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Abstract

The vaginal microbiome as a primary defense against pathogens

The vaginal microbiome is an important determinant of host health and the first barrier encountered by sexually transmitted pathogens during infection. Among the vaginal 

microbiome, Lactobacilli are associated with reduced susceptibility to viral infection, but the mechanisms by which various Lactobacilli strains reduce viral infectivity remain poorly 

understood. Using a collection of human vaginal microbial strains, we show that the prominent vaginal strain, Lactobacillus crispatus reduces infectivity of sexually transmitted 

pathogen Herpes Simplex Virus (HSV). Reduction of HSV infectivity is species specific, with L. crispatus reducing infection and disease better than gut-associated L. reuteri. Active 

cell metabolism is not required as UV-killed L. crispatus retain the ability to reduce herpes infection. Since one of the most abundant structures on the outside of the L. crispatus 

cell is peptidoglycan, we assessed whether peptidoglycan could reduce HSV infection. We found that commercially available purified peptidoglycan from multiple bacterial sources 

reduced herpes infection in vitro and in vivo in a mouse model of genital herpes infection. Mice were susceptible to reinfection, indicating that immunological memory is not 

activated. Cleavage of the glycosidic linkages in the peptidoglycan chain with lysozyme restored virus infectivity in vitro and in vivo suggesting that antiviral effects are dependent 

on longer peptidoglycan chains. Current studies aim to determine how Lactobacilli peptidoglycan contributes to a reduction in HSV infectivity focusing on HSV entry receptors and 

what species-specific peptidoglycan modifications allow L. crispatus to reduce infectivity better than other Lactobacilli. Such results provide a greater understanding of the ways 

that the vaginal microbiome serves as a physical barrier to infection and why some vaginal communities promote better antiviral protection than others.

Vaginal Lactobacilli reduce HSV-2 infection in vitro

Peptidoglycan reduces HSV-2 infectivity in vitro
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Figure 1. (A) The vaginal mucosa is colonized by an 

ecosystem of microbes that protect the host from 

invading pathogens, including viruses. The 

microbiome, which is largely dominated by 

Lactobacillus species, is the first barrier encountered 

by an exogenous pathogen. The vaginal microbiome 

can secrete molecules that interact with pathogens or 

the host to influence invasion. Loss of Lactobacilli 

spp. is linked to increased risk for viral disease, 

including herpes. (B) Herpes is an enveloped 

neurotropic dsDNA virus that infects the mucosal 

epitheia and establishes a lifelong latent infection in 

the dorsal root ganglia. In the work presented here, 

we investigate mechanisms by which the vaginal 

microbimoe influences herpes infection. 

What makes some vaginal microbiomes better at protecting against herpes infection than others?
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Figure 2. (A-B) Live vaginal- and intestinal-derived Lactobacilli were co-incubated with HSV-2 (4 x 104 1.5 105 PFU 

+ 107 - 108 CFU, normalized by OD
600

) for four hours in 1x PBS at 37C with HSV-2 alone in 1x PBS as a control. 

Mixtures were then pelleted at 500g to remove bacteria and supernatants plated onto confluent Vero cell 

monolayers at different dilutions. Cells were then incubated for 48 hours in growth limiting conditions with human 

IgG. Cells were fixed in crystal violet and plaques counted to determine supernatant infectivity. Counts were 

normalized to the average of HSV-2 alone. (B) Both vaginal and intestinal Lactobacilli suppressed HSV-2 infectivity, 

with vaginal Lactobacilli suppressing more than intestinal Lactobacilli. Significance was determined with ordinary 

one-way anova without multiple corrections, p-value <0.0001 **** and <0.001 ***. N= 5-8 across 3 independent 

expeirments. Error bars represent the average with the SEM.
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Figure 3. Vaginal Lactobacilli were normalized by OD600, washed 2x in PBS, and then UV killed before supernatants 

were incubated with HSV-2 for one hour at 37C (40,000 PFU + up to 108 CFU) with HSV-2 alone in PBS as a control. 

Infectious HSV-2 particles were quantified using a plaque assay on veros. Percent infectivity was quantified and 

normalized to the average of HSV-2 only. Error bars show the mean and the SEM and one-way anova reveals significance 

with a p-value of <0.0001 **** or <0.05 *.

Gram+ bacteria Gram- bacteria

Lipid

membrane

Peptidoglycan

Peptidoglycan
Inner membrane

Outer membrane

Peptidoglycan structure

Sugar backbone

Peptide linkages

N-acetyl-muramic acid

MurNAc or NAM

N-acetyl-glucosamine

GlcNAc or NAG

NAG NAM NAG NAM

lysozyme

N-acetylmuramoylhydrolase

β1-4
+NAG NAM

A

+

Incubate Quantify infectious

HSV-2 in supernatant

B

C

0 0.1 0.2 0.4 1
0

20

40

60

80

100

120

140

%
 H

S
V

-2
 i
n

fe
c
ti

v
it

y

Sa PG (mg/ml)

D

H
S
V-2

 o
nly

B
s 

P
G

B
s 

P
G
 +

 ly
so

S
a 

P
G

S
a 

P
G
 +

 ly
so

0

20

40

60

80

100

120

140

%
 H

S
V

-2
 i
n

fe
c
ti

v
it

y

ns

Figure 4. (A) Lactobacilli are gram+ positive bacteria with surface exposed peptidoglycan (PG). In gram- 

bacteria, PG is not surface exposed and lies between the inner and outer membrane. Thus, herpes 

virions could potentially interact with the PG of gram+ bacteria and the outer membrane and its surface 

structures in gram- bacteria. PG is typically made up of repeating units of N-acetyl-muramic acid (NAM) 

and N-acetyl-glucosamine (NAG). These glycan chains are linked via peptides. Lysozyme is able to 

cleave peptidoglycan by hydrolyzing the β1-4 linkage between NAG and NAM in susceptible bacteria, 

including Lactobacilli. Some bacteria, like Staphylococcus aureus (Sa), are not susceptible to lysozyme 

activity due to protective modifications on the PG. (B-C) To test the effect of PG on HSV-2 infectivity, 

HSV-2 was incubated with commercially available Sa PG and added to vero cells before plaquing to 

quantify HSV-2 infectivity (C). Sa PG reduced HSV-2 infectivity in a dose dependent manner (C). (D) To 

test the effect of PG on HSV-2 infectivity in the absence of pre-incubation, [0.2mg/ml] PG from Bs and Sa 

was mixed with HSV-2 and added directly to veros. Bs PG reduced HSV-2 infectivity more than 

equivalent amounts of SaPG and this effect was reduced for Bs when 10mM lysozyme was added on the 

veros at the same time. Sa PG reduction of HSV-2 infectivity was not reduced by lysozyme. Overall, 

these data suggest that PG is able to reduce HSV-2 infectivity in vitro, and that this reduction requires 

intact PG NAG NAM bonds. Error bars show the mean and the SEM and one-way anova reveals 

significance with a p-value of <0.0001****, <0.001***, or <0.01 **.
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Figure 5. (A-D) To determine if PG could reduce infectivity 

of the herpes strain HSV-1, HSV-1 expressing a 

GFP-tagged capsid (GFP-VP26) was combined with 

[0.2mg/ml, 50 µg) Bs PG and added to immunocompetent 

human foreskin fibroblasts. After infection, GFP+ cells were 

quantified using flow cytometry (BD FACSymphony). (B-C) 

At 6 hours post infection (P.I.), in the absence of PG, 80% of 

cells at multiplicity of infection (MOI) 10 were GFP+. Cells 

that were incubated with 50µg PG were uninfected. (D) As 

the infection progressed 24 hours, 20% of live PG-treated 

cells were GFP+. These results demonstrate that PG can 

reduce HSV-1 infectivity in vitro. Error bars show the mean 

and the SEM and one-way anova reveals significance with 

a p-value of <0.0001****. 
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Figure 6. (A-G) To determine if PG could reduce HSV-2 infection in vivo, mice were infected intravaginally with a lethal dose of HSV-2 (10,000 PFU) with or without 50ug of B. 

Bs or Sa PG. (A) To synchronize disease progression, mouse estrous cycles are synchronized with 2mg of medroxyprogesterone injected subcutaneously 5-7 days before 

infection. Early in infection, the virus replicates in mucosal epithelial cells and infectious virus titers can be evaluated by collecting vaginal lavage daily and conducting plaque 

assays on Veros. Four days P.I., the virus infects enervating neurons and travels to the dorsal root ganglion. In humans, the virus enters latency, but in mice, the virus continues 

to replicate, traveling down neurons to fresh epithelial sites where viral infection results in inflammation and morbidity that can be scored. (B) All mice that received HSV-2 alone 

died within 14 days P.I. (n=5-10) (B-C) All the mice that received 50ug of Bs PG survived and only one Sa mouse died. In the experiment shown in (B), no Bs treated mice 

showed signs of disease, whereas some Sa treated mice did show symptoms, though these were statistically significantly different from the untreated mice. (D) In a separate 

experiment, to determine if the NAG-NAM linkage was required for this protection in vivo, mice were infected with HSV-2, 50ug Bs PG, and 10mM lysozyme (n=5). Mice that 

were treated with Bs PG showed significantly less disease burden than untreated mice. Mice that were treated with Bs PG and lysozyme showed signficantly more disease than 

mice treated with Bs PG alone, suggesting that the NAM-NAM linkage is imporatant for PG protection from HSV-2 infection in vivo. (E) Among the Bs PG/lysozyme treated mice, 

most of the mice were symptomatic, which is in contrast to the mice treated with Bs mice treated alone which were largely asymptomatic. (F) Viral titer tracking from vaginal 

lavage in all four treatments within the the 5 day window critical for disease establishment revealed that Bs PG treated mice were able to clear the virus by day one P.I. Mice 

treated with Bs PG and lysozyme did not clear the virus within the first few days P.I. This suggests that Bs PG blocks early viral establishment. (G) Curves represent the vaginal 

viral titers for a single mouse, revealing the heterogeneity in progression of virus establishment in individual mice treated with PG. The limit of detection for PFUs is 4 plaques 

(dotted line). Disease scores were compared using 2-way anova with multiple comparisons with p-value <0.0001 ****, <0.001 ***, <0.01 **, and <0.05 *. Kaplan-Meier survival 

curves were evaluated with Mantel-Cox test, p-value <0.001 **.
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Moving forward, we are excited to dissect the interactions between vaginal viruses and the microbial cell surface of Lactobacilli and other 

clinically important vaginal microbes. We are keenly interested in determining what makes certain vaginal bacteria better or worse at 

protecting from viral disease by purifying and characterizing the structure of the cell surface using microscopy, chemistry, and glycobiology. 

Lactobacillus reuteri HM-102 Lactobacillus iners HM-704 Lactobacillus crispatus HM-637

Figure 7. Lactobacilli were washed 1x in PBS 

and fixed in paraformaldehyde and 

gluteraldehyde and sectioned into 70nm slices 

for TEM. Cells were imaged using Tecnai G2 

Spirit Bio-Twin TEM with NANOSPRT43 

camera, 3000x direct magnification.
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Response of the gut microbiome and
metabolome to dietary fiber in healthy dogs
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Dietary fiber and the microbiome
.

Nutrients and compounds from diet can directly influence the gut 
microbiome and microbial metabolism of these compounds can in 
turn  influence the host. Metabolism of dietary fiber by the  
microbiome provides several health-relevant metabolites such as 
short chain fatty acids (SCFAs) which participate in intestinal 
homeostasis and immune regulation, and fiber-released compounds  
that affect gastrointestinal physiology. Dietary fiber interventions in 
both humans and dogs have shown  alterations to microbiome struc-
ture and metabolism. However, differentiating the effects of individual 
fibers in humans with complex diets and heterogeneous lifetsyles is 
challenging. Companion animals provide a particularly relevant 
context to study diet-microbiome interactions due to more 
consistent foods and environments. In this work, we  investigated the 
gut microbial and metabolomic responses to various dietary fiber 
sources and quantities using a canine colony population. This design 
allowed us to study the association of specific microbial and metabolic 
responses with different carbohydrates including fiber and starch as 
well as the consistency of these associations across subjects.          

Design of dietary fiber study

We examined the extent to which microbiomes and metabolomes changed in 
response  to food. Microbiomes/metabolomes following consumpution of a particular 
food were compared to those in response to control food (initial) and preceding food.   

Strength of associations with fiber
varies by food group and subject

Conclusions
(1) Canine gut microbiomes and metabolomes change in response to diet. 
Similar foods are more likely to elicit similar metabolomic than microbiome 
responses. This suggests that different microbiomes can provide conver-
gent metabolic potential to yield similar metabolomes from similar foods.
(2) Features are associated with fiber intake include SCFA producing spe-
cies, SCFAs, and metabolites that are released upon fiber degradation 
such as acylglycerols and polyphenols.The strength of associations varies 
by both the type and quantity of fiber.
(3) Responses to fiber are subject-specific and cannot be predicted from 
intake or microbiome composition.

