of B. 2 8; ) -I—lil—llll | I_l__"él . I_“L"L"LI ) - Phyloggnetlcs Ana|y5|5 of SpeC!fIC HMO
x longum, B. infantis and Bacteroides fragilis with the SE o4 | I T T 1T 11 11T T T metabollzmg gene sets from the infant gut
% v = 415 - outcome variable of eczema and feed type as covariates.  © metagenomes of the two cohorts.
N No Eczema No Eczema L L
LL 168 12 . . .
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A multi-kingdom genome catalog of the early-life human skin microbiome

Zeyang Shen', VITALITY team?, Kirsten P. Perrett?, Pamela A. Frischmeyer-Guerrerio?, Julia A. Segre
'National Human Genome Research Institute, Bethesda, MD, 2Murdoch Children's Research Institute, Parkville, Australia, SNational Institutes of Allergy and Infectious Diseases, Bethesda, MD

Introduction Methods (cont’d)

» \We recently published the » Bacterial MAGs were
Skin Microbial Genome checked for quality with

Collection (SMGC), which The Early-Life Skin Genomes (ELSG) CheckM and GUNC, fungal

greatly expanded the MAGs with EukCC, and

oference genomes for catalog is comprised of 9,194 bacterial viral sequences with

human skin microbiome. CheckV. All the MAGs

However the curren! genomes from 1,029 species, 206 e e a0

reference genomes are catalog have >50%
completeness and <10%

largely based on samples -

iargely based on sa fungal genomes from 13 species, and contamination
America and lack - - Taxonomy was assignhed
representation from 39 eukaryotic viral sequences Hppeck s
infants and individuals MAGs; >95% ANI

from other continents.  Among 1,029 bacterial species, 699 are newly found on human skin, expanding the compared to GenBank

Infant skin provides a total phylogenetic diversity by 56%. genomes for fungal MAGs:;
different cutaneous BLASTn to the nt database

environment for microbes Phylogenetic diversity by phylum for viral sequences.

and a unique habitat to The ELSG catalog

improved the classification

rate of metagenomic reads
Methods by 25% based on Kraken.

study skin microbiome.

* We used ultra-deep
shotgun metagenomic
sequencing to profile the
skin microbiota of the
cheek and antecubital
fossa of 212 infants at age
2-3 months and 12 months

who were part of the
VITALITY trial in Australia.

Each sample yielded a
median of 28.6 million non- * Fungal specificity of early-life skin. * Viral diversity of early-life skin.
human reads.

We built metagenome-

assembled genomes

(MAGs) from each sample _ _

by using MEGAHIT for Discussion

assembly, and MetaBAT, » We present the largest

MaxBin, and CONCOCT multi-kingdom genome
for binning. collection for early-life skin

microbiome, which is also
the first skin microbial
genome collection based
on samples from Oceania.

This resource will be useful
to initiate studies of
childhood cutaneous
disorders, such as atopic
dermatitis that typically has

Antecubital an age of onset in infancy.

fossa
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In colorectal cancer development, the progression from healthy intestinal cells
to benign tumors (adenomas) and then to more malignant forms has profound
impacts on the composition of the intestinal microbiota. Additionally, the
factors influencing this progression are idiopathic but likely involve a
combination of genetics, local tumor environment, and extrinsic factors such
as diet. Here, we focus on further elucidating the role of the gut microbiome, a
large component of the tumor microenvironment, in cancer initiation and
progression by considerably expanding on the current largest meta-analysis
to include a total of 3,558 samples from 17 public and private studies.
Through expanded sample size, increased resolution of the computational
tools, and bioinformatic advances, we have improved the understanding of the
gut ecosystem in CRC. While biomarkers of CRC have been well studied in
the past, these analyses have focused on species who have previously been
isolated. Leveraging new tools, we expand that analysis here to all known
microbial taxa and provided novel strain-level insights into the role of the gut

microbiome in CRC.

