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Project Overview Results

Numerous studies have examined the gut microbial ecology of | IBD patients are significantly more likely to have fewer bacterial

patients with Crohn’s disease (CD) and ulcerative colitis (UC), but | taxa in their gut microbiome than controls; however, heterogeneity
IBD-associated taxa and ecological effect sizes are not consistent | is high

between studies. We aimed to find consensus on ecological
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variables such as sample type (stool, biopsy, and lavage) affect Gevers et al 214 252 73 150 - 594 [371;951] 33.9%
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Heterogeneity- I° = 72%. t° = 0.5527. p = 0.01 | | | |
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To the best of our knowledge, this project represents the most up- B Experimental Control
. . CD stool datasets Events Total Events Total Odds Ratio OR 95%-Cl Weight
to-date and largest systematic meta-analysis on the IBD gut
: : - - Braun et al. 38 61 11 22 T+ 165 [0.62; 442] 23.0%
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Records after duplicates removed Experimental Control
(n = 435) UC stool datasets Events Total Events Total Odds Ratio OR 95%-Cl Weight
G J :
Morgan et al., 2012 26 47 18 36 — 1.24 [0.52; 2.96] 30.4%
Yamada et al. 17 23 11 23 = 3.09 [0.90;: 10.67] 17.1%
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- <50 individuals, not 16S sequencing,
Full-text articles assessed for eligibility not analysing the gut, no publicly Figure 1. UC and CD patients are more likely to have less bacterial taxa in their
(n = 344) available sequenced samples gut microbiome than controls p<0.05 (A: CD biopsy, B: CD stool, C: UC biopsy, D:
~ (n = 323) UC stool). P values on each figure is that of heterogeneity (I2). I12>50% indicates
¢ nigh heterogeneity in results across studies. Odds ratios were used to compare the
g broportion of cases and controls with observed richness greater than the median of
Studies included in qualitative No publicly available data for sample controls.
synthesis origin/disease
. (n=21) (n=7) Both disease and sample type significantly contribute to variation
¢ in microbiome community composition
( Studies published with publicly )
available data Sample type [Dataset Disease Sample type
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Conclusions Halfvarson o1 7 7
IBD has a consistent effect on taxa richness and microbiome Braun ef al 1.9% "
. . Gevers et al - stool 0.6% n.s.
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Biopsy [loyd-Price ef al 2.7% n.s.
L et al 3.1% .
There Is variation in microbiome results associated with IBD with Gevers et al -biopsy 1.5%
Morgan ef al 2015 2.3% ns
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Table 1. Effects of disease and sample type on community structure. PERMANOVA

Our results suggest that stool type may be superior to biopsy due analysis is based on Bray-Curtis distance. R2 = percentage of variation. *, **, 6 ***,
n.s. denote P<0.05, P<0.01, P<0.001 and not significant. Empty cells represent

to decreased heterogeneity. unavailable metadata.
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Abstract

The gut microbiota and associated bioactive compounds have been
implicated as causal and as protective factors in gastrointestinal
disorders, including the inflammatory bowel diseases (IBD). Both
host immune interactions with gut microbes and microbial small
molecule products are likely responsible for these bioactivities.
Several gut microbial metabolites, e.g. short-chain fatty acids and a
subset of omega-3 fatty acids depleted in GI inflammation, have
demonstrated therapeutic potential in IBD by attenuating gut
inflammation. However, discovery of new bioactive compounds
from the gut microbiome relevant to IBD or inflammation is
challenging due to the vast numbers of uncharacterized metabolites
produced by the microbiome.

To address this challenge, we investigated two IBD cohorts with
integrated metagenomic and metabolomic profiles of the gut
microbiome: PRISM, the Prospective Registry in IBD Study at
MGH, and the Integrative Human Microbiome Project (HMP2).
Putrescine and a potentially novel family of metabolites microbially
derived from it were among the ~10,000 metabolites differentially
abundant (PRISM 1n=8,792 and HMP2 n=9,444) during gut
inflammation, of which only ~100 were characterized (PRISM
n=157 and HMP2 n=99). We validated the dependence of these
putrescine derivatives on the gut microbiome and their bioactivity in
vivo by treating germ-free, gnotobiotic and conventional mice with
dietary putrescine, which induced changes in immune system
activity in a microbial community-dependent manner. This included
that putrescine selectively affects host colonic and ileum M2
macrophage cell populations only in conventional mice. These
results underscore the power of combined computational and
experimental approaches for identifying microbially derived
metabolites with general immunomodulatory activity and specific
relevance for IBD patient care.

Introduction

Although there are highly effective IBD therapies that directly target
the immune system, many IBD patients do not achieve durable
remission, lose responsiveness to treatment over time, or suffer from
the broad immuno-suppressive effects of such treatments. Despite
the strong association of gut microbiome configurations with IBD
and advances in taxonomical profiling of the gut microbiome, the
effective translation of specific mechanisms of host-microbiota
signaling and microbial metabolites for IBD clinical care remains
largely elusive.

,@‘ e g{: :an; Nontargeted Identified ~ Table 1. IBD metabolomic
i (control)  (CD) Metabolites met datasets used for this
= project and IBD cohorts.
kil g #00 big Number of identified and
unidentified metabolites in

HMP2 27 87 38 81,000 597 each data set.

Human fecal metabolomics, using untargeted high-resolution liquid
chromatography-mass  spectrometry (LC-MS), can provide
comprehensive functional readouts of gut microbial activity and
host-microbial interactions. Untargeted LC-MS techniques profile
tens of thousands of metabolites in individual human stool samples;
however, our understanding of their bioactivity is limited to ~<1%
(Table 1). Thus, an in silico technique to prioritize these metabolites
is a critical unmet medical need for realizing the potential of
microbial metabolites for IBD treatment. We identified new IBD-
associated uncharacterized metabolites using two publicly available
IBD metabolomic datasets, PRISM and IBD, by MACARRoN and
tested its biological function in vivo.
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Figure 1. Putrescine and N-acetylputrescine were significantly enriched in patients with CD
relative to control individuals, non-IBD, in the PRISM cohort, and in dysbiotic CD samples
relative to non-dysbiotic control samples in the HMP2 cohort. Box plots show median
and bottom and top quartiles, with outliers outside of box plot whiskers.
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Figure 2. Heatmap representing putrescine/N-acetylputrescine module from HMP2 fecal
metabolomics. This module was clustered after regressing out diagnosis, dysbiosis, age and
medication use. The module contains 115 metabolites features and 16 metabolite features are
significantly enriched and highly prioritized in dysbiotic CD samples.

Screen high-priority metabolites in vivo

(1) to demonstrate that the uncharacterized metabolites
could be generated in vivo from a chemical precursor in a gut
microbiota dependent process and (2) to evaluate a change in the
host immune system in response to the precursor in a gut microbiota
dependent manner.
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Figure 3. Schematic of the experimental design.
creased in the presence of gut microbiota

We employed mice with distinct gut microbiota communities, germ
free (GF), Altered Schaedler Flora (ASF, a minimal microbiota of 8
species), and SPF C57BL/6J mice, in the presence or absence of
putrescine and profile their microbial activities, host gut barrier
function, and immune cell phenotypes.
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Figure 5. Heatmap  representing
differentially abundant metabolites

(n=1533) from fecal untargeted LC-
MS metabolomics in response to
putrescine treatment. The rows display
metabolites that are differentially
abundant metabolites in respect to
putrescine treatment and the column
represents individual sample.
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‘microbially-derived’ putrescine derivatives in .| T
PRISM and HMP2 putrescine modules by unknown
feature alignment. Figure 7. (Right) One example T T vt o
of microbially-derived putrescine derivatives that
was enriched in both PRISM and HMP2.
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Future Directions

Characterize the chemical structure of the microbially-
associated new bioactive metabolites followed by metabolite

synthesis.

Determine the efficacy of the bioactive metabolites in IBD
preclinical mouse models.

Conclusion

*  Putrescine selectively affects host colonic and ileum M2
macrophage cell populations in a gut microbiota- dependent
manner.

*  Putrescine level in gut is regulated by gut microbiota and
microbially-derived  putrescine derivatives are  strongly
associated with IBD phenotype.
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Introduction

Skin harbors a large repertoire of microbiota having symbiotic,
saprophytic, commensal and opportunistic characteristics.

Skin is extremely affected in leprosy and the changes are irreversible.

Leprosy is caused by Mycobacterium leprae and Mycobacterium
lepromatosis. Leprosy is treated by multi-drug treatment (MDT) therapy
primarily includes Rifampicin, Dapsone and Clofazimine.

We have investigated and reported community structure of skin
microbiota from lesional and non-lesional skin of Indian leprosy patients
and healthy individuals as controls.

Aims and Objectives

Skin microbiota profiling and metagenomic predictions from skin of
Indian leprosy patients (lesional and non-lesional skin sites) and
healthy individuals.

Study Design
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Figure 1 Schematic workflow depicting overall study design and methodology followed by sample collection, processing
and data processing. (Bayal et. al., 2019)

Figure 2 Consent images of leprosy patients taken at leprosy rehabilitation clinics. All skin swab samples were collected
from back having BI>3

Inclusion and Exclusion Criteria

Participant Type | Hyderabad Miraj Total Samples
Healthy (Control) | 15 15 30

Affected (Lesions) | Unaffected | Affected (Lesions) | Unaffected
Patients 60

14 14 16 16

Table 1 An overview of number of study participants and samples collected from two sampling locations viz. Hyderabad
and Miraj, India

Inclusion criteria
*Age between 21 to 70 years.
Patients having a high (3+) bacillary index (MB/BL/LL).

*Active patches present on the patients back (scapular
and lumbar regions).

Exclusion criteria
*Pregnant women.
Patients co-infected with Leprosy-TB or Leprosy-HIV.

Individuals with a different illness or those who have
taken any medications in previous 10 days for any other
symptoms.

3Bio-Sciences R&D Division, TRDDC, TCS, Pune
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Figure 3 and 4 Taxonomic abundance profiles of lesional, non-lesional and control skin microbiota at the genera and
phylum level.
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Figure 5 Box plots for the alpha diversity indices Chao1, Shannon, Simpson and observed species based on OTUs for
Hyderabad and Miraj sampling locations separately.