Acknowledgements

  

Fiber affects the metabolome more
than microbiome composition
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(a) Associations were determined 
using univariate linear models. 19 
species, 569 metabolites, and 10 fatty 
acids were significantly (q < 0.25) 
associated with total dietary fiber. 
Fiber-enriched features included 
SCFA producers such as Butyricicoc-
cus and Bacteroidetes sp, SCFAs, 
acylglycerols, and polyphenols.       
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Associations of fiber-responsive species and metabolites
are more pronounced in low starch high fiber (LSHF) foods
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(a) One-way ANOVA shows that most SCFA 
producers that are positively associated with 
fiber (red) are more abundant in LSHF foods.       

Response to fiber is highly personalized 
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a

- Associations between metabolic/ micro-
bial features and fiber observed at the 
population level were stratified by sub-
ject. 

- Of the 18 subjects, 3 were responders 
(i.e. retained significance for at least 
25% of species-fiber associations), and 
8 were non-responders (i.e. did not 
retain signifcance for any species-fiber 
associations) (examples shown).

- Some subjects that had poor microbi-
ome response (e.g. subjects 10, 12) re-
tained significance for >50% metabo-
lite-fiber associations.

- Microbial response to fiber did not 
always translate into a strong metabo-
lome response (e.g. subject 6).

(b) Butyrate (EC 2.7.1.45; 4.2.1.55) 
and propionate (EC 4.1.1.41) 
synthesis enzymes were also 
enriched in response to fiber intake.      

q < 0.1: **
q < 0.01: **
q < 0.001: ***

(b) Enrichment of SCFA producers in LSHF 
foods is reflected in significant associations 
between SCFAs and fiber intake.        

Circles indicate enrichment in one group only

(1) Canine gut microbiomes and metabolomes change in response to diet. 
Similar foods are more likely to elicit similar metabolomic than microbiome 
responses. This suggests that different microbiomes can provide conver-
gent metabolic potential to yield similar metabolomes from similar foods.
(2) Features are associated with fiber intake include SCFA producing spe-
cies, SCFAs, and metabolites that are released upon fiber degradation 
such as acylglycerols and polyphenols.The strength of associations varies 
by both the type and quantity of fiber.
(3) Responses to fiber are subject-specific and cannot be predicted from 
intake or microbiome composition.

We thank Hill’s Pet Nutrition Inc. and the National Institutes of Health for 
funding this study and all of the pet partners and those who care for them.

http://huttenhower.sph.harvard.edu





Using machine learning and longitudinal multi-omics microbiome data
 to predict celiac disease development

1. Abstract
The gut microbiome is intrinsically dynamic and studies that collect longitudinal microbiome data to assess the dynamics of the 
gut microbiota during disease development or progression, or after a therapeutic intervention are increasing in frequency. 
However, efficient computational tools to harness multi-omics longitudinal microbiome data to predict clinical outcomes are 
underdeveloped. In this project, we aim to develop new machine learning (ML) tools to predict clinical outcomes by making use 
of time-series microbiome multi-omics data. As a case study, we used longitudinal metagenomic and metabolomic data from a 
prospective, longitudinal birth cohort study of children at high risk of Celiac Disease (CD) and sought to predict CD development 
in these subjects using pre-onset data. To this end, we trained Random Forest classifiers combined with an efficient feature 
selection scheme using several pieces of clinical metadata along with species, strains, pathways, and metabolites abundance 
data before disease onset as features (predictors). Our analyses revealed that clinical metadata alone are not accurate 
predictors of disease development (F1-score = 68.67%, 10-fold C.V.). However, we were able to achieve a high prediction 
performance of 93% (F1-score, 10-fold C.V.) using the abundance of only one pathway at 9 months of age and 100% (F1-score, 
10-fold C.V.) using the abundance of only seven microbial strains at 15 months of age. This pilot study demonstrates the utility 
of ML for inferring key temporal microbiome signatures that are highly predictive of host clinical status. It also lays the 
foundation for building early predictive tools that would enable physicians to plan for preventive strategies before the clinical 
manifestation of disease.

Ivan Duran1,2,3, Maureen M. Leonard1,2, Alessio Fasano1,2, Ali R. Zomorrodi1,2

1Mucosal Immunology and Biology Research Center, Pediatrics Department, Massachusetts General Hospital, 2Harvard Medical School, 3Harvard FAS

Acknowledgments: CDGEMM Team, Zomorrodi Lab Members

2. Celiac disease (CD) and the gut microbiome

● CD is an autoimmune disorder where immune cells reacting to ingested gluten damage microvilli in the small intestine. 

● ~2 million people in the US and 1% of the global population have CD

● Although genetic risk and gluten exposure are necessary, they are not sufficient to trigger the onset. 

Recent studies show that the gut microbiome also has role in its pathogenesis

4. Multi-omics microbiome data and clinical metadata to predict CD

3. Stool samples from the CDGEMM study

10 CONTROLS

10 CASES

5. Feature selection to remove features without predictive power 

● A machine learning algorithm (Random Forests) was built based on fecal samples to predict who will develop CD
● Clinical metadata alone are not good predictors of CD onset
● We will scale up machine learning analyses and increase our findings using a more comprehensive, complex dataset

7. Summary and conclusions

Too many 
features 
can worsen 
predictive 
power

Feature 
selection 
can remove 
features and 
increase 
predictive 
power

6. Clinical metadata are not good predictors of CD but multi-omics data are 
Clinical 

metadata

F1 score = 68.67%

**I would remove this sign

Feature 
selection

versus

Multi-omics 
data 

Feature 
selection

359 microbial species per time point 109 pathways per time point 63 metabolites per time point 544 features per time point

359 microbial species per time point 109 pathways per time point 63 metabolites per time point 544 features per time point
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Cross-Kingdom Interactions between Candida albicans and 
Enterococcus faecalis in the Gut Microbiome

Haley E. Gause, Alexander Johnson
University of California, San Francisco

How do Candida albicans and Enterococcus faecalis interact as 
members of the Gut Microbiome? 

E. faecalis

C. albicans  

Thank you to the entire Johnson Lab for their advice and support. Additional thanks to the UCSF 
Gnotobiotics Core Facility and Jessie Turnbaugh for their expertise and services. Funding was provided 
by The Microbiology Society, and UCSF TETRAD, MPHD T32 , Discovery Fellowship, ASGD and the 
Graduate Division. References: (1) West et al. (2021) Microbiome. (2) Zhai et al. (2020) Nat. Med. (3) Mason et al. (2012) 
Infect Immun. (4) Cruz et al. (2013) Infect Immun. (5) Bennett, RJ. (2015) Curr Opin Microbiol. (6) Homann et al. (2009)  Plos
Genetics. 

INTRODUCTION

Adult Gut Microbiome

• >1000 different species 
• High bacteria,  low fungi 

(2%)

C. albicans +  
E. faecalis

BHI media, 37oC, 0.2% O2 4 hours

>8 germ-free mice
Mixed sex

colonized via oral gavage 10 days

Majority of the variance among samples is explained by presence/ 
absence of E. faecalis (PC1 = 52%)

Figure 1: Principle-component analysis (PCA) plot showing that the Candida RNA-seq patterns from 
the four different conditions are very well separated from each other and highly reproducible within 
each condition. 

C. albicansE. faecalis

Infant Gut Microbiome

• Low species diversity
• High fungal abundance
• Two common species: 
• Candida species
• Enterococcus faecalis 

( gram (+) bacteria )

After gut disruption, presence of Candida 
species associated with increased E. faecalis 
colonization (Zhai 2020, Mason 2012)   

Mouse and Human Gut 

C. elegans

Colonization with EITHER C. albicans or E. faecalis 
à invasive growth, worm death

Colonization with BOTH species 
à stable gut colonization

(Cruz et al. 2013) 

Relationship between Candida albicans and Enterococcus faecalis 
well documented 

Germ-free 
Mouse

1000

339
in vitro

215

Approach: Identify genes underlying interactions

RESEARCH QUESTION 

METHODS - Dual RNA-Seq

RESULTS I – C. albicans has Robust Response to E. faecalis

In vitro

C. albicans + E. faecalis

Mouse Gut

C. albicans

Environment

Species

Significant overlap 
between C. albicans 

response to E. faecalis in 
Mouse gut and in vitro 

conditions 

Figure 2: Overlap of C. albicans
genes upregulated ≥ 4-fold
(p < 0.01) in presence of E. faecalis 
in mouse gut and in vitro 
experiments 

RESULTS II – Pheromone Response ↑ w/ E. faecalis 

Dual RNA-seq

Collect cells and extract 
RNA 

harvest cecum and 
extract RNA 

C. albicans Genes ↑ ≥ 4-fold w/ E. faecalis       
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E. faecalis induces genes in the parasexual cycle in C. albicans
Surprising because (1) mating incompetent a/α cells were used in co-cultures 

(2) no precedent for bacteria or other species to induce parasexual cycle

Recombinant parasexual products (Mixture of a, α, and a/α cell types) 
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C. albicans expression of all 
200+ Transcription Factors 
with E. faecalis compared to 
growth alone 

orf19.1577 
RON1 
EFH1 
WOR1 
KAR4 

ZCF25 
ZCF5 
ZCF26
ZCF19

CONCLUSIONS AND FUTURE DIRECTIONS

1 ↑ Parasexual Cycle

2 ↑ Transcription Factors 

ACKNOWLEDGEMENTS & REFERENCES

à Investigate if canonical signaling 
pathway activates cycle or 
atypical activation 

à Use library of TF Knockouts to 
determine role in interactions 
with E. faecalis and genes 
regulated 

E. faecalis strongly upregulates a small number of transcription factors, 
many of which are uncharacterized and not expressed without E. faecalis. 
Additionally, in previously published screens, many of these transcription 

factors have no phenotype in a variety of lab conditions 
when deleted (Homann et al. 2009) 

Figure 3: (Left) Expression of Upregulated C. albicans genes in mouse and in vitro. Colored dots 
correspond to steps in parasexual cycle in right panel. (Right) Diagram of the parasexual cycle in
C. albicans  (modified from Bennett (2015)). 

RESULTS II – ↑ Transcription Factors w/ E. faecalis

The most upregulated TF 
has a growth advantage 
over wildtype only in the 
presence of E. faecalis 

6.7 4.7 4.6 4.5 4.4 2.8

Log2 Fold Change w/ E. faecalis in mouse   

Figure 5: Growth of Transcription Factor Knockouts (TFKOs) with and without E. faecalis, shown 
as normalized to internal WT controls. 
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Strain variation can strongly influence the impact of microbes on their 
environments, however methods for quantifying these important 
differences have been lacking. Sequencing-based microbiome data 
with strain-level resolution has several features that make traditional 
statistical methods challenging to use, including high dimensionality, 
individual-specific strain carriage, and complex phylogenetic 
relatedness. We present ANPAN, an R package that consolidates 
methods for strain statistics in three key components. First, adaptive 
filtering methods specifically designed to assess microbial strain 
profiles are combined with linear models to facilitate the identification 
of strain-specific genetic elements associated with host health 
outcomes. Second, phylogenetic generalized linear mixed models are 
used to characterize the effect of strain-level community structure. 
Finally, random effects models are used to account for species 
abundance when assessing the impact of pathway abundance on 
outcome status. We validated our methods by simulation, showing that 
we achieve improved estimation and classification statistics compared 
to current methodologies. We then applied our methods to a dataset of 
1,262 colorectal cancer patients, identifying functionally adaptive 
genes and strong phylogenetic effects associated with CRC status. 

 

Strain analysis challenges

Acknowledgments

https://huttenhower.sph.harvard.edu/anpan

Adaptive filtering of gene profiles

Modeling associations of microbial 
genes with clinical outcomes

Inferring the effect of microbial strains on 
host health outcomes with ANPAN

present

absent

multiple samples per individual
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Genetic element by sample:

abundance
multiple samples per individual

Strains by sample:

ge
ne

s

Microbial strains can be defined using arbitrarily specific nucleotide identity 
cutoffs. However, as a result of the finely-resolved nature of the data, 
unique strains rarely recur across individuals. Therefore, strain-level 
statistical modeling requires methods that can aggregate subspecies 
structure across samples, either by 1) inspecting genetic elements that 
recur across samples, 2) quantifying the similarity of strains across samples 
by phylogeny or 3) identifying differential pathway carriage by group.

To identify genes associated with the outcome (CRC), the filtered data are 
analyzed alongside relevant covariates using either:
    • GLMs one gene at a time followed by FDR correction
    • all genes and covariates at once with a horseshoe prior on gene effects

Phylogenetic generalized linear 
mixed models accurately quantify 
the effect of strains on outcomes

       y = Xβ + (1|leaf) + ε
(1|leaf) ~ MVNormal(0, σP

2Ω)
       ε ~   Normal(0, σR

2)

Mixed models can be used to analyzed data with a phylogenetic structure by 
incorporating a "random effect" term for each leaf. The random effects are 
correlated among leaves according to the phylogenetic correlation matrix Ω 
implied by the inter-leaf distances of the tree.