Expanded meta-analysis of CRC-
microbiome study design

Collect data from twelve public and
five newly collected studies comparing
CRC, adenoma, and healthy samples

Processed the MGX stool samples
through the bioBakery workflows
(MetaPhlAn 4.0 and HUMANNS3.6)

400

200
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4 Ag
. =

n=3,558
(1,470 healthy samples, 1,388 CRC, 698 adenoma)

Several cohorts were collected for this study (n = 5) from Europe and the US and from
publicly available studies (n =12) but only when all required metadata was jointly available.
Once all raw samples were collected, they were uniformly processed through the
bioBakery workflows using KneadData for QC, MetaPhlAn 4 for taxonomic profiling,
HUMANN 3.6 for functional profiling, and StrainPhlAn 4 for sub-species level comparisons.
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Samples spanned early
onset and typical onset
CRC samples and
covered large areas of
the globe in terms of
country of origin.

For a subset of the
CRC samples, we
curated additional
information about
CRC Stage and
sidedness.

Robust biomarkers of CRC across
country, colon location, and stage

Batch correction for study-wise difference
reduced the effect of study from 8.0% to 3.6%

(PERMANOVA Bray-Curtis on study ID).
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In agreement with previous studies, many species were found to associate with CRC/Control,
Early/Late stage, and Right/Left tumor location. This included well known species such as
Fusobacterium nucleatum and Bacteroidetes fragilis. Several new species were also found to
robustly associated with CRC including Solobacterium spp. and Hungatella hathewayi.

Many species differentially carry

genes In health and CRC
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Within species gene
coverage difference
between CRC and control
samples varied by species
with Streptococcus
equinus exhibiting the
highest rate of significantly
different genes between
phenotypes.

a F Tyrosine recombinase XerD
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Genes previously quantified to be associated with CRC were found to be differentially carried
within species. Colibactin exhibited a trend towards being more likely to be carried in CRC by E.
coli and Klebsiella spp, however increased carriage was not statistically significant. While cutC
gene involved in TMAO production did not exhibit the same within species carriage patterns.
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Within species phylogenetic signal
was calculated using PGLMMSs.
(Top) Improvement in the model
explaining CRC when using the

phylogeny in the model. Within

= species associations were largely

independent of species-level
associations with CRC, indicating
that sub-species clades can be
associated with CRC without gain
or loss of the species in the gut
ecosystem.

(Bottom) Broadly sub-clade
associations were observed in
several species highlighted by

Lachnospira eligens (previously
Eubacterium) and Eubacterium
rectale. Stronger sub-clade
behavior was qualitatively
observed in the Early/Late
comparisons as seen in
Ruminococcus bicirculans and F.
prausnitzii.

Ruminococcus bicirculans was identified to be carrying several genes (n = 52) more in late
stage (llI-IV) CRC than in early stage (0-11) CRC. This suggests either a role for these genes
In continued survival of this species under increasing environmental stressors, medication or
host homeostasis, or role for the late stage associated sub-clade to become more virulent.
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Cutibacterium acnes and its phage are a tractable model system to A combination of culture-based genomics and Findings:
study predator-prey dynamics in the human skin microbiome metagenomics facilitates mechanistic understanding Novel ssDNA lysogen discovered in
| S N | | of on-person ecology and evolution C. acnes genomes
Bacteriophages (predators) promote diversity in microbial communities by generating bacterial T o s oh ' | -+ 1dinal facial f " _ _
e b acgon rate (prey) species- and strain-level population fluctuations. The contribution of phage predation on the IO study C. acneﬁ ?”? |te|p age, we C\CI)V ecteld onggudlna acla SV‘_’E‘lb_S Irom 8 C. acnes prophage carriage is rare
_ skin microbiome has not been extensively studied, where it is a likely determinant of on-person C assmatej and their tami yfmemrt])e:cs. e C:CUSE;JTGS_ _(-jaclnes bactezrldeflso.?tes .an? o and sparse across phylogroups
g colonization. Here, we combine culture-based whole genome sequencing and shotgun sequence metalgcejnomes rom t eh aces of oo Individuals as\r/oss Iaml |es,d '”ﬁ_“ 'nﬁ Individuals’ C acnes bacteria are
= metagenomic approaches to examine on-person predator-prey dynamics of the highly abundant timepoints sampled every s montns up 1o two years.apart. © supplemented this wit dominated by a single prophage type
O o - - - - » C. acnes genomes and skin metagenomes from public datasets. y 9 gely
o and ubiquitous skin commensal C. acnes and its phage on sebaceous skin. During early life and
§ adolescence, sebaceous skin is particularly conducive to colonization, in contrast adult skin Goal: Sample skin Isolate and sequence single Evolutionary Although prevalent, C. acnes phage
3 maintains a stable composition. It is hypothesized that throughout adolescence vertical and Bacterial genomes microbiota bacterial colonies inference populations are not ubiquitous across
— horizontal acquisition from parental and non-parental sources creates unique and stable people
Age microbiomes across adult individuals. The mechanisms behind this age-dependent selective skin . ,
L . . . L . . . . Individual’s cutotype shapes on-person
colonization are unclear. This motivates our investigation into this period of ecological disturbance C. acnes phage population structure
C. acnes abundance and number of as a unigue window to understand how bacterial and phage communities assemble in a human ﬁt '
lineages increases with age eeosystem % 7\
' N hage li ired New phage li ired Proph ' .