0.3+

<
g X.State2
N5 001 @ Affected
& - Control
) \
2 ,“Control \ ’,’ Unaffected
< ’
\ 7’
Affe’?awlc’l 4
P 4
WlrQl ’
AN g <}
y }ﬂected -
/ . /1
-0.3- ¥ Affected i
-
/, Atfecté&"’ !‘*‘Q‘ nirol ,/'
/ > -+ ial
/I Affe‘»";(ﬂ‘ecteg -
.'I ad

/ -

! 5>

1 o

t ¥

\ e

N -
-~ -
06{ = S====-
-0.25 0.00 0.25 0.50

Axis.1 [44.4%]

Figure 6 PCoA plots using using Jensen Shannon divergence distance metric and ANOSIM statistics for different study
groups.

...........................................

Figure 7 Heatmap of predicted core functions from leprous and healthy skin microbiota using iVikodak.

3 No_Sigmficant_Pathway
E lr;lo _Significant_Pathway
eroxisome I Affected
= QBC transp l't ers = gggugm?mu - = Unaffected
B DNA re I u L_Tepair - ansport a?r%n catabolism [ Control
=3 Homologous | recombmauon emoraneZtransport Cellular_Processes I:l
E I&I&%ecgé graextcmon_repau — ‘ Environmental_InformationProcessin (3
B Aminoacyl_ tRNA_b osynthesis l Replication_and_repair
o i
ote : : :
=] N]o ss"g',','fﬁc;gtg %‘athway LIS 3 Folding sorting and_degradation
3 No_Si; gn ﬁ t_Pathway . Translation
[ Insulin_resistance By
=8 -Non: Alcoholic- fat _liver_disease: NAFLD 3 Transcription
3 No_Significant_Pathway B3 Cancers_Overview
E gl aﬁs g:\ﬁ angf_P athwa Ze [ Endocrine; and. metabolic.diseases
I:INoSgnﬁcatPthwy Em Cancers_Specific_ty % = » s
= Carbapenem.biosynthesis B3 Infectious_diseases_Bacterial Genetic_Information_Processing |:|
=0 Neomycin_| kanamy cin_and _bg:mam in_biosynthesis I3 Drug resistance_Antineoplastic
B2 Arginine_and_proline_meta = Substance dependence
= Argm ne_biosynthesis
= 8}';‘ Sg"n‘:l man“;‘ tﬂ‘r'éon% mr%()ltat‘)noh = [ Biosynthesis_of other_secondary_metabolites
== Ph enylaTamne ‘metabolism -
= ;‘J::tl; alcfgc = gﬁguon] cine_degradation Amino_acid_metabolism Human_Discases
= ggyceroligfd_t?eltabglismmbol
cerophosphol metabolism e ;
= Bu)t’anoalge_m%tab(‘)nlis?h . Lipid_metabolism
B3 Glycolysis_Gluconeo %c(;]e&lb
I Glyoxylate_and_dicarboxylate m tabol sm
=3 Pentose_and_glucuronate int ersions
=3 Pentose_phosphate_pathway Carbohydrate_metabolism
2 Propanoate_metabolism

@ Pyruvate metaboh sm

=1 Carbon_fixaf Tgh otosynthetic_organisms

B8 Carbon_fix: at ﬁg ways " i n_prokaryotes X

=2 Nitrogen_metabo. Energy_metabolism

= Oxllf?;n ve phosphorylanon

e B3 Metabolism_of_other_amino

= Biotin_metabolism

= g ‘l;)tt _b:" zn“(‘ihe gon wrmidE T I Metabolism_of_cofactors_and_vitamins Metabolism
B3 Pantothe;

-g qt,hym';a;nd cmg,%":,ﬁgn n’;‘;‘gbohsm @8 Xenobiotics_biodegradation_and_metabolism

B8 Benzoate_de i 3 i

=1 popolysacc%:'an de~ b1 osynthesis [B Glycan_biosynthesis_and_metabolism

— gu%ndo%]‘yct:ag_lb;g‘synmesxs [ Nucleotide_metabolism

— %’:‘p’é‘fa’gcsmel:ggd S . [l Metabolism_of_terpenoids_and_polyketides

B Tetracycline blosyntﬁesm = Endocrine_system

B2 Glucagon_signaling pathway B Aging

£ No_Significant_Pathway 8 Excretory. system

J No_Significant Pathway - Envuonmentzd _adaptation :

[ No_Signific ant”P thway estive_system Organismal_Systems
J No_Significant”Pathway - Immune - SysStem

— No Slgmhcant Pathway =3 Sensory_system

Figure 8 Alluvial plot for the differentiating functions predicted for leprous and healthy skin microbiota using iVikodak.
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Chemical dark matter in IBD Quantitative metabolite annotations Prioritized bioactives

Thousands of metabolites have been assayed from microbial To associate unannotated features with annotated metabolites I.e., standards, MACARRON prioritizes known IBD-linked bioactives
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therapeutic potential. Here, we developed a new approach, least one phenotype, 43,043 features were clustered into 410 modules. Modules that covary with them are highly-prioritized.
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The aged mouse microbiome has obesogenic characteristics

(Dana Binyamin et al., Genome Medicine 2020)

-
Result

Background Methods

During aged, there is a physiological decline, increase Fecal and blood samples from adult and aged mice were
of morbidity and mortality, and changes in the gut collected. Microbiome analysis was done using QIIME2.

microbiome. As human lifespan is increasing Weight and body composition were measured and Insulin

worldwide, the morbidity associated with aged is and leptin levels in the blood were quantified. Fecal

becoming a serious public health concern. microbiota transplantation experiments from adult and

In this study, we investigated the influence of the gut ke iRl e eeatiied out in

microbiome on different metabolic parameters in adult R 9 @RS i S o U Ghs nidE Ry

adult and aged mice

and aged mice.
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The transplanted gut microbiome from aged mice transferred some of the aged phenotypes. The recipents microbiome
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Conclusions
The gut microbiota of aged mice has obesogenic characteristics.

The gut bacterial population itself is sufficient to induce some of the manifestations of age-related obesity.
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Quantifying the direct and indirect effects of diet and the microbiome [:EET

Tobyn Branck1'2'3, Jason Lond-Price3'7 Kelsey N. Thompson2'3'7, George Weingart2'3, Long H. Nguyen2'3'4'5, Raaj S. Metha2'3'4'5, Dong D. Wangz'3'6, Wenjie Ma2'3'4'5, Yan Yan2'3,
Meghan I. Short? '7, Cesar Arze3, Galeb Abu-AIi3, Himel MaIIick3'7, Gholamali Rahnavard3'7, Amit D. Joshi4'5, Kerry L. Ivey6, Jacques Izard8,

Host dietary effects are far more context-dependent than is generally acknowledged. For instance, dietary
changes drastically affect the microbiome in animal models, and in human infants during a shift to solid
foods. In contrast, day-to-day dietary variation in healthy adults typically elicit only minor compositional
shifts, although differences in pre-existing resident microbes among individuals can result in distinct
chemical and metabolic responses to the same dietary intake. Here, we quantify these previously
undifferentiated effects across different populations, life stages, environments, and dietary metadata.
Seven publicly available metagenomic datasets spanning human adult, human infant, non-human primate,
and mouse populations were reanalyzed through a standard bioinformatic workflow (total n=2,074
samples). The metagenomic profiles were accompanied by cohort-specific dietary information ranging
from general diet types to resolved profiles of dietary components. To measure the effects of diet and the
microbiome, we uniformly applied a set of models across studies. We assessed the relationship between
overall dietary patterns or individual dietary compounds and microbial profiles, in addition to the specific
interactions between dietary compounds and microbes. We found that, in a typical Western diet, the effect
of day-to-day diet variation is small but significant, as expected. Instead, diet affects the microbiome
indirectly via alterations in microbial transcription (but not, generally, organismal abundances), which in
turn can have a mediating effect on host responses to diet. Applying the same models across populations,
we also found that when the microbiome has not fully stabilized, as in human infants and laboratory
animals, diet changes have a substantially larger effect on the gut community structure. Direct diet-driven
variation thus depends largely on the resilience of the microbiome and on the extent of the dietary
perturbation, while indirect interactions can be highly chemically and microbiologically specific.

Cohort microbiome sampling and meta'omics

Populations from gut microbiome studies with supplemental dietary information
(n subjects = 651, n samples = 2,074)

Camn
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Uniform sequence processing using
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Diet effects on microbiome are context-
dependent
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Relative to subtle differences in food profiles, when diet differences are large, we see
greater differences in composition. Left: Human adult microbiome taxonomic profiles
(Human Microbiome Project |l), colored by dietary profile pattern scores. Right: Non-
human primate microbiome taxonomic profies colored by diet type.

Day-to-day diet variation has small effect on gut
communities in healthy Western adults

. : CD: Crohn's disease
D . Non-IBD . L
Diagnosis ¢ e on UC: ulcerative colitis
Non-IBD: healthy individuals
k% Larger the mantel r
0.4 statistic value (Y-axis), the
o 5 more correspondence there
iIs between dietary profiles
= and overall microbiome
* composition. Asterisks
denote g < 0.05.
0.2 1
[2
ox
(U
=
0.0 1
Q//\\ N ) ,bn_)\ ‘09"\ O;\\ q\}‘\ \{:1,
q,\ @ / \Co / qig / '“)b‘ / &5 / \Y\‘@ $Q,
VVQ Q(L "),\ ‘1,\ ‘L\ ’L\ / /
3 S S & S & ® P
% X e Q J N\ \{

Time (Week Bins)

In healthy human adults, overall diet minimally agreed with the structure of the microbiome.
In other words, the already perturbed microbiomes of individuals with disease seem to
respond more to diet than the microbiomes of healthy individuals. HMP2: Human Micro-
biome Project |l (Western diet), MLVS: Men's Lifestyle Validation Study

cohort (Western diet)

Typical diet variation has small effect relative to
consumption of seasonably variable diets
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Human commensal bacteria produce novel genotoxic metabolites and exacerbate colorectal cancer
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Introduction

Microbiota dysbiosis is associated with colorectal cancer (CRC).
However, the gut commensals produce thousands of metabolites
that mostly lack functional annotations or structural identification, so
the causative mechanisms mediated by the gut microbiota through SR EE RS
metabolites are still to be illustrated. O S N N

S~ LT

-

Escherichia coli strains produce the reactive small molecule
genotoxin colibactin, which directly alkylates and crosslinks DNA,
triggering double-stranded DNA breaks (DSBs) and facilitating dD A
intestinal tumorigenesis [1]. Human CRC tumors also contain o
mutational signatures consistent with colibactin-induced DNA T
damage [2]. However, aside from colibactin, the role of microbiota-
derived small molecule genotoxins in CRC initiation or progression
remains mostly unexplored.