We appreciate the help the Stan Developer team and users 
on the Stan forums who helped the development of this work. 
This work was supported by NIH NIDDK R24DK110499. 
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Random effects pathway model
log_pwy_abd ~ log_species_abd + (1|pwy) + (0+group|pwy)

To infer the impact of a gene 
pathway on an outcome 
phenotype, a random effects 
model is used to assess the impact 
of group membership on pathway 
abundance while accounting for 
abundance of the relevant taxa.

 

Auto-generated summary plots 
concisely present model inputs and 
results for each bug in the batch run
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UniRef90_R5UDP6: Conserved domain protein
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UniRef90_B0MZ94: Transposase, Mutator family
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The genes of a given species may be poorly covered in a sample if the 
species is absent or insufficiently abundant. These samples can't provide 
information on the effects of genes in the species and should be discarded 
to avoid bias. Applying k-means clustering to summary statistics of each 
microbe in each sample allows assignment of whether the species' genes 
are well or poorly covered. Samples where the species is poorly covered 
are discarded before proceeding to the modeling step. 
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PGLMMs improve phylogenetic 
signal estimation over "distance-

partitioning" methods like 
PERMANOVA and MiRKAT

The gene model accurately 
classifies causal genes with 

negligibile false positives, regardless 
of spiked species-level associations.

On simulated data, the k-means 
accurately classifies samples 

where the genes of the species 
are well or poorly covered.

UniRef90_E9DP26: Site−specific recombinase, phage integrase family
UniRef90_A0A2I1TT64
UniRef90_S7YRR6: Gamma−polyglutamic acid synthetase
UniRef90_A0A3A4MTL6: Peptidase S51
UniRef90_E3CDU4: Toprim domain protein
UniRef90_A0A379CDB2: Transposase and inactivated derivatives
UniRef90_E8K877: Site−specific recombinase, phage integrase family
UniRef90_V8B9R3
UniRef90_A0A0F2CKY0
UniRef90_A0A0F2CQX4
UniRef90_E7SAT4: Precorrin−6y C5,15−methyltransferase (Decarboxylating), CbiE subunit
UniRef90_E8K4U9: Abi−like protein
UniRef90_A0A2I1TR13
UniRef90_A0A359YE50: ABC transporter, ATP−binding protein
UniRef90_E3CDU0
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UniRef90_A0A379CDB2 in Streptococcus 
parasanguinis strongly associates with CRC 

status, independent of age, gender, and dataset 
(coefficient = 1.72, global q-value = 4.6 x 10-4).

Subclades of Faecalibacterium 
prausnitzii show both enrichment and 

depletion of CRC cases (n = 679, 
ELPD improvement 7.9 +/- 3.5).
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Background Differential Production of Metabolites on Probiotic Treatment

Methods

Conclusion

Objective: Use metagenomic and metadata from the BLOOM study to construct 
metabolic models of the preterm gut community to better understand the probiotic 
treatment’s impact on the maturation of the preterm infant gut microbiota. 

• Infants born prematurely have an abnormal set of birth conditions that lead 
to a sparse, low-diversity population of microbes initially colonizing their guts. 

• Prior studies have shown the ability of probiotic treatments to shift the 
preterm microbiome to resemble that of a healthy, term infant, however, there is 
still little known about the functional mechanisms that underlie probiotic’s 
therapeutic effects. 

• All data used in this project is from the BLOOM study, a longitudinal study on 
preterm infants run by the University of Calgary

Next Steps: 
• Large-scale simulations: Analyze all control vs probiotic microbiomes from BLOOM
• Test breastmilk vs formula diet in gut microbiome flux simulations 

Community Models of weeks 1, 4, and 8 preterm infant fecal sampling A ,B,C are the log fold change of the top 20 differentially produced metabolites 
between infants on probiotic treatment and controls. They represent sampling from weeks 1,4, and 8 from birth, respectively. D represents the log fold 
change of three metabolites differentially produced over the 8 weeks. 

Our preliminary result support the feasibility of this study, and they will serve as a platform for large-
scale computational studies of the function of probiotics on preterm infant microbiome development

• Assume a cell can be 
approximated by the 
network of its 
metabolic pathways 
and can be analyzed 
to trace a metabolite’s 
production back to a 
specific microbial 
species in the gut. 

Genome-Scale Metabolic Models

Species-Metabolite Linkages of Differentially Produced Metabolites

Species-Metabolite Linkage Heatmaps 
A is week 8 community modeling, B is week 
1, and C is week 4. The metabolites shown 
are the top 20 differentially produced 
between probiotic and controls community 
models. 
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Gut Microbial Tryptophanase and the Uremic Toxins of Chronic Kidney Disease

Amanda L. Graboski1, Mark E. Kowalewski2, Joshua B. Simpson2, Xufeng Cao3, Jianan Zhang2, Daniel P. Flaherty3, Matthew R. Redinbo2

1 Department of Pharmacology, University of North Carolina, Chapel Hill, NC
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We mined for TIL
sequences in the
Integrated Genome
Catalog (IGC). 183
unique sequences were
identified using
structural metagenomics
and organized into a
sequence similarity
network (SSN) using the
EFI-EST tool5.

Introduction

Defining the “Tryptophanase-ome”

Conclusion

Minimal functional and structural differences across diverse TILs

N=3 biological replicates. Ordinary one-way ANOVA with Tukey’s multiple comparison. 

Gut microbial TILs display nearly identical structural and functional
characteristics despite harboring low sequence identity and deriving
from diverse taxa. Here, we leverage this homogeneity to aid in the
creation of a pan-acting transition state analog. (3S) ALG-05 is non-
lethal to microbes at physiologically relevant doses and successfully
reduces serum IS levels in mice. Thus, it represents a promising
targeted therapeutic to reduce gut-derived uremic toxins in CKD.

1. Mills et al, Kidney Int, 2010.
2. Vanholder et al, Toxins, 2018.
3. Devlin et al, Cell Host Microbe, 2016.
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Chronic kidney disease (CKD) afflicts nearly 800 million
people worldwide and is one of the fastest growing causes
of mortality1. A key consequence of a diseased kidney is the
serum retention of toxic compounds, known as uremic
toxins, that have a broad impact on human physiology. One
of the most damaging uremic toxins is indoxyl sulfate (IS), a
metabolite produced through the gut microbial metabolism
of tryptophan by the enzyme tryptophanase (TIL)2. Previous
studies reveal that the genetic elimination of TIL in an
artificial microbiome of mice resulted in no detectable
serum levels of indoxyl sulfate and reduced kidney injury3,4.
Here we use classical biochemistry, protein crystallography,
and medicinal chemistry techniques to reduce the
production of IS with application for reducing uremic toxicity
in CKD.
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Optimization of a pan-acting, transition state analog of TILs

Oxindolyl-L-alanine (OxA), a pre-existing TIL inhibitor,
displays variable activity across diverse TILs. OxA was
used as the starting scaffold for our medicinal chemistry
campaign which resulted in the identification of ALG-05.
C3 stereochemistry plays a vital role in potency.

183 unique TILs
E= 10-160
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Despite low sequence identity (32-
49%) between structures, the
active site architecture and carbon
backbone alignment (1.15 - 2.99 Å)
of TILs are remarkably conserved
across the human gut microbiome.
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(3S) ALG-05 is non-lethal to microbes and 

lowers IS levels in vivo

(3S) ALG-05 binding pose reveals
introduced halogen bonding
interactions with Y77 and R152 that
stabilize the quinonoid complex.
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TILs in the gut microbiome exhibit minor differences
in functional activity despite deriving from diverse
taxa. Kcat/KM values are maximally 2- to 3-fold
different and there is no significant difference in KM.
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WHAT DOES THE RATIO BETWEEN BLOOD BACTERIAL AND FUNGAL MICROBIOME ABUNDANCE 
TELL US ABOUT FUNGAL-BACTERIAL INTERACTIONS? 

Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

The human body is home to a diverse range of microorganisms,
including bacteria (bacteriome), fungi (fungiome), archaea (archaeaome), 
and viruses (viriome, including phageome). These microorganisms are 
collectively referred to as the human microbiome. They interact in various 
ways, and these interactions can have significant impacts on human health.

BACKGROUND

The dynamics of interactions among bacteria, fungi, archaea, and viruses
within the human body are complex and multifaceted. They can be 
influenced by various factors, including the host's genetics, diet, age, 
environment, and lifestyle. 
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AIM
The aim of the present meta-analysis was to explore possible

 interactions between microbial and fungal communities. 
Blood group and gender data were included to assess the 

findings' biological relevance.

3 ml of venous whole blood was collected from 28 subjects (14 females, 7 of each blood group
 - A, B, AB, O). Blood was  lysed in d. water and the human DNA was treated with 
DNase. Microbial DNA was isolated by applying treatment with 4% SDS for microbial lysis. I
solated DNA was divided into two subsamples and 16S and ITS metagenomic analysis was 
applied for each subject. Microbial total and relative abundance were calculated. Then the 
bacterial vs. fungal (B/F) reads ratio was analyzed. Data were subjected to nonparametric 
statistical evaluation (Kruskal-Wallis) of gender and blood group effects.

 
(4) The blood type had an impact on the B/F ratio. 
For individuals of blood groups, A and B the ratio were 
around 1 and 0.2 (P<0.05) for individuals of blood groups 
AB and O.

In conclusion, despite the overall fungal dominance the B/F
ratio showed high individual variability ranging from almost
full fugal dominance to negligible fungal presence. The 
dependence of the B/F by gender and blood group 
suggests that it reflects the physiological status of the 
host. It could be hypothesized that B/F could serve as a 
health diagnostic index. It is worth testing the therapeutic 
correction of B/F in clinical practice.
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(1) The overall fungal 
sequence number 
(median=8579) 
was higher 
than the bacterial 
(median = 1062; 
Related-Samples 
Wilcoxon 
Signed Rank Test, 
Z =383; P<0.001).

(2) Individually, the B/F ratio varied significantly across 
subjects spanning from full fungal dominance to an almost 
complete lack of fungal sequences. 

(3) The mean B/F ratio was
higher for males 
(mean B/F=0.95) as 
compared to females 
(mean BF = 0.18; P<0.001). 
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Alterations in the Fungal Microbiome in Ulcerative Colitis 
Katie Hsia, MD1; May Fu, DO1; Laleh Montaser Kouhsari, MD1; Khalid Algarrahi, MD1; Hannah Chen, MD, PhD1,2; Dominique Michaud, MD2; Sushrut Jangi, MD1,2

1. Tufts Medical Center, 2. Tufts University School of Medicine 

Background
• Gut fungi, especially Candida, is known 

to drive immunogenicity in mouse models 
of IBD

• Gut fungal communities in human IBD 
(ulcerative colitis) have not been well-
characterized

• A prior study showed that high Candida 
in stool can prognosticate favorable 
responses to fecal microbial transplant

Aim
• To assess the diversity and differential 

abundance of the fungal microbiome in 
active and quiescent ulcerative colitis

Data Source
• The Study of a Prospective Adult 

Research Cohort with IBD from the 
Crohn’s and Colitis Foundation 

• Stool metagenomics, clinical metadata 
• Internal Transcribed Spacer based deep 

sequencing of fungal rDNA 

Data Analysis
• Alpha diversity: Observed, Shannon
• Beta diversity: Unifrac and NMDS
• Differential Abundance: DESeq2 

Alpha and Beta Diversity 
• No significant differences in alpha or beta 

diversity of the fungal community were 
observed in active vs quiescent 
ulcerative colitis

Differential Abundance
• Candida and Saccharomyces had a 

significantly increased relative 
abundance in patients with active UC vs 
quiescent UC

• Increased Candida was also observed 
even after adjusting for age, gender, and 
immunosuppressive exposure

Take Away
• Candida and Saccharomyces may be 

linked to active inflammation in ulcerative 
colitis

• Elevations in Candida in active UC 
appear unrelated to immunosuppressive 
exposure

• Future studies in other cohorts may 
strengthen this association, allowing for 
development of personalized approaches 
to treating UC, including FMT, in patients 
with elevated Candida

Thank you to Crohn’s and Colitis Foundation, the 
KL2 Career Develpoment Award Program, The 
Charlton Research Grant, and the Natalie V. Zucker 
Research Award. Thanks also to the Tufts Clinical 
and Translational Science Institute and the Tufts 
High Performance Computing Cluster.