o0 new phage lineages acquire ew phage lineages acquire ?}S rophage detection A speC|aI thanks to members of the
§ :f Questions: Goal: Sample skin Extract DNA and Reconstruct sample Lleb_erman lab and Fatima Hussain for
s 3 What is the prevalence of 2 - Metagenomes microbiota sequence metagenome composition advice and support. Thank you to our
c . . . .
§ t;-; C. acnes phage populations S % funding support and study participants.
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Age Age FOUNDATION therapeutics
C. acnes prophage carriage is rare and sparse across phylogroups The human host shapes the assembly and structure of on-person C. acnes phage populations
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~5kb ba%?eggienclf deeea neovzl ;Lrj] o stra?wc?ee ch)DN? (ZSDN%‘ erfa . C. acnes bacteria that are dominated by a single type of prophage. Phylogenetic 12345 0 05 1
C. acnes ) 9 phage, reconstruction of prophage sequences is required to determine if on-person  ramily 1 Sl Baker et al, In prep
bacterial aenome and a previously documented double-stranded DNA tailed : . . . o — Metagenomics from longitudinal (six-month
9 . . . phage populations originate from a single or multiple colonization events. . XX intervals) of facial swabs from K-8 schoolmates
~2.5 Mb (dsDNA) pseudolysogen and cryptic phage-like region. B . y e farnl
dsDNA _ > i and their family members (5-60yrs)
Pseudolysogen Family 1 B Rk ] : j -_ % Isolates with prophage L : >
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Phaae-like Reaion 1 - 1 = | from an individual family member
g g Here each row represents 5 _ i il — ] ® ]
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A.1 Isolates from facial 1 Bl 2 AN EENEL | ° ] Not C. acnes dominant
3,205 C. acnes isolates: A.2 swabs of K-8 3 j 1 i || 0% 4 O e ¢ ._ i1 Both |
. . , ot
5% ssDNA Lysogen ?:nr:ﬁslrr::;elgearrsld their | | “ | - - 1 B dsDNA
1500 3% dsDNA Pseudolysogen (5-60yrs) ' HL | ] ® D Bl ssDNA
1 _ _ _ Genotype Lineage Phylogroup Species - C 2)[s] [s Al | No prophage B o . No phage
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Viruses are important but often overlooked members of most microbial Evaluating different experimental Optimized VLP prOtOCOI depleted
communities, including the human gut, where many remain uncharacterized. This . . . . .
IS due to a combination of both computational and experimental limitations: viral parameters for QUt VLP |SO|at|On baCterlaI nUCIQOtldeS frOm Splked StOOI

nucleotides are difficult to enrich and extract, and once sequenced, their
uniqueness and divergence make them difficult to classify. The limitations of
high-throughput sequencing approaches to address this have been noted
previously, but few study has evaluated the efficiency of specific protocols for
retaining viral nucleotides from a community while depleting non-viral members.
Here, we present our work benchmarking varied experimental protocols to isolate
virus-like particles (VLP) from gut microbial communities. Different experimental
parameters were evaluated to develop an optimized protocol, which was further
validated in mock communities (viruses representing common gut viral families)
and in spiked stool samples. The optimized protocol efficiently reduced bacterial
signals below the detection Iimit in mock viral communities. In spiked stool
samples, the protocol depleted bacterial signals by approximately 100-fold -
although, notably, this still left non-viral nucleotides in the majority in many cases.
Different viral clades were also differentially affected by changes in experimental
parameters, leading to bias relative to the ground truth. We thus provide a
standardized and optimized protocol for gut VLP isolation, with known limits of
detection and differential extraction efficiency among potential viral targets.