Chemical synthesis Chemical microbiology

/e/glwm
(TN A

Identmcation and structural
charactenzahon of calibactin

We hypothesized that diverse taxa from the human qut
microbiome may produce previously undiscovered small
molecules that cause DNA damage in intestinal epithelial cells
and contribute to the development of CRC.

Colibactin-DNA adduct

Key findings

1) Established a forward-screening pipeline to evaluate the
genotoxicity of microbial small molecule metabolites causing DNA 0 8 N
damage.

2) Discovered a previously undescribed family of genotoxic
metabolites—indolimines—produced by the CRC-associated
species Morganella morganii.

3) ldentified the gene aat (encoding AAT _| protein, aspartate
aminotransferase fold type |) necessary for the synthesis of
indolimines and genotoxicity of M. morganii.

4) Evaluated the tumorigenesis effect of indolimine-producing M.
morganii with AOM/DSS CRC model in gnotobiotic mice.

Screening pipeline

Figure 1. DNA damaging activity was widespread in diverse taxa of the human gut microbiota
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Indoor environments harbor diverse microbes to which occupants are constantly
exposed. Exposure to environmental microbes has been shown to have both negative
and positive healthimpacts, particularly relating to children’s immune maturation
during early development. Many preschool-aged children spend 7 to 10 hours per day
In childcares, almost as much as at home, yet the environmental microbes associated
with childcares have yet to be fully elucidated. Although several studies have explored
the taxonomic composition of childcare microbiomes using DNA sequencing, this
method on its own suffers from an inablility to discern viability, which hinders the
interpretation of health implications. Additionally, exposure to fungi can lead to
adverse health effects, but indoor fungal communities are much less studied as
compared to bacterial communities and the extent to which fungal communities affect
children in childcares remains unclear. In this study, first, we will use paired
metagenomics and metatranscriptomics to characterize viable bacterial communities,
including functional molecular mechanisms responsible for microbial persistence and
antimicrobial resistance burden, in childcare environments. Second, we will target the
full-length internal transcribed spacer (ITS) region and curate a full-length ITS
reference database for identifying indoor fungal communities, to overcome the
drawbacks associated with traditional short-read sequencing, which usually results in
lower taxonomic resolution, higher proportion of unidentified taxa and greater extent
of underclustering.

Study design and sample collection

/ . Study Participants \

> HH NS Exclude if:
GHE N = Used oral or intravenous ABX or chemotherapy within 9 months

RCCC = Self report acute infectious disease (cold/flu, gastroenteritis, etc.)
N =50 = Used topical ABX or antifungal applications nose and mouth within
Toddlers/Preschoolers 1 week
279 Age 3-5 = Have open wound in the nose or mouth
RN = Had infections within 1 week
elnle = Had surgery involving the nasal or oral cavity within 9 months

SFPCC (cavity filling and routine dental cleaning are OK)

/ Sample and Data Collection \
Environment # samples Source I\
assroom X 2 rooms X 2 centers o

assroom .................................................................................. Oral swabs Nasal swabs
assroom A
........................... assroom Questionnaires
Caet 4 fipercassoom  xAge = Die
Air 4 2 per center = Sex (probiotics)
o S 3 SSS i =S . Respiratory
HVAC 4 1 per classroom & Ethnicity | iliness
------------------------- -------------------------- ............................................................................................................................................ - BreaStfeedlng. Oral health
— Infiltraton 8 2 per classroom .
S ...... : I ....................................... 8 ...................................... 4dﬁ: ................ tI ............. t .......................................... t ....................................... m Dehvery mode
So erent locations per center o QiR
Dust samples L = e R lons percenter  a Siblings
= Pets
= ABX use
bioBakery v3.0 Analysis
Taxonomic profiling Functional profiling Strain profiling
(«} Protein . — . — [[ _.<1_—Tli_;
g A Enzyme gf”&/} (;:] &Qrf ——7 -

Statistics: PERMANOVA (community composition), metatranscriptomics-based differential expression analysis, omnibus
and per-feature test (MaAsLin 3)

RCCC: Radciffe Child Care Center
SFPCC: Soldiers Field Park Children’s Cente
ABX: antibiotics

Metagenomes and metatranscriptomes for
viability assessment

In anthropogenic, biochemically unnatural settings such as the built environment (BE), viable mi-
crobes are often outnumbered by their “dead” counterparts. Critically, the functions of a microbial
community are defined by these viable microbes, and despite their low abundances, these viable
microbes can still pose health risks. Previous evaluations of “PMA-seq” (PMA treatment + 16S
rRNA seq) and “16S-RNA-seq” (16S rRNA transcript-based amplicon sequencing) proved to
function well in low-complexity communities, but poorly quantified viable microbes in realistically
complex community samples.

Microbial community Experimental Computational tools
(culturable & nonculturable) approaches

alive or dead?

* RNA amplification

-Shotguh sequencing:
Metagenomic (DNA) +
Metatranscriptomic (RNA)-seq

Protocol evaluation and validation

whole extraction AllPrep PowerFecal DNA/RNA Kit
TRIzol Reagent

v

(optional) RNA removal gDNA removal TURBO Dnase

L 4 v
DNA purification RNA purification RNeasy MinElute Cleanup Kit
SPRIselect for Size Selection beads

rRNA depletion RiboMinus Bacteria 2.0 Transcriptome Isolation Kit
(optional) whole genome (optional) whole QuantiTect Whole Tran§criptome Kit
amplification transcriptome amplification MessageAmp II- Bacteria Kit
Qc Direct concentration measurement (Qubit)
PCR + gel (check gPCR system)
Positive/negative controls (swab, lab air, water, buffer/reagent, culture, culture broth)
v
gPCR

We first evaluate in ten synthetic communities comprising live and/or heat-killed E.coli and
S.sanguinis mixed at different ratios.
Total DNA and RNA are extracted simultaneously, with RNA samples immediately reverse
transcribed into cDNA followed by shotgun metagenomic sequencing for all cDNA and their
respective DNA samples in parallel.

E.coli S. sanguinis Mixed proportion DNA RNA
(live/dead) (live/dead) 1 2 3 4 5 6 7 8 9 10

.3 ] A o
j > e i %‘e‘ T y "‘-@.
f,}f ; % _ + j N
P o e C
§ 5N

- | To evaluate its performance under variable

S Eail S plke-h Community samples -~ hiomass, biochemical background and diversity
( /half dead) (computer screen, mouse, soil, saliva) -, :

conditions, we next apply the protocol to swabbings

of natural microbial communities from computer

screens and keyboards, soil, and human saliva

spiked with known concentrations of living and

heat-killed E. coli controls.

We further validate this protocol in built environment
microbiome samples collected from childcare
centers. In total, we will have a total of 250 samples
comprising of those from synthetic cultures, E. coli
spike-in  experiments, childcare environmental
microbiome samples and several experimental and
technical controls for shotgun sequencing.

gPCR is performed targeting 16S V4 region and species-specific protein-coding genes on
synthetic communities to determine the viable (MRNA/cDNA) and overall (DNA) bacterial mass.

Characterizing bacterial and fungal communities in 198 801 155
childcare microbiome: a study overview

Marina Chen'<4, Lea Wang**°, Kelsey N. Thompson°#*~>, Jeremy E. Wilkinson®, David D. Christiani®’,

Full-length ITS amplicon-based
fungal identification

, More conserved,
More variable, stiotter BE

better taxa

ITSIF o ITS2 richer, good for 100 bp
s classification i A ———
S 188 [ v | ITS1 | 588 | ITS2 D1 | 288 D2 D3 | ¢
- - — - . A
ITSOMUNnNgs | ITSIngs ITS3ngsmix gITS7ngs [TS4ngsUni TWI13 TW14ngs
ITS1Fngs
l l
500-1200 bp

The full fungal ITS region ranges from 500-1200 bp, which cannot be sequenced as a single DNA
fragment using short-read sequencing (typically 50-500 bp fragment size). Because of this,
fungal community studies mostly use only ITS subregions, either ITS1 or ITS2. There have been
controversies in the selection of markers, and using either alone can lead to sequence gaps and
thus provide limited taxonomic and phylogenetic information for species discrimination and taxo-
nomic assignment.

Short Reads HiFi Reads
- —_— — irt with high-qualit Circularized DN A
Genome Genome JrI; IIIIIII g.:I eg DNK ' ' [ is sequenced in
Sequen [ 2 — .
/ l l - ! The pol ; o
are trimme I e
to yield subreads = :
Draft Genome Complete Genome l =
Missing sequencing leads to missed A comprehensive structural, functional i i \ j Consensus is called
- = = ; . = . . e dUNA polymerase "
genes and limits biological and organizational picture of the
interpretation genome >99.9% accurac ¥

Here we use third-generation circular consensus sequencing from Pacific Biosciences to amplify
the full-length ITS marker gene and several flanking rRNA subunit regions simultaneously. This
enables to focus on variable regions for species-level identification and conserved regions for
phylogeny and higher level identification. The primer pair determined to be best suitable for
pan-eukaryote identification is ITS9MUNNgs+ITS4ngsUni, because of the avoidance of an intron
site just upstream, terminal mismatch to all bacteria and coverage of the SSU V9 variable region.