Introduction

Methods

Results
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Results

Endoscopic Status Endoscopic Status Biologic Use

Total 
Cohort

Activity Remission p Activity Remissi
on

p Exposed Naive p

n 98 25 28 19 23 66 31

Age, mean (SD) 44.9 
(14.3)

48.5
(13.4)

47.7
(15.7)

0.76 46.2
(14.5)

45.1
(12.1)

0.99 48.6
(13.8)

51.6
(14.9)

0.37

Gender, female, 
frequency 53% 52% 64.3% 0.36 68.4% 60.9% 0.61 50% 61.3% 0.65

Disease duration, 
years, median (IQR)

2
(0-4)

0
(0-4)

2
(0-4)

0.44 0
(0-1.75)

2
(0-4)

0.27 2.65 
(0.25-4)

3
(0-

4.25)
0.96

Fecal calprotectin, 
mean (SD),mg/g

34.9
(84.7)

99.3 
(143.3)

8.78 
(14.7)

<0.05 89.7 
(152.1)

23.6 
(49.1)

.09 39.3 
(90.3)

40.93 
(77.1)

0.26

log2
fold 
change

p-adj Phylum Genus

4.54 <1x10-4 Ascomycota Saccharomyces

2.56 <0.05 Ascomycota Candida

-4.94 < 1 x 10-6 Ascomycota Penicillium

Study Cohort Differential Abundance in Active vs Quiescent UC

Alpha Diversity Beta Diversity

Mean Abundances of Fungal Genera in Total Cohort Relative Abundances
in Active vs Quiescent UC



Capturing an accurate representation of the viral members of a
microbial community presents significant experimental and
computational challenges. To address these limitations, we
developed BAQLaVa (Bioinformatic Application for Quantification
and Labeling of Viral taxonomy), which integrates both reference-
and assembly-based methods to generate viral profiles from
shotgun DNA or RNA sequencing. Here, we have evaluated
BAQLaVa with 1) in silico simulated data representing virus across
all viral realms, 2) synthetic gut viromes, and 3) human gut
metagenomes and metatranscriptomes.

Jordan Jensen1,2, Ya Wang2,3,4, Moreno Zolfo5, Philipp C. Münch3,6, Nicola Segata5, Eric A. Franzosa2,3,4, Curtis Huttenhower1,2,3,4
1Department of Immunology and Infectious Diseases, Harvard University, Boston, MA, USA; 2Harvard Chan Microbiome in Public Health Center, Harvard University, Boston, MA, USA;
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5Centre for Integrative Biology, University of Trento, Italy; 6Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany.

Integrating reference- and assembly-based methods for 
improved viral identification from microbial community sequencing

Discover Huttenhower Lab software & tutorials via
http://huttenhower.sph.harvard.edu/biobakery

BAQLaVa Methodology BAQLaVa combines approaches 
for improved performance 

The gut virome is abundant but 
underrepresented in databases

Evaluation of BAQLaVa with complex meta’omes

Multi-step translated approach 
prevents false positive calls

Deep learning complements limitations 
of reference-based viral search

Nucleotide mapping of 
synthetic metagenomes

Genome coverage (c)

True
Positive

Rate

False
Negative

Rate

c <
1

1 ≤ c <
2

10 ≤ c

5 ≤
c <

10

2 ≤ c <
5

Right A set of viral synthetic meta’omes
were created by clustering all RefSeq & 
GenBank viral genomes deposited after 

Jan 1, 2021. Gut-specific synthetic 
viromes were made from predicted viral 
genomes identified from a set of MAGs 

assembled from human gut 
metagenomes (Benler et al. 2021).

BAQLaVa employs a tiered reference-based search, first to a
nucleotide database, and subsequently to a protein database. In
parallel, reads are assembled into contigs and classified with a
neural net trained to predict viral taxonomy at the genus level.

BAQLaVa identifies characterized viruses from RefSeq (nucleotide) and
ICTV (translated) databases, as well as uncharacterized viruses by
mapping to viral MAG databases (nucleotide).
We used BAQLaVa to profile ten metagenome (MGX, top) and
metatranscriptome (MTX, bottom) samples from paired human gut
samples (ibdmdb.org). Bacterial abundances were obtained for the
same samples via upstream analysis with MetaPhlAn and HUMAnN.

!Our results show we 
can often capture a 1:1 
and potentially higher  
virus:bacteria ratio with 
BAQLaVa. 

!A large fraction of virus 
identified by BAQLaVa
originates from viral 
MAG databases, 
indicating that an 
abundance of virus in 
the gut has not yet been 
well-studied. Use of 
novel databases can 
boost sensitivity and 
overcome this limitation 
that would otherwise 
severely restrict viral 
profiling.

!CrAssphage are 
abundant in the gut: 
Among the shared 
genera observed highly 
present in both MGX & 
MTX samples were 
Culoivirus, Blohavirus, 
Cohcovirus, and 
Carjivirus, all members 
of the novel 
Crassvirales order. 
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species of the same genus, one present 
in a simple synthetic metagenome (top) 

and the other absent (bottom). 

The authors gratefully acknowledge the use of the FASRC Cannon cluster
supported by the FAS Division of Science Research Computing Group at Harvard
University. This work was supported by a research grant from Astellas Pharma Inc.

Normalized Abundance: Bacterial and viral abundances in RPK were
normalized to the total potential bacterial coverage (red line), which
was calculated based on a model bacterial genome length of 4.6
Mbp (E. coli). Relative Abundance: Virome community profiles are
shown at the genus level.
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Figure 1: Overview of viral tool evaluation and workflow construction. A) Schematic of the
synthetic meta-ome set and evaluation metrics applied to nucleotide alignment and translated
search (top-right) and machine learning tools (bottom-right). B) Processing and taxonomic
assignment of the expanded viral reference set (top) and viral profiling workflow diagram (bottom).
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Results from direct reference observation 
are complemented by taxonomic 
predictions generated via deep learning. 
This achieves an expanded viral profile.
Left A neural net, deepG, was trained to 
predict genus-level taxonomy for 474 
ICTV genera (all with at least 10 unique 
species). Predicting on assembled contigs 
of ≥ 2kb produced the highest balanced 
accuracy across genera. 
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Coronavirus disease 2019 (COVID-19) is often accompanied by
gastrointestinal symptoms. However, little is known about the
relation between the human microbiome and COVID-19. Here we
used whole-metagenome shotgun sequencing data together with
assembly and binning strategies to reconstruct metagenome-
assembled genomes (MAGs) from 514 COVID-19 related
nasopharyngeal and fecal samples in six independent cohorts. We
reconstructed a total of 11,584 medium-and high-quality microbial
MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with
strain-level resolution. We found that there is a significant reduction
of strain richness for many species in the gut microbiome of COVID-
19 patients. The gut microbiome signatures can accurately distinguish
COVID-19 cases from healthy controls and predict the progression of
COVID-19. Moreover, we identified a set of nrMAGs with a putative
causal role in the clinical manifestations of COVID-19 and revealed
their functional pathways that potentially interact with SARS-CoV-2
infection. Finally, we demonstrated that the main findings of our
study can be largely validated in three independent cohorts.

Abstract

• After quality control, we performed metagenomic assembly and 
binning on those microbiome samples from the discovery cohorts 
and recovered 11,584 MAGs, 872 SGBs, and 5403 non-redundant 
MAGs (nrMAGs) (Fig.2).  

Introduction

We collected the raw WMS sequencing data of 514 microbiome 
samples (359 individuals) and 341 microbiome samples (278 
individuals) from 6 and 3 publicly available datasets with different 
technical settings, respectively (Fig.1).
We applied state-of-the-art metagenome assembly and binning 
strategies to reconstruct microbial population genomes directly from 
microbiome samples of COVID-19 patients and controls in the 
discovery cohorts. 

Methods	and	Materials • nrMAGs accurately predict the progression of COVID-19 (Fig.4). 
And we observed some opportunistic pathogens were associated with 
the progression of COVID-19, including nrMAGs from Klebsiella 
quasivariicola, Klebsiella pneumoniae, and Escherichia coli.

The presented results highlight the importance of incorporating the 
human gut microbiome in our understanding of COVID-19.

Conclusions

To better understand the relationship between the human microbiome
and COVID-19, we applied state-of-the-art metagenome assembly
and binning strategies to reconstruct microbial population genomes
directly from microbiome samples of COVID-19 patients and
controls. Our major goals were to construct a COVID-19 related
metagenomic genome catalog to identify novel taxa and strain-level
differences that are likely related to the clinical manifestations of
SARS-COV-2 infection.

Results

Figure 1. Conceptual framework of study.

Figure 2. Reconstruction of MAGs from the discovery cohorts.

Figure 3. COVID-19 related changes in strain richness of microbial species.

Figure 4. Machine learning model predicts the progression of COVID-19.

• COVID-19 patients lost many strains of multiple microbial species 
(Fig.3). 

Figure 5. Genome annotation of permissive and protective nrMAGs.

• We identified a set of nrMAGs with a putative causal role in the 
clinical manifestations of COVID-19 using GMPT pipeline (Fig.5a) 
and revealed their functional pathway (i.e., pentose phosphate 
pathway ) that potentially interact with SARS-CoV-2 infection 
(Fig.5b-c).

• Reactions of the pentose phosphate pathway plays an important role 
in the production of aromatic amino acids (providing the RNA 
backbone precursors ribose 5-phosphate and erythrose 4-phosphate ).

• The aromatic amino acids in the juxtamembrane domain of the 
SARS-CoV S glycoprotein play critical roles in receptor-dependent 
virus-cell and cell-cell fusion.

• A previous study reported that the UK mutation (N501Y) producing 
aromatic-aromatic interactions that provide for stronger binding 
between receptor and spike.

Together, these results suggest that specific microbes (permissive 
nrMAGs may play a role in mediating SRAS-CoV-2 entry into host 
cells through pentose phosphate pathway and aromatic amino acids.
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Functional diversification of plant small molecules by the gut microbiome tunes intestinal homeostasis
Gavin A. Kuziel1, Gabriel L. Lozano1, Corina Simian2, Emmanuel Stephen-Victor1, Talal A. Chatila1, Jing-Ke Weng2, Seth Rakoff-Nahoum1

Introduction

Approach

Future Directions

Diet is instrumental in driving the composition and dynamics of the gut microbiome 
and in the development and prevention of human disease. Unlike our 
understanding of carbohydrate-microbe interactions, there is a dearth of knowledge 
as to plant small molecule (phytochemical)-microbe interactions, whether these 
molecules are metabolized by gut bacteria and how products of phytochemical 
catabolism affect microbiome composition or host physiology. Here we show that 
diverse gut symbionts leverage distinct genetic systems to bioactivate dietary 
phytochemicals to immunomodulatory metabolites. Our findings provide new 
insight into the role of the microbiome in the activation of abundant dietary 
phytochemicals and the effects of these metabolic transformations on the 
maintenance of intestinal homeostasis and protection from enteric disease.

Species-level and chemical-level variation is extensive within
Bacteroides phytochemical metabolism

Bacteroides species leverage divergent genetic mechanisms
for phytochemical metabolism

3

• Identify the cellular and molecular circuitry underlying PC3’-mediated 
protection from DSS-induced experimental colitis

• Determine whether microbial bioactivation of phytochemicals protects 
against other diseases such as infection, cancer, or food allergy

Diverse human gut bacteria metabolize dietary phytochemicals1

Proteobacteria

Bacteroidetes

Firmicutes

Bifidobacteria

Results
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Phytochemical bioactivation by a Bacteroides metabolic
specialist differentially tunes intestinal homeostasis
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• Determine the scope of phytochemical metabolism across prominent human 
gut bacteria utilizing techniques within microbiology and culturomics
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• Identify and characterize the genetic and
enzymatic basis for phytochemical metabolism,
leveraging techniques within microbial genetics
and molecular biochemistry

• Assess the pro- or anti-homeostatic effects of phytochemical metabolism
on host physiology using coupled in vitro and in vivo models of intestinal
disease such as colitis or colorectal cancer

Dietary InputWT vs Mutant Bacterial Colonization Disease Induction
Immune Profiling 
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Figure 5. Blastocystis morphology. (A) 
Vacuolar ST1 (JDR) (B) Amoeboid ST3 (DL) 
in co-culture with bacteria, (C) Vacuolar and 
granular Blastoise, (D) Proteromonas lacertae
(credit V. Perez-Brocal)
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Blastocystis is a stramenopile, but does not 
have characteristic stramenopile morphology. It 
lacks flagella, and in culture appears in multiple 
different cell forms (large central vacuole, 
amoeboid-like protrusions) (Figure 5).

Genetic diversity of commensal Blastocystis gut protists reveals 
strain-specific changes in host-interfacing pathways

Abigail Lind1, Ami Bhatt2, and Katie Pollard1
1Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, 2Department of Genetics, Stanford University, Stanford, CA

Eukaryotes in the human gut microbiome
Microbial eukaryotes 
(protists, fungi) and 
microscopic animals 
are found alongside 
bacteria and archaea in 
natural microbial 
systems, including 
host-associated 
microbiomes. 

Eukaryotes in human 
gut microbiomes are 
incredibly diverse and 
span a wide range of 
the eukaryotic tree of 
life (Figure 1).