Mock viral communities

* The optimized VLP protocol reduced
bacterial signals by 10° copies/ml in
mock viral communities, and about
100-fold in spiked stool samples

« P1, T1 and T4 phages were slightly
depleted in samples treated with VLP

protocol, while phiX174 and MS2
phages enriched.

Spiked stool samples

Log10 copies deteced by gPCR

« Non-viral nucleotides still left in the
majority, and different viral clades were
differentially affected.

Virome profiling of VLP-enriched and
Cpnditiops with the highest purificatiop efficiency (Igrgest d.epletion of bact_erial Wh0|e community metatranscriptomes

signals, i.e. lowest 16S rRNA gene copies) and the minimum impact on the spiked

Experimental parameters known to affect viral extraction from previous works: viruses (highest viral gene copies) were selected. HUMANN 3.0 profiling BAQLaVa nuleotide profili
storage buffer, filtration combinations, methods for nucleic acid concentration Mook MookVLP | Spkestool | Spikesiool VLP | Stool Mook Mook VLP | Spike stool

after filtration, and various enzymatic treatments. Purification efficiency of a gut VLP isolation protocol was found affected by various 1-00'. I 1.00-
experimental parameters: I II

Study design
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Combinations of the parameters tested by gPCR in stool samples spiked with
simple synthetic viral communities comprising equal amount of an sRNA
phage (MS2) and a dsDNA phage (T4). « Ethanol did not differ

greatly from SM buffer

0.50 -+ 0.50 -

Relative abundance
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Protocol optimization in stool samples with « 0.45 um filter, 100kDa
+ synthetic viral cultures of equal T4 and MS2 centrifugal filter
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T4 MS2 Stool sample most bacteria while BN UNVAPPED WM unclassified other nonVirus E.coli Virus Pl mm T1 mm T4 W MS2 phix174 W other Vir
p-reservmg the most Translation search using HUMANN identified both bacteria and viruses. Abundant
VIFUSES, E. coli reads likely indicate contaminations in original phage cultures; Viral
* +/- communities further profiled using a newly-developed integrative computational
10 Unit DN reat t method, BAQLaVa (Bioinformatic Application for Quantification and Labeling of
T4 P1 T1 MS2 phiX174 Stool sample ' bein nit mase featmen Viral taxonomy).
g most effective ]
VLP protocol evaluation in mock viral communities of five equally mixed viruses Ongm ng wo rks
and in spiked stool samples _ We are currently carrying out analysis of metagenomic and metatranscriptomic
. . . - eRf[f\leacTetoC;l:\lS:?/i?ueg:stlve sequencing from VLP-treated preemie stool samples to evaluate the protocol on
VLP protocol application in preemie ' real-world samples at scale. We are also continuing to improve BAQLaVa for
3 3 a stool samples virome profiling. Together, we hope these tools will improve experimental and
bioinformatic capabilities for gut virome profiling.
Optimized protocol evaluated in mock communities (equally mixed viruses Acknowledgments
representing common gut viral families) and in spiked stool samples; further The works has been supported by Grant U19A1110820 and the.DF.S.A
applied in stool samples from preemie babies. Finalized VLP isolation protocol includes parameters shown in bold. 'I:c(j:ubatlon Av;/ard from the Harvard Chan Dean’s Fund for Scientific
vancement.
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CRISPR spacer acquisition is a rare event
In human gut microbiome

Anni Zhang', Jeffry Gaston, Eric AIm&

anniz44 @mit.edu

a Modelling spacer acquisition rates
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Figure 3. Modelling phage infection and CRISPR spacer acquisition.
a Source B years - Figure 3. Spacer acquisition is significantly faster in B.longum than B.adolesentis and P.distasonis.
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Figure 1. Work flow of spacer acquisition identification using population genetic analysis. Figure 4. Spacers acquired in B.longum lineages by horizontal gene transfer (HGT)