UNITE v8.3 Fungi database NCBI RefSeq ITS  ISHAM-ITS Two major challenges remain in down-
(n=58,440) (n=13,869)  (n=4,000, as of 2017) Stream community analyses:

. » Scarcity of automated pipelines to analyze
/ long amplicon data. Most software devel-
oped for sequencing-error correction and

— sequence assembly have been optimised

\ for short reads and have not been evaluat-

Combine and de-duplicate ed for long reads in community analyses;

* Difficulty in fungal identification largely be-
| cause of the incompleteness of reference

Curated full-length ITS reference database databases. These reference databases
l play a critical role in the sequence-based

species identification, cultured strains and

fungal communities from environmental
Validate on mock community data samples

Several databases, including UNITE, NCBI ITS RefSeq, and ISHAM-ITS, contain high-quality
ITS sequences generated from reliably identified and preserved specimens. We combine and
de-duplicate into our curated full-length ITS reference database and validate it on mock commu-
nity data consisting of 10-20 mixed fungi and bacteria.
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INTRODUCTION

Of the trillions of microbial cells associated with a human body at
any given point in time, about half are identifiable at the genus
level, a quarter are culturable, and only a handful have been
Isolated and extensively studied in the laboratory over decades.
Analogous to how model organisms, such as mice, have been
used to study human biology, “transfers” of the great depth of
knowledge accumulated for model microbial species, such as
the pathogen Staphylococcus aureus, to related but less-studied
microbes such as the commensal and opportunistic pathogen
Staphylococcus epidermidis, will greatly facilitate understanding
microbial diversity and microbial communities.

To date, transfer learning has been successful in the fields of
Image, video and natural language processing and has been
applied in genomics to bridge different mammalian cell types
and is starting to be used to connect different species, including
plant and insect model and non-model organisms. The genetic
diversity and transcriptional plasticity of S. epidermidis is
sparsely annotated, and we aim to apply transfer learning to
genetic, transcriptomic and functional data to integrate the
wealth of S. aureus data collected over previous decades and
drive hypothesis generation around S. epidermidis pathogenicity.

METHODS

Computational pipelines that analyze large datasets from well-
studied strains and new data from diverse strains sets the stage
for cross-strain comparisons and transfer learning approaches
that leverage similarities and identify differences.

Genome-wide CRISPR-interference knock-down screens and
tRNA-seq transcriptomic profiling, along with annotated
reference genomes, promote hypothesis generation in
Interpretable pipelines.

Strain-aware data Hypothesis testing
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2 [® |l |[< |« |e

Omics data Isolating, Core and CRISPRI RNA-seq Condition- Identify Model
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SIGNIFICANCE

 Different strains of S. epidermidis have different
Immunomodulatory activities and microbial interactions.

 Different strains of S. epidermidis respond to environmental
cues and stressors differently.

« Mapping out strain by environmental effects requires high
throughput tools that can be applied to clinical and
environmental isolates.

« Spoto et al CRISPRI & RNA-seq preprint describe conditional
essentiality and expression in strain Tu3298. EI 'IJEI
1

Placing S. epidermidis strains on a spectrum from
pathogenicity to commensalism to mutualism

Immunogenic Resident Commensal Protective

» & B 8 B $ > %

Strain

Developing omics

pipelines to ~
wrangle strain
diversity in
staphylococci

contextualizes sKin

Community
—

History

 Interpretable deep learning approaches to compare data from
diverse S. epidermidis strains to the large amounts of public
data for S. aureus and other skin pathogens and commensals.

« Paired genomics, metabolomics and transcriptomics to
determine functional consequences of strain diversity.

« Characterization of essential and conditionally essential genes
in diverse strains of S. epidermidis.

|dentifying similarities and differences between isolates and
well-studied strains can help place individual isolates on the
commensal-pathogen spectrum, isolating defining factors.

« Transfer learning to aid in the generation of new hypotheses
can be applied to genomic and transcriptomic data via
homolog mapping.

microbiomes.

Transfer learning from well-studied to diverse strains

samples

35 i

S. aureus |nput Noise S. epidermidis Input Noise
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Map homologs
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SYNTROPHIC INTERACTIONS AMONG DIFFERENT MEMBERS OF THE HUMAN GUT
MICROBIOTA IN THE METABOLISM OF B-GLUCAN FROM FUSARIUM VENENATUM

Pedro Jesus Fernandez Julia, Jose Luis Munoz Mufoz
Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom

BACKGROUND

B-glucans are polysaccharides which have been described as potential prebioticst. The

mechanism of action underpinning these health effects related to p-glucans are still
nuclear. Bacteroides spp. are described as glycan degraders capable of using a wide range
of substrates? whereas other bacteria such as Bifidobacterium spp. commonly metabolize

smaller glycans?, in particular oligosaccharides, sometimes through syntrophic interactions

with Bacteroides spp.

UTILIZATION OF B-GLUCAN BY BACTEROIDES

The utilization of p-glucan as carbon source Is present in different Bacteroides spp. Data

shows the B-glucan from mycoprotein leads to higher growth rates than yeast g-glucan and
similar values compared with glucose. Moreover, the utilization of fungal p-glucan is
spread within Bacteroides spp., but the growth rates are different between them, probably

due to the presence of different Polysaccharide Utilization Loci (PULS).
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CO-CULTURES OF BACTEROIDES AND BIFIDOBACTERIUM

Bifidobacterium spp. show no ability to grow with the crude polysaccharide but they

show this ability when the supernatants obtained in Bacteroides spp. cultures are use as

substrate. Moreover, coculture experiments using both Bacteroides spp. and
Bifidobacterium spp. together reflect the crossfeeding interaction between them. Because
of this feeding connection among bacteria, the secondary degrader Bifidobacterium spp.
IS able to persist In the media taking advantage of the metabolites released by the

primary degrader Bacteroides spp.
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PROJECT AIMS

This project is going to explore how human gut Bacteroides spp. and Bifidobacterium spp.

can use p-glucan from the microfungus Fusarium venenatum, which is used to elaborate
mycoprotein of QUORN® products. The study Is focused on the search of the metabolic
pathways for the p-glucan degradation together with the presumable cross-feeding
relations established between different members of the Human Gut Microbiota (HGM)

Involved In the process.
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KINETICS ASSAYS OF THE ENZYMES INVOLVED

The kinetic assays reveal how different enzymes take part in the metabolization of B-
glucan obtained from mycoprotein. The analysis of the kinetic parameters shows how this
enzymes possess different affinities and specificities for the substrate, depending on its

catalytic role.
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CONCLUSION

1. Fungals p-glucan obtained from mycoprotein is metabolized for several species within

Bacteroides genus.
2. The degradation of mycoprotein by Bacteroides spp. allows the growth of benefitial
bacteria such as Bifidobacterium spp. and Lactobacillus spp. because of the production

of oligosaccharides and SCFA:s.

FUTURE PERSPECTIVES

1. ldentify the structure and abundance of oligosaccharides and SCFAs produced as

metabolites during p-glucan degradation.

2. Amplify the croosfeeding experiments to other bacteria species present in the Human

Gut Microbiota.

[1] Zhu, F,, et al., A critical review on production and industrial applications of betaglucans, Food Hydrocoll. 52 (2016) 275-288. doi: 10.1016/j.foodhyd.2015.07.003. [2] Grondin, J., et al.,
Polysaccharide Utilization Loci: Fueling Microbial Communities, J. Bacteriol. 199(15):e00860-16. doi: 10.1128/JB.00860-16 (2017). [3] Seth, E., et al., Nutrient cross-feeding in the
microbial world, Front. Microbiol. 5:350. doi: 10.3389/fmicb.2014.00350 (2014).
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Statistical approaches for differential expression analysis
In metatranscriptomics
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DE analysis challenges in MTX data

Metatranscriptomics (MTX) has become an increasingly practical way to
profile the functional activity of microbial communities in situ. However,
MTX remains underutilized due to experimental and computational
challenges. The latter include non-independent changes in RNA transcript
levels and their underlying genomic DNA copies, genetic plasticity,
measurement compositionality, and zero-inflation.

MTX finds E. coli pilins DE’ed in IBD

We tested 113 E. coli pilin-family proteins for DE in IBD-associated
dysbiosis using three well-performing models (M3, M4, and M6). M6
identified 16 genes with FDR-significant elevated expression in dysbiotic
IBD samples. The significance and sign of these trends differed in M3 and
M4 (respectively), possibly due to those models’ greater sensitivity to
real-world gene and genome copy-number variation.

Controlling for gene copies is critical

We evaluated models M1-M6 across a range synthetic datasets (see right
column). M1 and M2, which fail to control for gene copy number (GCN),
were prone to mistaking changes in species and gene abundance for DE.
M3 achieved high specificity using species-total RNA as a proxy for GCN,
though models using DNA-based estimates of GCN (M4 and MG6) were
slightly better. M3-M6 were similarly sensitive to positive DE signals.
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Gut microbiome diversity and biochemical traits associated with metabolic
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Background. One of the main determinants of gut microbiome (GM) Figure 3. Phyla level relative abundance by food environment, boxplot
is diet, which is also determined by the physical, economic, P

sociocultural and political context (food enviroment) (2). ( AN
Replacement of traditional food enviroment by Western industrialized
lifestyles, characterized by high consumption of saturated fat, animal
protein, and food additives, as well as low fiber and vegetable
protein intake, leads to changes in the GM diversity and composition,
which could be related with an increased prevalence of metabolic
diseases (3). In Mexico there Is a great diversity of food enviroment
(urban, semiurban and traditional), however, there are a few studies
about the relationship between these with GM diversity and
composition and metabolic diseases.

80

60

p<0.0001

A

40

20

Median relative abundance

g

e ==, —.—

0

Semiurban Urban

Aim. To determine the relationship between food environments with _ _
_ _ _ _ _ Euryarchaeota Actinobacteria
the GM diversity and biochemical and anthropometric measures Bacteroidetes Eirmicutes

assoclated with metabolic diseases in the Mexican population. Fusobacteria Proteobacteria

_ o Synergistetes Verrucomicrobia
Methods. We conducted an observational, descriptive, cross- Ascomycota

sectional study, based on the GM analysis of metagenomic data. In a Man-Whitney U Test.
population composed of 42 participants from urban and semiurban
environments in Mexico City.