Blastocystis is the most common gut eukaryote, correlates 
with health & differences in microbiota

High-quality genomes spanning the diversity 
of the Blastocystis genus

Contact: abigail.lind@gladstone.ucsf.edu @AbigailLLindallind

Blastocystis is genetically diverse with a derived morphology

Figure 1. The eukaryotic tree of life1. Species belonging to 
taxonomic groups marked with red arrows are found in human gut 
microbiomes.

Figure 2. 
Prevalence of 
eukaryotic fungal 
& protist species 
in human gut 
microbiomes, as 
identified with 
EukDetect2. 
Data from 
PREDICT3 (UK 
and US healthy 
cohort).

Figure 4. 18S rRNA phylogeny of all described 
Blastocystis subtypes. Proteromonas lacertae is 
used as an outgroup. Branches with bootstrap 
values less than 80 are collapsed. Sequences in 
red were sequenced in this study. 
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Blastocystis

Entamoeba
Endolimax
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The Blastocystis genus is comprised of over 20 
known subtypes that colonize the gastrointestinal 
tract of animals. We cultured 6 Blastocystis strains and used long-read Nanopore 

sequencing, Illumina DNA and RNA sequencing, and for one strain (BT1) 
Phase Genomics Hi-C scaffolding to generate highly continguous, annotated 
genomes (Figure X).

Figure 6. Genome assembly statistics. (A) 
Assembly size. (B) Number of annotated protein-
coding genes. (C) Percentage of contigs that have 
telomere-like repeats at the ends, as a proxy for 
genome completeness. (D) GC content of 
Blastocystis genomes compared to close 
relatives.

Figure 3. Bacteria that co-occur or co-exclude with 
Blastocystis in the human microbiome. Numbers indicate 
relative abundance. Data from PREDICT3.
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Blastocystis has lost morphological genes related to cell 
body shape and flagella

The stramenopile protist Blastocystis is the most prevalent commensal eukaryotic gut colonizer 
(Figure 2). Blastocystis is more common in individuals without gut inflammation and correlates with 
lowered markers of gut inflammation and metabolic syndrome3. Certain microbiota co-occur and co-
exclude with Blastocystis (Figure 3).

Expanded diversity of glycosyltransferases 
underlying antigenic diversity in Blastocystis
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Glycosyltransferases expanded in Blastocystis

Subtype-specific expansion of horizontally transferred adhesins

Vacuolar form;
axenic culture

Pseudopodia-like extrusion; 
bacterial co-culture

Figure 8. Glycosyltransferase 
families expanded in 
Blastocysis.

Figure 7. Morphological genes lost in Blastocystis. 

All Blastocystis subtypes have lost most flagellal genes, reduced their molecular motors, and lost 
ion channels that protists use to move flagellal hairs. These gene losses underly the change in cell 
morphology seen in Blastocystis relative to other stramenopile protists. Human subtypes of Blastocystis

have undergone large gene family 
expansions of glycosyltransferase 
gene families. Blastocystis 
isolates are antigenically diverse, 
and this diversity in 
glycosyltransferase may generate 
diversity in cell surface sugars.
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Blastocystis and
Proteromonas species 
contain a family of 
adhesins with homologs in 
bacteria but without 
homologs in other 
eukaryotes. This gene 
family has expanded in 
some subtypes.

Blastocystis forms pseudopodia-like 
extrusions in co-culture with bacteria, 
and these adhesins may aid in forming 
these extrusions.

Figure 9. Expanded adhesins in Blastocystis.

Figure 10. 
Pseudopodia-
like extrusions 
from 
Blastocystis in 
bacterial co-
culture.

Summary
• Blastocystis is most common gut eukaryote
• High quality genomes of 6 Blastocystis strains
• Blastocystis has lost morphological genes
• Subtype-specific expansions of host-facing 

genes including: 
• Horizontally transferred membrane-

anchored cadherins
• Glycosyltransferases underlying

antigenic diversity
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Incorporating metabolic activity, taxonomy and community structure to 
improve microbiome-based predictive models for host phenotype prediction 

Mahsa Monshizadeh and Yuzhen Ye
Computer Science Department, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington

The human gut microbiome play key roles in human health and diseases. 
We developed MicroKPNN, a prior-knowledge guided interpretable neural 
network for microbiome-based human host phenotype prediction. The 
prior-knowledge used in MicroKPNN includes the metabolic activities of 
different bacterial species, phylogenetic relationships, and bacterial 
community structure. Application of MicroKPNN to seven gut microbiome 
datasets (involving five different human diseases including inflammatory 
bowel disease, type 2 diabetes, liver cirrhosis, colorectal cancer, and 
obesity) shows that incorporation of the prior knowledge helped improve 
the microbiome-based host phenotype prediction. MicroKPNN 
outperformed fully-connected neural network based approaches in all 
seven cases, with the most improvement of accuracy in the prediction of 
type 2 diabetes. MicroKPNN outperformed a recently developed deep-
learning based approach DeepMicro, which selects the best combination 
of autoencoder and machine learning approach to make predictions, in six 
out of the seven cases. More importantly, we showed that MicroKPNN 
provides a way for interpretation of the predictive models. Our results 
suggested that the metabolic potential of the bacterial species contributed 
more than the two other sources of prior knowledge. MicroKPNN is 
publicly available at https://github.com/mgtools/MicroKPNN. 

References

Figure 1. The neural network structure used in MicroKPNN. It is composed of 
three layers (shown on the left). In the input layer, each node is a species, 
and the hidden layer includes nodes of four different groups: metabolites 
(red), taxa (blue), communities (green), and unknown hidden nodes (gray). 
The links between the input nodes and the nodes in the hidden layer 
represent different biological meanings (shown on the right).

Optimization of MicroKPNN and comparison with other methods

Table 1. Summary of best performing neural network architecture for each 
dataset and their average AUC. 

Table 2. Comparison of MicroKPNN with different methods including NNs 
that are fully connected (fc-NN) in averaged AUC and standard deviation 
(in parenthesis).

• L-Idonate, CO2, and mucin glycoprotein were the top three most 
important metabolite nodes that contributed to the prediction.

• Among the bacterial species that are involved in mucin glycoprotein 
degradation (i.e., mucin consumers), we observed that Ruminococcus 
gnavus was highly elevated in cirrhosis patients. Increase of R. gnavus 
was found to be implicated in the degradation of elements from the 
mucus layer providing an explanation for the impaired intestinal barrier 
function and systematic inflammation in LC patients. 

• Lactate consumption and production were also picked up as important 
nodes by MicroKPNN, suggesting the importance of the bacterial 
species that produce and/or digest these metabolites. 

• It is well known that bacteria produce intermediate fermentation 
products including lactate, but these are normally detected at low 
levels in feces from healthy individuals due to extensive utilization of 
them by other bacteria. 

• Among the taxon nodes, Bifidobacteria had the highest importance 
score; previous studies have shown that patients with chronic liver 
disease have varying degrees of intestinal microflora imbalance with a 
decrease of total Bifidobacterial counts.

MicroKPNN uses a simple architecture, but by leveraging on prior 
knowledge of microbial species, it provides promising predictions of host 
phenotype based on microbiome composition as shown on all seven 
datasets. Comparison of the importance scores of different prior 
knowledge showed that the metabolic activities had the largest impact on 
the performance of predictions. The difference between the relative 
importance scores of the hidden nodes with that of the unknown nodes 
indicates the knowledge gap between the microbial species and their 
interaction with human hosts. The predictive models we built in this work 
are based on species abundance. It has been shown (including our own 
work) that using bacterial genes typically (not always) results in better 
predictive models. A future direction of our work is to expand MicroKPNN 
so that it can take gene abundance as the input for microbiome-based 
prediction. Acknowledgement

Abstract

Figure 2. MicroKPNN uses bacterial communities that were inferred from a 
microbiome association network (see Lam and Ye, 2022). In this network, nodes 
(species) are colored by module resilience, a metric we proposed to quantify 
the tendence of different bacterial species forming bacterial communities. 

Figure 3. Contributions of the different groups of hidden nodes to the prediction as measured by importance scores. (a) IBD (b) C_T2D (c) Obesity (d) Cirrhosis.

(c) (d)

Figure 4. Importance scores of the hidden nodes for microbiome-based liver 
cirrhosis prediction. The top five most important nodes of each group in the 
hidden layer for prediction of cirrhosis are shown in the plot. The bars are 
highlighted in different colors: yellow for unknown nodes, red for 
metabolites, blue for taxa, and green for communities.

Discussion and Future Work

Methods
(b)(a)
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A case study: What can MicroKPNN tell about liver cirrhosis prediction?
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The Microbiome Analysis Core at the Harvard T.H. Chan School of Public 
Health was established in response to the rapidly emerging field of 
microbiome research and its potential to affect studies across the 
biomedical sciences. The Core’s goal is to aid researchers with 
microbiome study design and interpretation, reducing the gap between 
primary data and translatable biology. The Microbiome Analysis Core 
provides end-to-end support for microbial community and human 
microbiome research, from experimental design through data generation, 
bioinformatics, and statistics. This includes general consulting, power 
calculations, selection of data generation options, and analysis of data 
from amplicon (16S/18S/ITS), shotgun metagenomic sequencing, 
metatranscriptomics, metabolomics, and other molecular assays. The 
Microbiome Analysis Core has extensive experience with microbiome 
profiles in diverse populations, including taxonomic and functional profiles 
from large cohorts, qualitative ecology, multi'omics and meta-analysis, and 
microbial systems and human epidemiological analysis. By integrating 
microbial community profiles with host clinical and environmental 
information, we enable researchers to interpret molecular activities of the 
microbiota and assess its impact on human health.

 
 

  

Consultation for microbiome 
project development. 
We provide consultation on 
experimental design, sample 
collection and sequencing, grant 
proposal development, study power 
estimation, bioinformatics, and 
statistical data analysis.
 
Validated end-to-end meta’omic 
analysis of microbial community 
data.
Using open-source analytical methods 
developed in the Huttenhower 
laboratory and by other leaders in the 
field, we provide cutting-edge 
microbiome informatics and analysis.
 
Fully-collaborative support for all 
stages of  funded investigations
  
From preliminary data development to  
hypothesis formulation, grant narrative 
development, data analysis and 
inference, custom software 
development, and co-authored 
dissemination of findings.

Core services

The Harvard Chan Microbiome Analysis Core is a part of the Harvard Chan Microbiome in Public Health Center (HCMPH). Want 
to learn more? Visit https://hcmph.sph.harvard.edu
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McIver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics, 34:7, 1235-1237 (2018). 

Once profiled, microbial 
communities are amenable 
to downstream statistics 
and visualization much like 
other molecular 
epidemiology data such as 
human genetic or 
transcriptional profiles. Like 
these other data types, 
microbial communities 
often require tailored 
statistics for environmental, 
exposure, or phenotype 
association (MaAsLin 2.0, 
MMUPHIN) or for 
ecological interaction 
discovery (BAnOCC). The 
Harvard Chan Microbiome 
Analysis Core provides a 
variety of analyses for 
researchers working in the 
microbiome space.

Director: Xochitl  Morgan
Senior Software Developer: Lauren McIver
Data Analyst: Thomas Kuntz
Scientific Director: Curtis Huttenhower

Contact us at: hcmac@hsph.harvard.edu

Microbial community profiling

Downstream analysis and statistics

Trimming and contaminant removal

1

Statistical analysis, 
multi’omic integrations, 
and visualizations

Strain and pangenome 
profiling

Genome / Metagenome 
AssemblyKneadData

MetaPhlAn HUMAnN

The first step in 
microbiome molecular 
data analysis is quality 
control (KneadData) 
and profiling to 
transform raw data into 
biologically 
interpretable features 
using a reproducible 
workflow (AnADAMA/
bioBakery). This 
includes identifying 
microbial species 
(MetaPhlAn) and 
strains (PanPhlAn/
StrainPhlAn), 
characterizing their 
functional potential or 
activity (HUMAnN), 
and integrating 
metagenomics with 
other data types.
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Low carb diets and the microbiome

Median dietary intake by metabolic body weight 
(grams/(kg body weight0.75)) 

LoCHO

HiCHO

Diet

HiCHO
PROT_LoCHO
FAT_LoCHO

Low carb foods are associated with both broad 
and specific taxonomic changes 

A broad range of microbiome functional
 pathways differ with food change

Random Forest models microbiome feat. associated
with fecal BHB levels

Order of food impacts microbial abundance 

Low carb foods result in differing serum 
and fecal 3-hydroxybutyrate (BHB) levels 

 

MaAsLin2 linear models on functional relative abundance were run using diet, age, 
and gender as fixed effects and animal as a random effect.