Conclusion
1. Spacer acquisition is a rare event in human gut microbiome, which agrees with previous literature

* 1 spacer per 2,000-5,000 cell divisions (whole genome sequencing + metagenomes)

2. Spacer acquisition rate varies among species
» Acquired spacers in B.longum were spread through horizontal gene transfer (HGT)

3. Spacer acquisition rate correlates positive with bacterial abundance
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Metagenomes are enriched for genes

of unknown function

Microbial communities are rich reservoirs for molecular functions that influence
environmental and host-associated chemistry, with numerous roles in ecosystem
maintenance, health, and disease. However, our knowledge of these molecular
mechanisms is limited, due to the massive range of microbial genetic material in
comparison to the limited throughput available for experimental characterization.
Here, we assessed a novel method (FUGAsseM) to systematically predict
functions for uncharacterized microbial proteins by integrating high-dimensional
meta-omics data and applied our method to the Integrative Human Microbiome

Project (HMP2).
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Protein classes (and abbreviations)

Species

B SC = Strong homology to UniProtKB proteins with informative BP terms

" SC_nonlinfo = Strong homology to UniProtKB proteins with non-informative BP terms

B SU = Strong homologs to Uncharacterized UniProtKB proteins lIRH = Remote Homologs to UniProt
B UPI = Strong homologs to uncharacterized UniParc proteins

proteins

NH = No Homologs to UniProt proteins

We enumerated expression profiles of five groups of proteins from HMP2 based on

homology and functional annotation (abbreviated SC, etc. and defined above):

* Metatranscriptomes (MTX) capture expression profiles of community proteins;

* Expressed proteins without characterization are dominant in the community.

* Here, “characterized” proteins are defined as those annotated with “informative”
Gene Ontology (GO) biological process (BP) terms, i.e. each BP term contains
>1% of annotated genes without any child term passing the criteria.

FUGAsseM for function prediction from microbiome

FUGAsseM (a Function predictor of Uncharacterized Gene products by
Assessing high-dimensional community data in Microbiomes) is generalizable to
any types of microbial communities, providing a new approach to predict
microbial protein functions.
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Microbial community meta-omics data
improve gene function prediction

Among the 25 species with the largest number of new proteins (lacking strong

homologs to UniProt proteins), uncharacterized proteins, regardless of annotation
status, are highly correlated with characterized proteins in the community, enabling
transfers of functional annotation under “guilt-by-association” logic. Among the
subset of these species with isolate data, proteins linked in STRING networks tend

to have higher correlation among MTX networks.
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FUGAsseM accurately predicts previously unseen

functional annotations
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We evaluated FUGAsseM by comparing with other methods for function prediction:
« FUGAsseM'’s accuracy is improved by aggregating other community-wide data;
« FUGAsseM shows comparable predictions to state-of-art single-organism tools

where they overlap;
 FUGAsseM applies to many more species from communities.

Novel characterizations for 1,000s* of

microbial genes in the human gut

We applied FUGAsseM to to the 1,595 human gut metagenomes and 800
metatranscriptomes from HMP2, predicting functions of proteins from stratified
species in the community.
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no_ann: proteins without any high-confidence predictions g
Q

. preserved ann: characterized proteins that have been annotated in UniProt

amp_ann 7

(relax)
amp_ann

characterized proteins assigned with new
-functional predictions under a “relax”

(stringent)

threshold or a “stringent” threshold

new_ann 7

(relax)
new_ann

uncharacterized proteins assigned with
- new functional predictions under a “relax”

(stringent)_

threshold or a “stringent” threshold

Here, we summarize the high-confidence BP annotations newly assigned to the
25 species containing the largest numbers of novel (uncharacterized) proteins:

» Species showed different levels of functional characterization;

» Both characterized proteins and uncharacterized proteins were better

function

Conc

al annotated.

lusions

 MTX-based coexpression patterns are informative for gene function

predictio

n in microbial communities;

* FUGAsseM predicts functions with high accuracy;
 FUGAsseM refines the functional landscape of microbiomes.
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