Figure 4. Species level relative abundance by food environment,
stacked barplot

Figure 1. Gut microbiome a- diversity indices by food environment, I||||I||
boxplot
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Results. We observed that 68.5% of the participants were women and
31.43% men, with a mean age of 41.8 (£11.3) years. There were no
statistically significant differences for age (p=0.560) or sex (p=0.413) by
environment. Semiurban participants showed higher daily consumption
frequencies of ultra-processed cereals (p=0.023), soft drinks (p<0.0001)
Figure 2. Gut microbiome B- diversity by food environment, and corn-based traditional meals (p=0.018). Statistically significant
principal coordinates analysis differences between food environments and HDL (p=0.001) as well as
fast glucose serum levels (0.004), were also observed.
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Conclusions. The GM composition shows differences between
iIndividuals from urban and semiurban food environments. There are also
O Semiurban differences In beta diversity but not in alpha diversity, between both
O Urban groups. Further studies are necessary to deepen in the relationship
among food enviroment, GM and metabolic diseases.
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Inferring the effect of microbial strains on host
health outcomes with anpan

 Curtis Huttenhower'2
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Microbial strain variation can strongly influence the impact of microbes
on host health, though methods for quantitatively understanding these
important differences have been lacking. Strain data have several
features that make traditional statistical methods challenging to use,
including high dimensionality, person-specific strain carriage, and
complex phylogenetic relatedness. We present anpan, an R package
that consolidates methods for strain statistics. Combining modern
hierarchical modeling strategies with novel adaptive filtering methods
specifically designed to interrogate microbial strain profiles, anpan
facilitates the identification of strain-specific genetic elements
associated with host health outcomes. Additionally, we use regularized
phylogenetic generalized linear mixed models to characterize the effect
of strain-level community structure. We validate our methods by
simulation, as well as application to a dataset of 1262 colorectal
cancer patients, showing that we achieve more accurate effect size
estimation and a lower false positive rate compared to current
methodologies. The open source repository with help documentation
and a tutorial vignette are available at https://github.com/biobakery/
anpan

Strain analysis challenges

Strains by sample: Genetic element by sample:

multiple samples per individual
multiple samples per individual ' '
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Microbial strains can be defined in terms of arbitrarily specific nucleotide
identity thresholds. However, as a result of the finely-resolved nature of the
data, unique strains rarely recur across individuals. This non-recurrence
means that individual strains usually cannot be associated with clinical
covariates. Analyzing the data in terms of individual microbial genes
alleviates the non-recurrence at the cost of increasing the multiple testing
burden by multiple orders of magnitude. Furthermore, gene-level analysis
iInherits error from upstream profiling steps in the form of reads being
misallocated to the incorrect gene in a given microbe.

Alternatively, the phylogenetic structure may be utilized as a way of
inferring the effect of strain-level variation on outcomes. However methods
for probabilistically evaluating complex phylogenetic structure are lacking.

Notably, methods like PERMANOVA do not accurately handle the
covariance structure implied by phylogenetic trees.

="

strain phylogeny Implied correlation matrix Z

Adaptive filtering of gene profiles

Samples with gene reads mis-allocated to the incorrect microbe must be
discarded to avoid bias. Applying k-means clustering to simple summary
statistics of each microbe in each samples allows assigning a clear labelling
of "bug present" or "bug absent". Samples where the bug is absent are
discarded be fore proceeding to the modeling step.

Alistipes putredinis - samples labelled by k-means
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Modeling associations of microbial
genes with clinical outcomes.

The filtered data are analyzed alongside relevant covariates using either:
 GLMs one gene at a time followed by FDR correction
« all genes and coviarates at once with a horseshoe prior on gene effects

Escherichia_coli (n = 473)

Auto-generated results plots concisely
present model results for each bug
evaluated in the batch run.
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Phylogenetic generalized linear
mixed models accurately quantify
the effect of strains on outcomes

Mixed models can be used to analyzed data with a phylogenetic structure
by incorporating a "random effect" term for each leaf. The random effects
are correlated among leaves according to the phylogenetic correlation
matrix £ implied by the inter-leaf distances of the tree. Other model
components follow familiar linear model conventions.

v = XB + (l|phylogeny) + ¢
(1 | phylogeny) ~ MVNormal (O, 0p22)
& ~ Normal (O, ORZ)

Model comparison against a "base” fit without the (1|phylogeny) term
assesses the impact of phylogeny on the outcome. Integrated leave-one-
out expected log pointwise predictive density is used to quantify predictive
performance of the two models. Bugs where the predictive performance of
the phylogenetic model substantially exceeds that of the base model
iIndicates that within-species phylogeny impacts the distribution of the
outcome variable in at least a subset of leaves.

Evaluating the performance of regularized and unregularized phylogenetic
models against "permutational” linear models (e.g. PERMANOVA and
MiRKAT) showed that the permutational models dramatically and
consistently under-estimated effect size, while also yielding inferior
classification metrics for typical sample sizes.
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Abstract

Conclusion

Conce ptua | Framework » Findings suggest that greater perceived stress during

gre—— s pregnancy is associated with greater diversity of the

infant gut microbiome, not less diversity

Purpose: Preliminary research suggests that prenatal stress CTT— _ | o |
may alter programming of the fetal microbiome. The purpose of —— * Complex, multispecies communities may be inherently
vulnerable to destabilization - The equilibrium of an

this study was to determine relationships of pregnancy stress to —
| — unstable microbiome can be more easily disrupted by
Design: This cross-sectional analysis is part of a longitudinal, e Method of perturbations

diversity and composition of the neonate’s gut microbiome.

cohort study. | » Greater maternal stress may lead to reduced levels of
Methpds: anty-one women and their future newborns were Fl N d | nos commensal bacteria in the infant gut microbiome
recruited during the third trimester of pregnancy. Women g

completed demographics and Cohen’s Perceived Stress . . . . . .
Scale at recruitment. A stool sample was collected from the Pearson Correlations between Covariates Discussion and Future Direction
neonate at one month of age. Data on potential confounds (e.g. and Diversity Measures
gestational age) were extracted from the medical record to Obstetric | Corticostaroid Muthiod > Lactobacillus, Lactococcus, and Bifidobacterium are
control for their effects. 16s rRNA gene sequencing and DESeq -F- considered commensal or beneficial bacteria with a
were used to |d§nt|fy diversity and abundance of species and Richness .09 .26 13 (33**) 23 role in regulating and enhancing immune function
test for differential expression of various taxa. We employed Evenness -.11 21 01 319 > Their lower levels among infants whose mothers had
multiple linear regression to examine the aims. Shannon Diversity -.11 -.24 .03 L
Results: Greater pregnancy stress was associated with greater greater St.ress Coqld lead to Ies§ ability to ward off .
diversity of the neonate’s gut microbiome (B = .30, p=.025) Simpson Diversity  -.11 -23 03 pajchoge.nlc organisms, along with greater vulnerabillity
However, the abundance of certain species appeared perturbed to infections and intestinal disorders
in neonate’s exposed to greater stress in utero. For instance, Multiple Linear Regression for Effects of Pregnancy Multiple Linear Regression for Effects of » |dentification of distinct microbial genes and gene
they had a significantly lower abundance of potentially beneficial tress on '?gahgtnwgzr?:éﬂx?"’ers'ty R e Il Ty pathways associated with pregnancy stress is needed,
bacteria such as Lactobacillus, Lactococcus, and . R along with assessment of their persistence over time
BiﬁdObaC_terium- | | o w1 IR o B » A longitudinal, case-control study is recommended that
Conclusions: A more complex, multi-species gut microbiome D — . r w m e controls for even more covariates and involves a larger
may lead to less stability and greater susceptibility to functional ordtal i W e A @ | (s W I T -
perturbations during development. Lower levels of beneficial B~ = e = i NN o w5 ow e n s sample size
bacteria can lead to less ability to ward off pathogenic B v 6w m N | o i m
organisms, and related Infections or intestinal disorders. ACkn OWIEdgm e nt
Relevance: Research could eventually yield microbial markers AU B e e e
gr;d microbial ?ene pafchv_vayhs that_ are bio-signatures of risk and - This research was funded by NICHD, RO1
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Backgrou nd. The prevalence of the different metabolic Syndrome Figure 1. Correlation matrix of PRS, MetSP, postprandial state with microbiome at the species level.

phenotypes (MetSP) is increasing (1). It has been documented that, even
before the onset of MetSP, altered postprandial metabolism may occur
(2). A large number of genetic variants associated with the risk of 10
developing MetSP have been identified and in recent years, it has been . '
documented that the gut microbiota (GM) is strongly involved in the HbATc | 05
development of these entities. A widely used methodology is the polygenic S

risk score (PRS) that allows identifying people at risk by combining the LoL
environmental and genetic part (3-9). Trglycerides

non.HDL
HDL

Aim: To determine if there is a correlation between the GM composition, DBP
the pre and postprandial metabolic state of the individual and the PRS to ==

BF

develop MetSP. BMI

WC

Pearson test

PRS_Hypertension

Methods:
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PRS_Hyperglycemia
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PLINK v.1.9 software
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Sequencing
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Square with color = p-value <0.05 by Pearson test.
Hba1c: glycated hemoglobin, TC: total cholesterol, LDL: low density lipoprotein, non-HDL: non-high
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density lipoprotein, HDL: high density lipoprotein, DBP: diastolic blood pressure, SBP: systolic blood
pressure, BF: body Fat, BMI. body Mass Index, WC: waist circunference, PRS: polygenic risk score,
MetSP: metabolic syndrome phenotypes, PGP: postprandial glucose peak, PTP: postprandial
triglyceride peak, APG: average postprandial glucose, APT: average postprandial triglycerides.

Postprandial
metabolism

PRS PRS Validation

R PredictABEL Through data imputation Figure 2. Alpha diversity indices according to postprandial triglyceride response.
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Conclusions:

1. The decrease in gut microbiome diversity could occur in the stages before the
onset of manifestation MetSP.

2. Some PRS, such as for hypertriglyceridemia, correlate negatively with several
species of microorganisms, such as the controversial archaea Methanobrevibacter
smithii. Meanwhile, Alistipes onderdonkii correlated negatively with triglyceride levels
both fasting and postprandial.

It is necessary to increase the sample size to corroborate these data.
Gratefulness:CONACYT. PN 2016-3251. CONACYT (scholarship number 704009)
for the financial support for my PhD degree in biomedical sciences.
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Abstract

Capturing an accurate representation of the viral members of a
microbial community presents significant experimental and
computational challenges. We systematically evaluated a series
of assembly- and reference-based approaches to viral profiling,
using synthetic sample sets along with shotgun metagenomes,
metatranscriptomes, and virus-like particle (VLP)-enriched
viromes from the IBDMDB cohort of the Integrative Human
Microbiome Project. We found that mapping to well-
characterized reference sets such as RefSeq maintained high
specificity across a wide range of bacterial contamination, but
failed to capture highly novel viral content. Viral metagenome
assembled genome (VMAG) reference sets varied in mapping
rates of viral reads, but were able to expand mapping of
synthetic novel microbial sequences.