Not all low carb foods are equal in their 
impact on microbial fermentation

*** - p < 0.001 as 
modeled by a linear mixed 
effects model with age, 
gender, diet as fixed and 
animal as random effects

Diets that come close to eliminating all dietary carbohydrates (low 
carb) force the body to switch from utilizing carbohydrates to fat or 
protein as its main energy source (Swink et al., 1997). When 
energy is primarily driven by the usage of fat this state known as 
ketosis and is characterized by the production of ketone bodies 
such as 3-hydroxybutyrate (BHB). This state has been associated 
with a number of health benefits. For example, recent evidence 
has suggested that alterations in the gut microbiome by ketogenic 
diets may play a role in improving colitis (Kong et al., 2021) and 
epileptic symptoms (Dahlin & Prast- Nielsen, 2019).  However, the 
degree to which the microbiome is impacted by replacing dietary 
carbohydrates with protein or fat remains unclear.

Metabolomics

Metagenomics & Metabolomics

25/37/38% 27/68/5% 53/39/8%
% Protein/Fat/Carbohydrates

•Beagles were randomly assigned two different food orders
•All dogs were initally fed a standard “high” carb food
• All samples were collected in a fasted state

• MaAsLin2 linear mixed models: ~ age + gender + (1|animal) + diet
• Inner circle: assocaited with carbohydate levels
• Outer circle: associated with specific food group 

MaAsLin2 linear mixed models: ~ age + gender + (1|animal) + diet order

We evaluated the assocation between 
dietary change and overall microbiome 
(Bray-Curtis) and blood and stool 
metabolome profiles (Manhattan distance) 
using PERMANOVA tests. 

*** p < 0.001
**  p < 0.01
*   p < 0.05

*** - p < 0.001 as modeled by a linear mixed ef-
fects model with age, gender, diet as fixed ef-
fects and animal as a random effect

Random forest modelling predicts 
fecal BHB levels using taxonomic 
composition. Models were 
validated using ten repeat five fold 
cross validation
.

Food
HiCHO
FAT_LoCHO
PROT_LoCHO

Food

FAT_LoCHO
HiCHO

PROT_LoCHO

Food
HiCHO
FAT_LoCHO
PROT_LoCHO

HiCHO PROT_LoCHOFAT_LoCHO
HiCHO PROT_LoCHOFAT_LoCHO

HiCHO
FAT_LoCHO
PROT_LoCHO

HiCHO PROT_LoCHOFAT_LoCHO HiCHO PROT_LoCHOFAT_LoCHO



ABSTRACT
Lateral gene transfer (LGT) is an important mechanism for genomic
diversification in microbial populations and communities1, including
the human microbiome2. While previous work has surveyed ancient
LGT events in human-associated microbial isolate genomes3, the
scope, and dynamics of novel LGT events in human microbiomes are
not well understood. We addressed this by developing and validating
a computational method (Workflow to Annotate Assemblies and Find
LGT Events or WAAFLE) to profile novel LGT events from assembled
metagenomes. We assessed WAAFLE on synthetic contigs
containing spiked LGTs and identified intergenus LGTs with >91%
sensitivity and >99.9% specificity. For more challenging intragenus
LGT (due to congeneric overlap), we report a still-respectable 51%
sensitivity. Applying WAAFLE to >2K human metagenomes from
diverse body sites, we identified >100K high-confidence putative,
novel LGT events. These events were enriched for mobile elements
(as expected), as well as restriction-modification and transport
functions, both being particularly intriguing areas for further study
given their putative role in viral/phage-mediated LGT defense. LGT
frequency was quantifiably influenced by biogeography, the
phylogenetic similarity of the involved taxa, and the ecological
abundance of the involved taxa. Our findings suggest that LGT is an
active process in the human microbiome, occurring far more
frequently than previously suspected

CONCLUSIONS
§ Novel methodology for culture-independent LGT detection and profiling in complex 

microbial communities

§ WAAFLE’s focus on raw (unbinned) short-read metagenomic contigs improves 
sensitivity and avoids the daunting technical challenge of assembling complete 
microbial genomes from metagenomes

§ New insights into the landscape of LGT events in the human microbiome: 

§ LGT is an active process in the human microbiome, occurring far more frequently 
than previously suspected

§ LGT frequency is quantifiably influenced by biogeography, the phylogenetic 
similarity of the involved taxa, and the ecological abundance of the involved taxa

§ LGTs are enriched for mobile elements, as well as restriction-modification and 
transport functions typically associated with the destruction of foreign DNA (and a 
theoretical impedance to LGT) and for which their relative overrepresentation may 
suggest a selective advantage that ironically promoted their lateral dissemination 
and fixation

RESULTS

METHOD

ACKNOWLEDGEMENTS
§ Dr. Tiffany Y. Hsu

§ Dr. Long Nguyen  and the Nguyen Lab

§ Dr. Eric Franzosa

§ Dr. Curtis Hutenhower and the Hutenhower lab

§ Collaborators and co-authors 

§ Funding sources  

REFERENCES
1. Brito, I. L. (2021). Examining horizontal gene transfer in microbial communities. 
Nature Reviews. Microbiology, 19(7), 442–453

2. Vatanen, T., Jabbar, K. S., Ruohtula, T., Honkanen, J., Avila-Pacheco, J., Siljander, 
H., Stražar, M., Oikarinen, S., Hyöty, H., Ilonen, J., Mitchell, C. M., Yassour, M., 
Virtanen, S. M., Clish, C. B., Plichta, D. R., Vlamakis, H., Knip, M., & Xavier, R. J. 
(2022). Mobile genetic elements from the maternal microbiome shape infant gut 
microbial assembly and metabolism. Cell, 185(26), 4921–4936.e15

3. Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. 
(2011). Ecology drives a global network of gene exchange connecting the human 
microbiome. Nature, 480(7376), 241–244

4. Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., 
Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L., Tate, J., & Punta, 
M. (2014). Pfam: the protein families database. Nucleic Acids Research, 42(Database 
issue), D222–D230

5. Lloyd-Price, J., Arze, C., Ananthakrishnan, A. N., Schirmer, M., Avila-Pacheco, J., 
Poon, T. W., Andrews, E., Ajami, N. J., Bonham, K. S., Brislawn, C. J., Casero, D., 
Courtney, H., Gonzalez, A., Graeber, T. G., Hall, A. B., Lake, K., Landers, C. J., 
Mallick, H., Plichta, D. R., … Huttenhower, C. (2019). Multi-omics of the gut microbial 
ecosystem in inflammatory bowel diseases. Nature, 569(7758), 655–662

CONTACT INFORMATION
Etienne Nzabarushimana, PhD, MPH:

enzabarushimana@mgh.harvard.edu

Etienne Nzabarushimana1,2*, Tiffany Y. Hsu2*, Dennis Wong4, Chengwei Luo3, Robert G. Beiko4, Morgan Langille5, Curtis Huttenhower2,3, Long H. Nguyen1,2†, Eric A. Franzosa2,3†

*co-lead
†co-supervised

The landscape of novel lateral gene transfer events in the human microbiome

1Massachusetts General Hospital and Harvard Medical School. Boston, MA, USA, 2Harvard T.H. Chan School of Public Health. Boston, MA, USA, 3The Broad Institute of MIT and Harvard, Cambridge, MA, USA, 
4Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada, 5Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada

(A) LGTs shown as undirected edges between species (nodes) across six major
microbiome sites. Edges from the oral and gut site are filtered for 3% population
prevalence, while all edges are shown for the sparser nares and fornix sites (complete
predictions in Table S2). Nodes are colored according to major phyla (top 5 by mean
abundance) and sized according to species relative abundance. (B) Node degrees in the
(unfiltered) networks from ‘a’ follow power-law distributions, with many low-degree species
and a long tail of high-degree (hub) species. (C) LGT events involving hub species are
often dominated by a small number of LGT partners. (D) Directed edges are drawn from
donor to recipient genera from the oral and gut sites. Edges are filtered for 3% population
prevalence, with directionality requiring at least a two-fold preference for the donor role
(bidirectional edges are dashed).

(A) Fold enrichments for Pfam4domains among transferred genes from inter-genus LGT
events relative to all genus-resolved genes in first-visit HMP metagenomes. Dots indicate
statistically significant positive enrichments based on Fisher’s exact test, with nominal p-
values subjected to FDR control (target FDR=0.1). Only domains seen in 10+ LGT events
from at least one body site were considered. The top-25 such domains by mean log-scaled
fold enrichment are shown. (B) Fold enrichments for Pfam domains among inter-genus LGT
contigs relative to single-genus contigs. The top-25 domains were selected and plotted as in
panel ‘A’, with seven transposase domains excluded to highlight other functions. (C)
Taxonomic composition of LGT-enriched Pfam domains at oral and gut sites. The first
example (blue title) is based on counts from panel ‘A’; all other examples (red titles) are
based on counts from panel ‘B’.

A-D :Each panel describes a single contig from an HMP25 non-IBD control
metagenome that contains a PCR-supported LGT event. “Read depth” shows
variation in the depth of sample reads matching sites along the contig, as computed
during WAAFLE’s quality control procedures. Bands show the mean and standard
deviation of read depth for each WAAFLE-identified ORF. “Homology scores” show
matches to this contig from WAAFLE’s protein-coding reference sequences, along
with the k1 and k2 homology thresholds used by the algorithm. Each alignment is
represented by a thin gray line (indicating coverage), at a particular height
(homology score), with a black dot placed randomly within the line (to facilitate
counting alignments in densely aligning regions). “PCR primer pairs” shows the
locations of the designed primers (line endpoints) and amplified products; some
LGT events had more than one primer pair per endpoint.. “WAAFLE gene calls” and
“Prodigal ORFs” show the location and direction of WAAFLE- and Prodigal-
suggested ORFs along the contig and are largely in agreement. Features shown in
red correspond to the putative recipient clade, while those shown in blue
correspond to the putative donor clade. Functional annotations are taken from either
1) the UniProt-assigned name of the best homolog at each locus, or 2) the UniProt-
predicted domain composition of that homolog.

(A) Negative relationships between density of undirected LGT for species pairs
(normalized by their combined total assembly size) and phylogenetic distance at six major
HMP body sites. Pairs are colored according to “remoteness” of the LGT (i.e., the
taxonomic level of the LCA of the two transferring species). (B) Positive relationships
between species’ frequencies as an LGT donor (inferred from directed LGT events) and
species’ mean body site abundances at four major HMP body sites. The nares and fornix
sites were not sufficiently well represented among directed LGTs and were excluded from
this analysis. Horizontal marks in the y-axis margin represent species that occurred as
donors, but which were never detected by MetaPhlAn2 (i.e., having zero mean
abundance). In both “a” and “b,” only species (or species pairs) contributing at least 100
genes across assembled metagenomes were considered. Correlation (“r”) values are
Spearman’s rank correlation; p-values are two-tailed.

Phylogenetic distance and donor abundance as 
determinants of LGT rate

Rates of undirected LGT among major 
genera of the human microbiome
Six body sites with metagenome sequencing from at least 20
individuals in the HMP1-II are shown; the three body sites in the top
row are all from the oral cavity. Heatmap values indicate the density
(rate) of undirected LGT between major genera from the body site,
with “major genera” defined based on ranked average relative
abundance. Rates are computed over first-visit samples from HMP
subjects.

Preferential attachment in the human microbiome 
LGT network

Novel LGTs are enriched for mobile elements and 
transport functions

Experimental support for novel LGT events in 
human stool

WAAFLE finds most expected  LGTs with few false positives and is robust to 
novel  genes



Candida auris and the great 
ESKAPE: the skin as a reservoir for 

antibiotic resistance and 
transmission in American nursing 

homes

Diana M. Proctor 1,  Sean P. Conlan1, Sarah 
E. Samson 2, Mary K. Hayden2, Julia A. Segre 1
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2Rush University Medical Center, Chicago, IL, USA. 

Breaches of 
infection 
control 
practices in 
nursing 
homes 
impacts the 
larger 
healthcare 
ecosystem in 
America.

Introduction

Methodology

Results

Genome resolved metagenomics 
yields >300 near complete genomes 
for Candida auris and the full ESKAPE 

Results

- 36 nursing home patients
- Shotgun metagenomics (N=210)
- Whole genome sequencing (N=75)

Similar results seen in 6 other 
American nursing homes

Many individuals harbor resistance
genes on skin sites that had been
identified by a clinical microbiology lab
in rectal or blood samples over 310 
days prior, on average.

CDC: Antibiotic Resistance Threats in the 
United States, 2019



www.postersession.com

www.postersession.com

Order online at    https://www.postersession.com/order/

INTRODUCTION

We assessed how gut microbial species and features mediate the association 
between depression and citrus, a food group that possibly protects against risk of 
depression.

Total citrus intake was associated with a 
lower risk of incident depression (ptrend

0.001), with a multivariable relative risk of 
0.78 (95% CI, 0.66-0.90), comparing 

extreme quintiles.