Synthetic Viral Samples
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Synthetic samples were mapped to either vMAG sets: Gut Phage Database
(GPD), Gut Virome Database (GVD), Viral Sequence Clusters (VSC), or gold-
Nucleotide mapping was carried out on each database
with bowtie2, then databases were translated into the 6 possible translation

standard RefSeq (RS).

Nucleotide and translated
mapping of synthetic samples

frames and translated mapping was performed with DIAMOND BLASTX.
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e RefSeq has the highest true positive rate (TPR) and lowest false positive

rate (FPR) for broad viral synthetic samples

e Gut Phage Database has the highest TPR as a consequence of high

inaccuracy- demonstrating the highest FPR

e Viral MAG sets perform better against novel microbial sequences
e Combining RefSeq and a vMAG set (GVD) expands TPR without a

subsequent large raise in FPR
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e Translated mapping increases TPR for RNA viruses significantly, while

DNA viral gains are smaller, comparatively

e Translated mapping raises FPR only minimally
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Heatmap of joined top 25 taxa found in MGX, MTX, and MVX datasets
(rows) across all samples (columns) for MGX, MTX, and MVX
datasets.

® Most taxonomic observations (M-groups) did not have previous or
known taxonomic assignment. Those associated with previously
identified taxa are marked in purple: 1 & 4: Lactococcus Phage 2:
Uncultured CrAssphage 3: Enterobacteria Phage

e MGX and MTX samples are species-rich and show similar trends in
taxonomic observations.

e MVX taxon observations are more sparse and exhibit more
disagreement with MTX and MGX taxon observations.

Assembly generates shallow but
accurate species observations
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Left Heatmap of taxa found in AX set for the top 25 taxa from MGX,
MTX, and MVX datasets (rows) across all samples (columns). Right
Jaccard distances between assembled (AX) and non-assembled MGX
reads mapped to VSCs with Bowtie2 (MGX) or BLAST (AX).

® Top taxa identified among MGX, MTX, and MVX are sparse or
absent from many samples in the AX set.

® High Jaccard distances between AX and MGX data from the same
samples reflects low richness in species observations from AX data
alone, in contrast to high MGX richness.
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T Visterials and methods

Fig. 3. Relative abundance of PTSD related microbial features.
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» Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition that may | |« All participants completed the baseline questionnaire, including basic ‘ -
occur in people who have experienced or witnessed traumatic or horrifying demographic characteristics, and the cohort has been followed by biennially 2. . ##
events. The gut microbiome plays a critical role in modulating the immune, mailed questionnaires to update information on a variety of lifestyle and health- 3 g |
metabolic, psychological and cognitive activities of the host. Understanding related factors and ascertain incident diseases. §_4_ §_4_ o
PTSD’s long-term associations on dietary pattern and gut microbiome may | |« Among the 191 participants, 160, 21, 10 and 0 participants provided four, three, c 3 £5 No-trauma
: . . . : 0 o BE Trauma-no-PTSD
improve the physical and mental health of people with PTSD, but remains two and one stool samples, respectively. = < = PTSD
unexplored. Here we analyzed information on trauma exposure and PTSD | |« Trauma exposure was measured with a 16-item modified version of the Brief g_e' 2'6'
symptoms with microbiome data and dietary information collected about 5 Trauma Questionnaire (BTQ). o I
years later, in 191 individuals enrolled in the Mind-Body Study (MBS). We | |« Microbial taxonomic profiling and functional profiling were performed using B -8
found that inter-individual differences in gut microbiome appear to be stable MetaPhlAn2 and HUMANNZ2, respectively.
over time intervals as long as six months, and thus a limited number of -10 . . . ~10
measurements may be adequate to reliably investigate associations with long- |  Fig. 1. Conceptual framework of study. 504'5“)6 | \\\o@‘\% .\0&@& é\@@@ é\\\ﬁ% Q@“g &
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dietary pattern. Moreover, three (i.e., Bacteroides ovatus, Roseburia § [] | V V & > X S
inulinivorans, and Dorea longicatena) and four (i.e., Eubacterium siraeum, g o O O o g « Atotal of three differential abundant species were identified from the comparison
Bacteroides massiliensis, Ruminococcus gnavus, and Oscillibacter % T s oot ] 45721 [ a between No-trauma and Trauma-no- PTSD, including Bacteroides ovatus,
unclassified) differentially abundant species were identified in No-trauma vs. of T T2 T3 T4 Roseburia inulinivorans, and Dorea longicatena (Fig.3a).
Trauma-no-PTSD and Trauma-no-PTSD vs. PTSD comparisons, respectively. . Shortterm ntermediate-term Sforitem « Eubacterium siraeum, Bacteroides massiliensis, Ruminococcus gnavus, and
$ever_a| functiopa_l pathways were found s.ignificantly enrichgd_in PTSD group, I Swolsamplesin2013 | Habimal diatary intakeln 2013 Oscillibacter unclass{ﬁed were significantly different between Trauma-no-PTSD
mpludmg pyrimidine deoxyribonucleotide and L-ornithine de novo 7 E % - s and PTSD groups (Fig.3b).
biosynthesis. Overalll, thg se findings suggest that_ PTSD N a§soplat§d with | fon B e + 2 set of stool samples collected o (-2 :E = Fig. 4. Relative abundance of PTSD related microbial features.
long-term changes in dietary pattern and gut microbiome, highlighting the * PTSD symptom, Trauma, ... * 6 months apart | ® ==
critical importance of incorporating the human gut microbiome and diet in our : | a - b~ g =
understanding of PTSD and their association with physical health. Lonatt | Gut microbiome | Habitual diet - ' L
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affect almost 4% of the world’'s population. General population studies have P SR N < < S
shown that a large proportion of people in developed countries have been E ¥ - Amino acids A 57 B
exposed to at least one traumatic event in their lifetime. Numerous studies have ] F il B B B
shown that PTSD is associated with medical comorbidities, including asthmag, D | o ——— M | " ' ' ol
cardiovascular disease, chronic pain and inflammation, obesity, type 2 diabetes, E ~ « Vitamins NS T 3 L S & P &
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and gastrointestinal disorders. However, our understanding of how PTSD K\é@« & & & &g & & N
influences chronic disease development remains limited. Fig. 2. Correlation between PTSD score, host factors, and microbiome diversity. Q}@fﬁ & @e\é\&
&
We recently found that PTSD was associated with lower improvement in overall | a g o60n. & | b e ratio - P * Multiple pyrimidine deoxyribonucleotide related functional pathways were
diet quality over 20 years. Food and nutrition is not only essential to human ShARTIBH- © O ool o . sgmﬂcantly enriched in PTSD group when compared to No-trauma group.
health, but also modulates the human gut microbiome. Comprising trillions of DASH:- o - - fish - © o o (Fig.4a). | | o
microbes including bacteria, archaea, fungi, and viruses, the human gut . © © ¢ o meat | o . . . [swaman ¢ L-ornithine de novo biosynthesis (ARGININE-SYN4-PWY' ) was significantly
microbiome plays a vital role in our physiology, metabolism, homeostasis, and PTSDsympi):i: Y v T8 T T whoegran © o + o o @2 over-represented in PTSD group when compared to Trauma-no-PTSD group.
immunity. In recent years, the gut microbiome has been linked to the | o, .abuse. 6 4 i o+ | ¢+ o il © - ¢+ o o 0| ®w (Fig.4b).
development and function of the central nervous system. GAD P S P P S G N | frut - © 0 o + & - e DP
We therefore hypothesize that PTSD may link with host health through the GESIH © ¢ @ o ¢ - ¢ o ¢ PT‘;ese:::: ° ? ? z ‘.’ ‘: ; ‘:
associations with diet and the gut microbiome. To test this hypothesis, we using iz,! o 6 B0 : DA . © c © 0600 ¢ 06 0 & O In this study, we comprehensively evaluated the long-term associations of PTSD
data from a large cohort of female registered nurses in the United States (the RN YRR PR S S S e w v e with dietary patterns and gut microbiome in 191 women. In our analysis, several
Nurses’ Health Study Il: NHS-II) to systematically examined the associations of M c’:ﬁ:@‘%‘ I vt@""@@@&\e@’@ C S T species and functional pathways were shown to be significantly correlated with
trauma exposure and PTSD status in 2008 with dietary data and whole-genome %i@o% Q,{oo o the PTSD symptoms. Our study also linked severe PTSD symptoms to the low
shotgun sequencing from stool samples collected in 2013. The primary goal of | « PTSD symptoms were found to be significant negatively correlated with the AMED | MedDiet adherence, particularly in association with low intake of plant based
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INTRODUCTION

* New drug platforms are needed which enable the directed delivery of

Anti-TNF VHH-secreting PROT;EcT ameliorates inflammation in the
TNBS colitis model

PROT;ECT secreted VHH are functional, stable and are the

predominant secreted protein
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Background

Abnormal gastrointestinal motility and perturbations
in the gut microbiome may contribute to cognitive
impairment and dementia

Few studies have investigated this potential link
through the gut microbiome in humans using high-
resolution microbial profiling technology and
examined species-level microbial features

To examine the associations of bowel movement
frequency with objective and subjective cognitive
function and explore the mediating role of the gut
microbiome in a subsample

139,978 women and men from Nurses’ Health Study
(NHS), Nurses’ Health Study Il (NHSII) and Health
Professionals Follow-Up Study (HPFS)

Bowel movement frequency reported in 2012/2013
Self-reported subjective cognitive dysfunction
collected in 2014-2017

A subset (n=14,586) of participants completed the
CogState neuropsychological battery for objective
cognitive assessment in 2014-2018

The gut microbiome using shotgun metagenomics in
fecal samples collected from a subpopulation of 515
women and men

Table 1. Bowel movements and objective cognitive function (NHS2)