Greater citrus intake was prospectively associated with lower risk of depression, and with
greater abundance of F. prausnitzii. Genes encoded by F. prausnitzii that produce SAM (a
compound known to have antidepressant properties) may help explain these findings, via
modulation of intestinal neurotransmitter production. These data offer a potential
mechanism by which diet influences the gut microbiome to reduce risk of depression.

Chatpol Samuthpongtorn, M.D.      
Research fellow at Clinical and Translational Epidemiology Unit (CTEU)
Email: csamuthpongtorn@mgh.harvard.edu

Among these 15 microbial species, 
F. prausnitzii were higher in non-depressed 

individuals compared to depressed participants 

SAM Cycle I

In an exploratory analysis of gut microbial pathways, 
S-Adenosyl-L-Methionine (SAM) cycle I, encoded by 
F. prausnitzii, was reduced in depressed participants. 

Greater abundance of the SAM cycle I 
pathway was associated with decreased 

monoamine oxidase A (MAOA) gene 
expression in colon

1Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School
2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
3Department of Nutrition, Harvard T.H. Chan School of Public Health
4Department of Psychiatry, Brigham and Women’s Hospital and Harvard Medical School

Chatpol Samuthpongtorn,1 Allison Chan,1 Wenjie Ma,1,2 Fenglei Wang,3 Long H. Nguyen,1,2

Dong D. Wang,3,6 Olivia I. Okereke,4,5 Curtis Huttenhower,6,7,8 Andrew T. Chan,1,2,5,7,8, Raaj S. Mehta1,2,8

THE ROLE OF THE GUT MICROBIOME IN THE ASSOCIATION 
BETWEEN CITRUS FRUIT AND RISK OF DEPRESSION 

We found 15 species out of 144 whose abundance 
was significantly associated with total citrus intake 

using linear mixed effects models (FDR = 0.25) 

Diet is known to alter the risk of depression. Increasing data also demonstrate a 
causal role of the gut microbiome in mental illness, via the gut-brain axis. However, 
it remains unclear how diet and the microbiome mechanistically influence 
depression risk in humans. 

OBJECTIVES

RESULTS

CONCLUSION

METHODS

FDR 0.05

5Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital 
6Department of Biostatistics, Harvard T.H. Chan School of Public Health
7Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health
8Broad Institute of MIT and Harvard

DepressionCitrus F. prausnitzii and 
its pathway(SAM cycle I)

MAOA gene

Nurses’ Health Study II (NHSII)

Mind-Body Study (MBS)

We conducted a prospective study in the Nurses’ Health Study II (NHSII) between 
2003 and 2017 among 32,427 middle-aged women free of depression at baseline. 
Citrus intake was determined using validated food frequency questionnaires collected 
every 4 years. Depression was defined according to physician-diagnosis and 
antidepressant use. Between 2013-2014, 207 NHSII participants enrolled in a nested 
substudy, providing up to 4 stool samples (profiled by shotgun metagenomics) and a 
blood sample (profiled by LC-MS-based metabolomics). Cox proportional hazard 
models were used to relate citrus intake with depression risk. Linear mixed effects 
models were used to relate diet with gut microbial features, and microbial features with 
depression. We also associated microbial features with a depression-risk score, 
derived according to levels of circulating serotonin and GABA. All models were 
adjusted for multiple dietary, medication and lifestyle variables including age, BMI, 
calorie/alcohol intake, and diet quality. We validated our findings in the Men's lifestyle 
Validation Study (MLVS), a subcohort of 307 men in the Health Professionals Follow-
up Study (HPFS). Finally, we used a linear mixed-effects model to examine the role of 
gut microbial RNA with host transcriptomic gene expression from colon biopsies of 
132 Human Microbiome Project 2 (HMP2) participants.

Mind-Body Study (MBS)

Greater abundance of F. prausnitzii was 
also associated with our metabolomics-
based depression-risk score in the MBS 

(p 0.027), and in the MLVS (p 0.039). 

Men's lifestyle Validation Study (MLVS)

Human Microbiome Project 2 (HMP2)
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Phylogenetic analysis of bacteria associated with HMO 
metabolism from gut metagenomes of US infants with eczema

Prioty F Sarwar, Deniz Uzun, Kevin S Bonham, Vanja Klepac-Ceraj
Department of Biological Sciences, Wellesley College, Wellesley, MA 02481

Background Results: Community Level Metrics

Results: Strain level analysis of select HMO metabolizing bacteria from MARCH cohort Conclusions

Acknowledgements

q Human milk plays a key role in the development of the innate and 
adaptive immune system and gut barrier integrity

q Human milk oligosaccharides (HMOs) are indigestible by infants but 
acts as a prebiotic to shape the infant gut microbiota

q Eczema is an inflammatory skin condition that affects up to 20% of US 
infants and is predictive of the development of later allergic diseases

Study Design & Characteristics

Hypothesis: HMO metabolism (partially) drives the protective effect of 
human breast milk from eczema

Mean relative abundance of known 
HMO metabolizers in the MARCH 
and RESONANCE cohorts.

Aim: Identify HMO metabolizing bacteria and the specific genes that 
correlate with the development of AD/eczema in infants 

MARCH RESONANCE
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(A) Principal Coordinate Analysis using Bray-Curtis distances of MARCH and 
RESONANCE infant gut metagenomes Cohort and age (PERMANOVA; R2 = 0.018 p-
value < 0.0001) have significant effects on sample beta diversity. (B) Taxonomic profile 
PERMANOVA by cohort (* p < 0.05 ; ** p < 0.01; *** p <0.001).

q The MARCH and RESONANCE are 
distinct cohorts that span similar age groups 
of infancy with RESONANCE skewed towards 
older infants.

q The two cohorts show differences in 
taxonomic alpha and beta diversity. 
RESONANCE cohort has a lower mean 
relative abundance of HMO metabolizers 
than MARCH.

q B. infantis, B. longum and B. fragilis 
assembled from the infant gut metagenomes 
do not show any clear associations with 
eczema.
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Bifidobacterium longum subsp. longum (n = 18)

Bacteroides fragilis (n = 18)

90
%

 p
os

te
rio

r
in

te
rv

al
s

Shannon diversity index shows lower alpha diversity for 
breastfed samples. Statistically significant differences in 
alpha diversity observed by cohort and feed type 
(two-way ANOVA, p < 0.0001).

No obvious clade correlations between select HMO 
metabolizing bacteria and eczema status. Strain-level 
phylogenetic analysis done with StrainPhlAn. 
Phylogenetic linear mixed modeling using anpan of B. 
longum, B. infantis and Bacteroides fragilis with the 
outcome variable of eczema and feed type as covariates.

Research Aim

MARCH RESONANCE

N
o.

 o
f 

Sa
m

pl
es

231 151

Se
x M

al
e

114 74

Fe
m

al
e

115 62

M
ea

n 
Ag

e

4.1 months 6.9 months

n=231 n=151

(A) (B)*
* *

***

*

*

**

***

***

*

We would like to thank our collaborators Sarah S Comstock and the Huttenhower lab, and the grants from 
NIH and Wellcome that funded this project. Full acknowledgements and citations: tinyurl.com/bdfzafnr. 

q Complete strain-level analysis of HMO 
metabolizers in the MARCH and 
RESONANCE cohorts.

q Phylogenetics Analysis of specific HMO 
metabolizing gene sets from the infant gut 
metagenomes of the two cohorts.

qFunctional gene set enrichment analysis 
of our infant gut metagenomes using the 
CAZY database.



The Early-Life Skin Genomes (ELSG) 
catalog is comprised of 9,194 bacterial 
genomes from 1,029 species, 206 
fungal genomes from 13 species, and 
39 eukaryotic viral sequences 

A multi-kingdom genome catalog of the early-life human skin microbiome 

Introduction
• We recently published the 

Skin Microbial Genome 
Collection (SMGC), which 
greatly expanded the 
reference genomes for 
human skin microbiome. 

• However, the current 
reference genomes are 
largely based on samples 
from adults in North 
America and lack 
representation from 
infants and individuals 
from other continents. 

• Infant skin provides a 
different cutaneous 
environment for microbes 
and a unique habitat to 
study skin microbiome.

Methods
• We used ultra-deep 

shotgun metagenomic 
sequencing to profile the 
skin microbiota of the 
cheek and antecubital 
fossa of 212 infants at age 
2-3 months and 12 months 
who were part of the 
VITALITY trial in Australia.

• Each sample yielded a 
median of 28.6 million non-
human reads.

• We built metagenome-
assembled genomes 
(MAGs) from each sample 
by using MEGAHIT for 
assembly, and MetaBAT, 
MaxBin, and CONCOCT 
for binning. 

Zeyang Shen1, VITALITY team2, Kirsten P. Perrett2, Pamela A. Frischmeyer-Guerrerio3, Julia A. Segre1
1National Human Genome Research Institute, Bethesda, MD, 2Murdoch Children's Research Institute, Parkville, Australia, 3National Institutes of Allergy and Infectious Diseases, Bethesda, MD

Discussion
• We present the largest 

multi-kingdom genome 
collection for early-life skin 
microbiome, which is also 
the first skin microbial 
genome collection based 
on samples from Oceania.

• This resource will be useful 
to initiate studies of 
childhood cutaneous 
disorders, such as atopic 
dermatitis that typically has 
an age of onset in infancy. 

• Among 1,029 bacterial species, 699 are newly found on human skin, expanding the 
total phylogenetic diversity by 56%. 

• Fungal specificity of early-life skin.

Methods (cont’d)
• Bacterial MAGs were 

checked for quality with 
CheckM and GUNC, fungal 
MAGs with EukCC, and 
viral sequences with 
CheckV. All the MAGs 
included in the ELSG 
catalog have >50% 
completeness and <10% 
contamination.

• Taxonomy was assigned 
by GTDB-Tk for bacterial 
MAGs; >95% ANI 
compared to GenBank 
genomes for fungal MAGs; 
BLASTn to the nt database 
for viral sequences. 

• The ELSG catalog 
improved the classification 
rate of metagenomic reads 
by 25% based on Kraken. 

Cheek

Antecubital
fossa

Phylogenetic diversity by phylum

• Viral diversity of early-life skin.



Identifying strain-specific associations in colorectal cancer
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Expanded meta-analysis of CRC-
microbiome study design

In colorectal cancer development, the progression from healthy intestinal cells 
to benign tumors (adenomas) and then to more malignant forms has profound 
impacts on the composition of the intestinal microbiota. Additionally, the 
factors influencing this progression are idiopathic but likely involve a 
combination of genetics, local tumor environment, and extrinsic factors such 
as diet. Here, we focus on further elucidating the role of the gut microbiome, a 
large component of the tumor microenvironment, in cancer initiation and 
progression by considerably expanding on the current largest meta-analysis 
to include a total of 3,558 samples from 17 public and private studies. 
Through expanded sample size, increased resolution of the computational 
tools, and bioinformatic advances, we have improved the understanding of the 
gut ecosystem in CRC. While biomarkers of CRC have been well studied in 
the past, these analyses have focused on species who have previously been 
isolated. Leveraging new tools, we expand that analysis here to all known 
microbial taxa and provided novel strain-level insights into the role of the gut 
microbiome in CRC.

Kelsey N. Thompson1,2,3*, Gianmarco Piccinno4, Andrew Ghazi1,2,3, Yan Yan1,2,3, Paolo Manghi4, Andrew M. Thomas4, 
Long H. Nguyen2,3,5, Lior Lobel2,3, Lauren J. Mciver1,3, Eric A. Franzosa1,2,3,  Andrew T. Chan5, Wendy S. Garrett2,3, 

Nicola Segata4, Curtis Huttenhower1,2,3
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Many species differentially carry 
genes in health and CRC

Robust biomarkers of CRC across 
country, colon location, and stage 

Sub-species clades strongly 
associate with CRC and stage 
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Phage predation of the dominant skin microbiome commensal
A. Delphine Tripp1,2, Jacob S. Baker2, Evan B. Qu2, Tami D. Lieberman2
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C. acnes prophage carriage is rare and sparse across phylogroups
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Cutibacterium acnes and its phage are a tractable model system to 
study predator-prey dynamics in the human skin microbiome

Bacteriophages (predators) promote diversity in microbial communities by generating bacterial 
(prey) species- and strain-level population fluctuations. The contribution of phage predation on the 
skin microbiome has not been extensively studied, where it is a likely determinant of on-person 
colonization. Here, we combine culture-based whole genome sequencing and shotgun 
metagenomic approaches to examine on-person predator-prey dynamics of the highly abundant 
and ubiquitous skin commensal C. acnes and its phage on sebaceous skin. During early life and 
adolescence, sebaceous skin is particularly conducive to colonization, in contrast adult skin 
maintains a stable composition. It is hypothesized that throughout adolescence vertical and 
horizontal acquisition from parental and non-parental sources creates unique and stable 
microbiomes across adult individuals. The mechanisms behind this age-dependent selective skin 
colonization are unclear. This motivates our investigation into this period of ecological disturbance 
as a unique window to understand how bacterial and phage communities assemble in a human 
ecosystem.