Global Cognitive
Function

Learning and Working
Memory

Psychomotor Speed and
Attention

Frequency of Bowel Movements

Every 3+ day Every 2 days Daily Twice/day

-0.06 (-0.10, -0.02) 0.02 (-0.01, 0.04) Ref.  0.01(-0.02, 0.03)
-0.07 (-0.12, -0.02) -0.00(-0.04,0.03) Ref. -0.01(-0.05,0.02)

-0.05 (-0.11, 0.01) 0.04 (-0.01, 0.08) Ref.  0.03(-0.02, 0.07)

Table 2. Bowel movements and subjective cognitive function (NHS, NHS2, HPFS)

Difference in global cognitive

function

Odds ratio of cognitive decline

A p=004 p<0.001 p =0.001
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Every 3+ d

Frequency of Bowel Movement

Every 3+ days Every 2 days Daily
-0.17 (-0.19, -0.14) -0.06 (-0.07, -0.04) Ref. -0.08 (-0.09, -0.06)
1.18 (1.08, 1.30) 1.08 (1.01, 1.15) Ref. 1.10 (1.05, 1.15)
C Gut Microbiome
(PCo2)

>Twice/day P quadratic

-0.03 (-0.07, 0.01)
-0.05 (-0.09, -0.01)

-0.01 (-0.07, 0.05)

Bowel movement frequency

>Twice/day P quadratic
<0.001

<0.001
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(A) Associations of bowel movement frequency and cognitive function with overall variation
of the gut microbiome based on the principal coordinate analysis using species-level Bray-
Curtis dissimilarity. (B) The proportion of variation in taxonomy explained by bowel
movement frequency, cognitive function, and covariables based on permutational
multivariate analysis of variance. (C) The gut microbiome mediated the association between
bowel movement frequency and subjective cognitive function. (D) Phylogenetic associations
of bowel movement frequency and subjective cognitive function with microbial species. (E)
Associations of bowel movement frequency and subjective cognitive function with select gut
microbial species.

Alistipesputredinis
=)

Conclusions

Actinobacteria
Bacteroidetes
| Firmicutes
Proteobacteria
Verrucomicrobia

. Viruses

An abnormal intestinal motility pattern was
associated with worse cognitive function.
The association may be mediated through
changes in the gut microbiome composition




Vaginal Lactobacilli-mediated Anti-inflammatory Effects on Host
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_ Abstract Results

Vaginal bacterial communities of people across the world are dominated by a A. Strain Suppression of Interferon Activation (TLR3) B. Strain Suppression of NFkB Activation (TLR4)
few lactobacilli species. Loss of lactobacilli dominance is linked to increased 10 15
vaginal inflammation with higher levels of pro-inflammatory cytokines. Our ,% o o8 § o % .
work aims to understand how the presence of dominant Lactobacilli species 28 11® s R — =m o UN g% 10__% _______ Q - —
may modulate host immune response to reduce inflammation. We used a §*§ 0 . S & N o TLR4 g% e
human monocyte-derived macrophage reporter cell line, THP1, to screen cell- % 5 0.1- &%O8g;g & © Qo 7 ®% < ¥ g © L. gasseri e ; - %g o8 o 9o
free supernatants from vaginal lactobacilli for immunomodulatory effects on S © o © o8 © L. jensenii _%_ 5 ? g, o ° o 68
type | Interferon and NFkB activation and downstream signaling. Addition of A L. crispatus 2 e
. | D D D D D D D D D D D D D D D D D D D D D D D D D B | .
cell-free supernatant from vaginal but not intestinal lactobacilli strains wNbh—_— TR ? L. iners oS UIN — TLR4
suppressed activation of multiple Toll-Like Receptors including TLR2, 3 and 4. ?\Q%Q%QQQ@Q@%@D‘@ @qu\gbb‘b% g\q,,\%\goé\ﬂ%\b% v%b‘f’cob??g'z\%@«g%b“\ﬁo‘b@’” Lactobacill O L. reuteri CD\Q\& < 4V CO‘,?: 6{,\ a° & Lactobacill
Prior activation of cells with TLR agonists induced Interferon (IFN) and NFkB | i ' .|y Strains (HM#) el Bl strains (HM#)
. . ‘e ' ¥ : . . o’ . .
activation which was suppressed upon addition of cell-free supernatant from L. gasser L.jensenii [ crispatus i L. reuten S SN
. . . 11 . . L. INers rb% ‘Q)(\% | | 6\)
vaginal but not intestinal lactobacilli species. Our results suggest that vaginal \/9 . v S

lactobacilli secrete compounds that suppress inflammatory signhaling in
human macrophages. With our collaborators, we have screened for and
identified active fractions from the supernatant of Lactobacillus crispatus
strain MV1A. This work aims to help elucidate the bacterial metabolite(s)
responsible for suppression of host TLR signaling pathways. The findings of
this study will help increase our understanding of how the lactobacilli-

Figure A-B. Vaginal Lactobacilli Cell-Free Supernatants Suppress IFN and NFkB Induction upon TLR3 and TLR4 Activation: THP1s were stimulated with 1mg/ml
Kasugamycin (A) or 500ng/ml LPS (B) prior to being incubated with 5% v/v cell-free supernatant from vaginal Lactobacilli strains including L. gasseri, L. jensenii,

L. crispatus, and L. iners and an intestinal Lactobacilli strain L. reuteri. Control wells received media only (®). Interferon induction (A) and NFkB induction (B) were
measured 24- and 8-hours post-incubation respectively.

dominated vaginal microbial communities influence host immunity to reduce C. Fraction Suppression of Interferon Activation (TLR3) D. Dose-dependent Suppression
: : 20 - 15 -
inflammation. Control Fraction © 139
: : §3 154 150 S3
Experimental Design 23 e a3
SE 104 oS
- 3 > Active Fractions4 o 152 o 2
Lactobacilli sup T O o9
S 3 57 o 153 S 3
NFkB
oL@ : < — 25y o 154
UN pP———p/—rrrmrmom—_—-- - - / / / , , ¥ ¥ ¥ e TLR3
OR — IFN'SN ;IZBhIZi?SOUt PGSR R AR R RS R SR :‘_r:g:::)?'l a;illi
\ _ Figure C-D. L. crispatus Fractions (#150-154) Suppress IFN upon TLR3 Activation in a Dose-Dependent Manner: THP1ls were stimulated with 1mg/ml
TLR agonist only ‘ Kasugamycin prior to being incubated with the indicated L. crispatus MV1A fraction at the concentration of 0.1mg/ml (C) or a serial dilution ranging from 0.01 -
377 - il 0.1mg/ml (D). Interferon induction was measured via luminescence 24 hours post-incubation. The grey dotted line (D) represents the average fold induction of
Screen of Lactobacilli supernatants: interferon activity by the TLR3 agonist control.
Human monocyte-derived macrophage reporter cells, THP1s, were stimulated S dF Di . Ack led
for 2 hours with TLR 2, 3, or 4, to induce IFN and NFkB activation. Next, the ummary and ruture Directions cknowledgements
THP1s were incubated with cell-free supernatant from various vaginal and * Vaginal lactobacilli cell-free supernatants suppress IFN while intestinal lactobacilli This work is supported by Harvard University’s Biological Sciences in Public
intestinal lactobacilli species. Supernatant was collected from the cells 8- and (L. reuteri) cell-free supernatant does not. Both vaginal and intestinal lactobacilli Health (BPH) PhD program training grant. In the Gopinath lab, we are grateful
24-hours post-incubation, and IFN and NFkB induction were measured. cell-free supernatants suppress NFxB induction. for Maryam Ahmad’s help in maintaining the cell line of interest.

« Complete suppression to untreated levels is observed in both basal IFN and post-

Fractionation of Lactobacillus crispatus: . L . . . .
| bacill ,  MVIA MRS " 4 th TLR agonist activation conditions, using multiple TLR agonists. References
actobacillus crispatus strain was grown in media, and the e Active fractions of L. crispatus MV 1A were successfully identified and confirmed to

supernatant was separated from the cell pellet by centrifuge prior to a

be the same active fractions from three independent bacterial cultures. Their 1.Ravel, J. et al. (2011). Vaginal microbiome of reproductive-age women.
standard fractionation process. The obtained supernatant was applied to suppressive activity is dose-dependent. Proceedings of the National Academy of Sciences, 108 (1), 4680-4687. DOI:
solvent-partitioning with acetate (EtOAc) to obtain EtOAc fraction. High- * The future directions of this project include expanding the screen to epithelial cells 10.1073/pnas.1002611107
performance liquid chromatography (HPLC) using a reverse-phase HPLC column for increased understanding of the bacterial supernatants’ effect on immune 2. Gosmann, C. et al. (2017). Lactobacillus-deficient cervicovaginal bacterial
eluting a gradient solvent system of water and methanol was performed on the response and potential identification of active compound(s) in L. crispatus communities are associated with increased HIV acquisition in young South African

EtOAc fraction to obtain the individual fractions tested in our screening. responsible for the anti-inflammatory effect observed. women. Immunity, 46(1), 29-37. DOI: 10.1016/j.immuni.2016.12.013
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1. Abstract 5. Methods