Questions:
What is the prevalence of    
C. acnes phage populations 
on human skin?
When are C. acnes phage 
acquired?

A combination of culture-based genomics and 
metagenomics facilitates mechanistic understanding 

of on-person ecology and evolution
To study C. acnes and its phage, we collected longitudinal facial swabs from K-8 
classmates and their family members. We cultured C. acnes bacterial isolates and 
sequenced metagenomes from the faces of 56 individuals across 24 families, including 
timepoints sampled every six months up to two years apart. We supplemented this with 
C. acnes genomes and skin metagenomes from public datasets.

Prophage-like elements found in the genomes of C. acnes 
bacteria include a novel single-stranded DNA (ssDNA) phage, 
and a previously documented double-stranded DNA tailed 
(dsDNA) pseudolysogen and cryptic phage-like region.

The ssDNA and dsDNA prophage 
are found in a minority of isolates 
with high variability across and 
within lineages suggesting rapid 
gain/loss. The cryptic phage-like 
region is found in all phylogroup 
type D/H isolates yet carried 
sparsely across other phylogroups 
suggesting possible mobilization. 

The human host shapes the assembly and structure of on-person C. acnes phage populations

Findings:
Novel ssDNA lysogen discovered in   
C. acnes genomes

C. acnes prophage carriage is rare 
and sparse across phylogroups

Individuals’ C. acnes  bacteria are 
dominated by a single prophage type

Although prevalent, C. acnes phage 
populations are not ubiquitous across 
people

Individual’s cutotype shapes on-person 
C. acnes phage population structure

Sample skin 
microbiota

Evolutionary 
inference

Prophage detection

Extract DNA and 
sequence metagenome

Isolate and sequence single 
bacterial colonies 

Reconstruct sample 
composition

Goal: 
Bacterial genomes

Goal: 
Metagenomes

Sample skin 
microbiota
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Individuals’ skin microbiomes can be assigned a cutotype based on the
dominance of C. acnes bacteria in their metagenomes. Younger individuals’ skin 
microbiome begin with a low relative abundance of C. acnes and with maturation
transition to a C. acnes dominated community. Although we never simultaneously 
observed both phage as lysogens in any individuals’ bacterial isolates, we do 
observe both co-existing stably in metagenomes where both free phage and 
prophage are collectively detected. On some individuals’ we detected only a single 
phage type, and across younger subjects with non C. acnes dominant
communities we did not detect either phage. In public datasets we also observe 
metagenomes lacking either phage independent of C. acnes bacteria relative 
abundance. Together these findings motivate further investigation into the role of 
the human host environment in shaping on-person phage populations.

Individuals’ skin microbiomes harbor multiple co-existing subphylogroups of 
C. acnes bacteria that are dominated by a single type of prophage. Phylogenetic
reconstruction of prophage sequences is required to determine if on-person
phage populations originate from a single or multiple colonization events.
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Scalable virome enrichment methods for microbial
community detection and quantification
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 Study design

Ongoing works

Viruses are important but often overlooked members of most microbial 
communities, including the human gut, where many remain uncharacterized. This 
is due to a combination of both computational and experimental limitations: viral 
nucleotides are difficult to enrich and extract, and once sequenced, their 
uniqueness and divergence make them difficult to classify. The limitations of 
high-throughput sequencing approaches to address this have been noted 
previously, but few study has evaluated the efficiency of specific protocols for 
retaining viral nucleotides from a community while depleting non-viral members. 
Here, we present our work benchmarking varied experimental protocols to isolate 
virus-like particles (VLP) from gut microbial communities. Different experimental 
parameters were evaluated to develop an optimized protocol, which was further 
validated in  mock communities (viruses representing common gut viral families) 
and in spiked stool samples. The optimized protocol efficiently reduced bacterial 
signals below the detection limit in mock viral communities. In spiked stool 
samples, the protocol depleted bacterial signals by approximately 100-fold - 
although, notably, this still left non-viral nucleotides in the majority in many cases. 
Different viral clades were also differentially affected by changes in experimental 
parameters, leading to bias relative to the ground truth. We thus provide a 
standardized and optimized protocol for gut VLP isolation, with known limits of 
detection and differential extraction efficiency among potential viral targets.

Evaluating different experimental 
parameters for gut VLP isolation

Optimized VLP protocol depleted 
bacterial nucleotides from spiked stool

Virome profiling of VLP-enriched and 
whole community metatranscriptomes

We are currently carrying out analysis of metagenomic and metatranscriptomic 
sequencing from VLP-treated preemie stool samples to evaluate the protocol on 
real-world samples at scale. We are also continuing to improve BAQLaVa for 
virome profiling. Together, we hope these tools will improve experimental and 
bioinformatic capabilities for gut virome profiling.

The works has been supported by Grant U19AI110820 and the DFSA 
Incubation Award from the Harvard Chan Dean’s Fund for Scientific 
Advancement.

Translation search using HUMAnN identified both bacteria and viruses. Abundant 
E. coli reads likely indicate contaminations in original phage cultures; Viral 
communities further profiled using a newly-developed integrative computational 
method, BAQLaVa (Bioinformatic Application for Quantification and Labeling of 
Viral taxonomy).

The optimized VLP protocol reduced 
bacterial signals by 105 copies/ml in 
mock viral  communities, and about 
100-fold in spiked stool samples

P1, T1 and T4 phages were slightly 
depleted in samples treated with VLP 
protocol, while phiX174 and MS2 
phages enriched.

Non-viral nucleotides still left in the 
majority, and different viral clades were 
differentially affected.

Protocol optimization in stool samples with 
synthetic viral cultures of equal T4 and MS2

VLP protocol evaluation in mock viral communities of five equally mixed viruses 
and in spiked stool samples 

+
T4 MS2 Stool sample

VLP protocol application in preemie 
stool samples

T4 P1 T1 MS2 phiX174 Stool sample

+/-

Ethanol did not differ 
greatly from SM buffer

0.45 µm filter, 100kDa 
centrifugal filter 
concentration depletd the 
most bacteria while 
preserving the most 
viruses;

10 Unit DNase treatment 
being most effective

RNase caused negative 
effect to RNA viruses.

Conditions with the highest purification efficiency (largest depletion of bacterial 
signals, i.e. lowest 16S rRNA gene copies) and the minimum impact on the spiked 
viruses (highest viral gene copies) were selected.

Purification efficiency of a gut VLP isolation protocol was found affected by various 
experimental parameters:

, Kelsey Thompson1,2,3

3Harvard Chan Microbiome in Public Health Center   

Experimental parameters known to affect viral extraction from previous works: 
storage buffer, filtration combinations, methods for nucleic acid concentration 
after filtration, and various enzymatic treatments.

Combinations of the parameters tested by qPCR in stool samples spiked with 
simple synthetic viral communities comprising equal amount of an sRNA 
phage (MS2) and a dsDNA phage (T4).

Optimized protocol evaluated in mock communities (equally mixed viruses 
representing common gut viral families) and in spiked stool samples; further 
applied in stool samples from preemie babies.
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CRISPR spacer acquisition is a rare event 
in human gut microbiome

Conclusion

Anni Zhang*, Jeffry Gaston, Eric Alm&

anniz44@mit.edu

Abstract
Host-parasite interactions are vital for all living organisms, including humans 
versus SARS-COV2. Here, we investigated the host-parasite interactions in the 
human gut microbiome using temporal whole-genome sequencing (WGS) datasets 
and metagenomes from healthy individuals. We found that spacer acquisition by 
CRISPR systems, which defend bacteria against phages, is rare in the human gut 
microbiome, occurring at an average rate of one spacer per 2,000-5,000 cell 
divisions, over a period of 6-17 years.
Bifidobacterium longum acquires spacers significantly faster than other species. 
We identified six highly prevalent consecutive spacers in the same order in B. 
longum from 14 human subjects in the United States and Europe, located on 
different parts of the B. longum genome, but within a highly similar neighborhood
(50k-135k bp). This indicates that horizontal gene transfer is the primary 
contributor to spacer acquisition in B. longum.
We developed a model to investigate factors impacting phage infection and 
CRISPR spacer acquisition. Our model found that low bacterial abundance and 
frequent dilution events decrease phage infection and selection pressure, resulting 
in a reduced spacer acquisition rate. Longitudinal metagenome analysis revealed a 
significant correlation (spearman rho=0.75, p = 9E-9) between bacterial species 
abundance and spacer acquisition rate.
These findings suggest that CRISPR may not be the primary risk for effective 
phage therapy for the majority of human microbiome, which may inform future 
efforts involving phage therapy and pandemic defense.

1. Spacer acquisition is a rare event in human gut microbiome, which agrees with previous literature
• 1 spacer per 2,000-5,000 cell divisions (whole genome sequencing + metagenomes)

2. Spacer acquisition rate varies among species
• Acquired spacers in B.longum were spread through horizontal gene transfer (HGT)

3. Spacer acquisition rate correlates positive with bacterial abundance
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Figure 1. Work flow of spacer acquisition identification using population genetic analysis. Figure 4. Spacers acquired in B.longum lineages by horizontal gene transfer (HGT) 

Figure 2. Spacer acquisition rate in human gut microbiome compared to that in other environments. 

Figure 3. Spacer acquisition is significantly faster in B.longum than B.adolesentis and P.distasonis. 

Figure 3. Modelling phage infection and CRISPR spacer acquisition. 



  

Predicting functions of uncharacterized gene products 
from microbial communities 
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• MTX-based coexpression patterns are informative for gene function  
  prediction in microbial communities;
• FUGAsseM predicts functions with high accuracy;
• FUGAsseM refines the functional landscape of microbiomes.

Metagenomes are enriched for genes 
of unknown function

Microbial communities are rich reservoirs for molecular functions that influence 
environmental and host-associated chemistry, with numerous roles in ecosystem 
maintenance, health, and disease. However, our knowledge of these molecular 
mechanisms is limited, due to the massive range of microbial genetic material in 
comparison to the limited throughput available for experimental characterization. 
Here, we assessed a novel method (FUGAsseM) to systematically predict 
functions for uncharacterized microbial proteins by integrating high-dimensional 
meta-omics data and applied our method to the Integrative Human Microbiome 
Project (HMP2).

FUGAsseM for function prediction from microbiome

Microbial community meta-omics data 
improve gene function prediction
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FUGAsseM (a Function predictor of Uncharacterized Gene products by 
Assessing high-dimensional community data in Microbiomes) is generalizable to 
any types of microbial communities, providing a new approach to predict 
microbial protein functions.
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We enumerated expression profiles of five groups of proteins from HMP2 based on 
homology and functional annotation (abbreviated SC, etc. and defined above):
 • Metatranscriptomes (MTX) capture expression profiles of community proteins;
 • Expressed proteins without characterization are dominant in the community. 
 • Here, “characterized” proteins are defined as those annotated with “informative”   
   Gene Ontology (GO) biological process (BP) terms, i.e. each BP term contains
   >1% of annotated genes without any child term passing the criteria.
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SC = Strong homology to UniProtKB proteins with informative BP terms

SU = Strong homologs to Uncharacterized UniProtKB proteins
UPI = Strong homologs to uncharacterized UniParc proteins

RH = Remote Homologs to UniProt 
 proteins
NH = No Homologs to UniProt proteins

We evaluated FUGAsseM by comparing with other methods for function prediction:
 • FUGAsseM’s accuracy is improved by aggregating other community-wide data;
 • FUGAsseM shows comparable predictions to state-of-art single-organism tools  
   where they overlap;
 • FUGAsseM applies to many more species from communities.

Novel characterizations for 1,000s* of 
microbial genes in the human gut

Conclusions

Protein classes (and abbreviations)
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Among the 25 species with the largest number of new proteins (lacking strong 
homologs to UniProt proteins), uncharacterized proteins, regardless of annotation 
status, are highly correlated with characterized proteins in the community, enabling 
transfers of functional annotation under “guilt-by-association” logic. Among the 
subset of these species with isolate data, proteins linked in STRING networks tend 
to have higher correlation among MTX networks.

We applied FUGAsseM to to the 1,595 human gut metagenomes and 800 
metatranscriptomes from HMP2, predicting functions of proteins from stratified 
species in the community.
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FUGAsseM accurately predicts previously unseen 
functional annotations
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no_ann: proteins without any high-confidence predictions
preserved_ann: characterized proteins that have been annotated in UniProt
amp_ann
(relax) characterized proteins assigned with new 

functional predictions under a “relax” 
threshold or a “stringent” threshold  
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Here, we summarize the high-confidence BP annotations newly assigned to the 
25 species containing the largest numbers of novel (uncharacterized) proteins:
 • Species showed different levels of functional characterization;
 • Both characterized proteins and uncharacterized proteins were better
   functional annotated. 

amp_ann
(stringent)

uncharacterized proteins assigned with 
new functional predictions under a “relax” 
threshold or a “stringent” threshold  