8. Metabolite-species link for 30 cases and 30 controls

Colorectal cancer (CRC) is the second most deadly cancer in the world, affecting T —" Top 30 significant metabolite-species links based on log-ratio (Wilcox, p < 0.05)
| 1 A : h | : _ . 1axonomic proriuing ] . .
almost 50,0_00 mericans each year and ea_dlng to over 50,00.0 deaths 2. Map each species to an “ Bacteroides dorei
Numerous microbial species and the metabolites they produce in the gut have - . _r
. . : . Metagenomic Species abundance existing GEM ‘ . :
been associated with the development and spread of CRC. However, it remains reads Eubacterium ellgens
unknown to what extent the gut microbes, individually or collectively, contribute to R ] 5 CEM ‘ Barnesiella intestinihominis
the gut metabolome and affec_:t CRC carcinogenesis. To better understand the I Database ‘ Faecalibacterium prausnitzii
functional role of individual microbial species in CRC carcinogenesis, we used a - , . . :
bottom-up systems approach based on GEnome-scale Models (GEMs) of —— " “ ‘ Bactero!des the.ta'Ot_aom'Cron
metabolism to functionally profile the gut microbiota at species and molecular 1 Bacteroides uniformis
level resolution in CRC. To this end, we used publicly available fecal Growth | W ‘ Bacteroides vulgatus
metagenomic data from 30 subjects with CRC and 30 non-CRC controls to simulation > one (2016) ‘ Anaerostipes hadrus
construct GEMs of the gut microbiota metabolism at species-level resolution e - Species-level , P U .
(spanning 127 microbial species). By computationally simulating these models, @(O ® NN model Ruminococcus bromii
we could infer the metabolic activity of each microbial species in the gut, which A7 A SF NN, ‘ Dorea formicigenerans ,
L S . . s, (o® \ N (o0 NS by O P |
allowed us to trace back individual microbial species producing several secreted  / ® oo \  Computationally /" /&%) \° “9\ o © ’ Coprococcus comes reviousiy
metabolites. This analysis identified 338 metabolites with differential production | /K %) | Simulate \.X'A’] \U - ‘ ‘ . . . implicated
levels by the gut microbiota as well as 656 linkages between specific microbial | /\/ 4 | _ - e g | \ e/ \& o) | > ParabaCt?rO|deS .(.jIStaSOnIS .
species and metabolites that were significantly different between CRC subjects | o ® L e ey o, %o ) ‘ Eubacterium hallii in CRC
and non-CRC controls (Wilcoxon, adjusted p < 0.05).Several of these identified 5o o\ Sninform. (2019) ‘ Parabacteroides merdae
metabolites and species have been previously implicated in CRC, examples of A . OO L JR | e : : :
which include chicory insulin, deoxycytidine, and acetate that are produced by . 4. Simulate community Community- > Cosnas':‘r:Ic;t (:;mgl:::Zi:\izvlzr:,ﬂjgéea(:h ‘ Colllqsella aerofacneng
Faecalibacterium prausnitzi, Eubacterium eligens, and Bacteroides vulgatus, T ] level GEMs evel model ‘ Odoribacter splanchnicus
respectively, amongst other species, according to our models. Overall, our study N — T » - - - .
provides a roadmap for mechanistically linking microbial and metabolite g g g g % é-cc?(é ('))> Ccl)g_) = (c? g %E § QE) g? o Metabolite produced by SpecCIEesS IN.
biomarkers of CRC. =3280 a00 28380 85353
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1 The goal of our % ® _ Controls
research is to identify © 8 ) G2 2CrMOODITS> NI
and analyze Specific ¢ || \ IR 58%8 3% Metabolite produced by species in:
species-metabolite links p - \ ] 0. S-g 3.5=350Q 8' = g 2 E,"g 3
to instances of CRC CRC % Y 8 0 > 2 ® 8 O ®» > $% o 5‘8 ‘ Case
8 More in ® C © Q" S > Previously
4. GEnome-scale Models (GEMSs) 205 Cases 3 2 implicated
£ — -
enome-scale | B 2 Q ®, .
Setwork modlel Outputs g () (/)] In CRC
10 -1.0 - O
/—‘) @ Intracellular rxn ' -
{ 8 //ﬂuxes &l
32 . 87 ~e-e——® _ Secretion ! . ()
poawe| | Consvamibssedmetiods | | deege s s L5 s
e.g., 2 Z C 1 ! ! [ | : .
g;:% > Q? T 3 (_% 2 ., 2 9 ¢ = £ 9 o 10. Conclusions
. c S c S 5 B S o o c & T ©
£ 2 2 8 S L‘@ e 3 é g 2 s 7 5 ci,': [ Our analysis successfully linked previously identified metabolites relevant to CRC to specific species
Growth rate = A @ = = _- - — - = < * | _ _ _ _ _ _
@ < 3 S %) * O , o , J Moving forward, we will conduct this analysis on a larger scale, also considering samples from other cohorts
‘ < S = ** denotes previously implicated in J - : y ir9 - J
™ 3} B % 2 0 P CRCV P to consider the effects of different diets on CRC carcinogenesis
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unesp Montibeller, Maria Jara?; Ferrocino, llario?; Rodrigues Cardoso, Daniel3; Cardoso Umbelino Cavallini, Daniela® [ “ ‘ )| H | H 1 j
1 School of Pharmaceutical, Sdo Paulo State University, Araraquara, Brazil, ? DISAFA - Department of Forestry, Agriculture and Food Sciences, University of Torino, Italy, 3 SGo Carlos Institute of Chemistry, University of Sao Paulo, Séo Carlos, Brazil. : ‘ T y M ;_‘ '_" I ': * E I — E I ) :;
i w0 b s - . | -y
18 1|08 [
Background Results | ml . =N
In all DSS-induced mice, a reduction in the alpha-diversity was observed ‘ . : N
The Ulcerative Colitis (UC) is characterized by chronic relapsing intestinal across th_e experimental time. Moreover' all groups display a similar . — i a :
inflammation. Considering the impact of UC on the quality of life, dietary i mo Shannon index through the experiment (p > 0.05). L |
interventions have been proposed to reduce the associated symptoms. 2w nou | | l,_ﬂ ’ I
Supplementation with food proteins as a source of bioactive peptides like = -SRI _ - . ks p : - - mone
£ J : ; ~ : o = = B
whey protein (WP) may reduce symptoms of UC by modulation of gut Q 34 A ) _ H _\ L] g § | | -5 CH
microbiota and immune system due the production of mucins and 8 it I t : B E H || F L] “ ’ = [:“:J B D B H
metabolites. In this way, the short-wave ultraviolet light (UV-C) procedures = o = T L — (L ; ’ ’ =
have been used to improve the digestibility and release of bioactive peptides % 2 U “
during WP digestion. In the present study induced UC mice were fed a < : = i e T =
standard diet plus WP with or without UV-C light treatment. % ol §" *.*3‘ e — — A
Methodolo B . . N .
gy P AR iy - L] Figure 4. Box lots showing the Alpha-diversity measures in each group
P e + N S during timeline of experiment.
13 davs Products administration T T T T T T T = i
ﬂc:lmmll.fnu-.m 1 1 2 3 4 S 6 7 it - i 5 =
— o T a T3 1 - Tim: (deye) - . S Microbiota composition was significanty affected by the treatment. A
......... susil] I } y decrease in Lachnospiraceae both in W and WU groups (p < 0.05) was
% : 2 3. Figure 2. Disease activity index (DAI) of each group o observed. However, at the study end (day 14) a restore in Lachnospiraceae
= S - during DSS induction period. was observed (p < 0.05). Finally, Oscillospiraceae (associated with H group)
S and Turicibacter (W group), increased during the experiment. Mice in WU
o reatmen . . . . ey .
. e . - . . ** no statistical difference with day 1 ) ) ) ) . group showed a reduction in the characteristic symptoms of colitis (diarrhea,
Figure 1. Colitis induction and products administration during ! Figure 3. Frequency of microbiota ASVs between mice groups during weight loss, and presence of blood in the feces), without differing from the H
1 . . . ’ ’
the experimental protocol. * no statistical difference with healthy group timeline of experiment. group on day 11 of the protocol (p<0.05).
We induced UC in mice by a treatment with dextran sulfate sodium (DSS). Male
C57BL/6J mice (n = 10 per group) colitis induction and were divided in: H group .
- healthy mice; C group - DSS mice that did not receive WP; W group - DSS mice Conclusions
fed with WP without UV-C treatment and WU group - DSS mice fed with WP
functionalized by UV-C treatment. WP administration started seven days before . . . . . . o . . . . .
continued through the seven days of DSS induction. The severity of colitis was The results indicate that the different WP production could result in a restoration in beneficial taxa and slower symptom progression in colitis mouse model. Although future studies are needed to confirm these
daily determined by disease activity index (DAI) and the fecal microbiota was beneficial effects.
analyzed in the days -7, 1, 5and 7.
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The Microbiome Analysis Core at the Harvard T.H. Chan School of Public
Health was established in response to the rapidly emerging field of (a)
microbiome research and its potential to affect studies across the
sciences. The Core’s goal
microbiome study design and interpretation, reducing the gap between

biomedical

s to aid

researchers

Microbial multl’

omics

Metagenomics

with XD

Measurements

Metatranscriptomics

A

Sampling and multi’'omic profiling systems in microbiome epidemiology

Metaproteomics

Metametabolomics

Metadata

* Host/genetics
- Host eplgenetlcs

* Hostiimmune, profile

* Host demograph|cs

- Host gene expression
e,

o
« Host clinical mformatlon

primary data and translatable biology. The Microbiome Analysis Core (Vicrobal species,stains, . (Microbal gono (Microbalprtei (Microbial metabolte (Mumva; o
provides end-to-end support for microbial community and human PYT—— N A 4 A——
microbiome research, from experimental design through data generation, ® g D At “ y
bioinformatics, and statistics. This includes general consulting, power Cases_______Contols ; = H EEEE.EZZME; T :\thCb%
calculations, selection of data generation options, and analysis of data MicobarSianpofis £ E . B Feaure 4

from amplicon (16S/18S/ITS), shotgun metagenomic sequencing, Micoialgene rorésin profe N | . ; % %% %/
metatranscriptomics, metabolomics, and other molecular assays. The P ticopa meootloneerra : [ouafe - :"37\ g%

Microbiome Analysis Core has extensive experience with microbiome .megrated::romicpmﬁ.es 5| - T Eome H
profiles in diverse populations, including taxonomic and functional profiles Y Gomponent Y Disease assodiation

from large cohorts, qualitative ecology, multi'omics and meta-analysis, and () Meta analysis of multiomic datasets Synthesizing evidence (f) Experimental validation
microbial systems and human epidemiological analysis. By integrating  New  Uawe  Ueawe  Urawre oo P e 6 e

microbial

Core services

Consultation for microbiome
project development.

This includes consultation on
experimental design, sample
collection and sequencing, grant
proposal development, study power
estimation, bioinformatics, and

statistical data analysis.

Validated end-to-end meta’omic
analysis of microbial community
data.

Using open-source analytical methods
developed In the Huttenhower
laboratory and by other leaders in the
field, we provide cutting-edge
microbiome informatics and analysis.

Support fully-collaborative grant-
funded investigations.

Includes preliminary data
development, hypothesis formulation,

grant narrative development, data
analysis and inference, custom
software development, and co-

authored dissemination of findings.
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Microbiome Analysis Core

community profiles with host clinical
information, we enable researchers to interpret molecular activities of the
microbiota and assess its impact on human health.

and environm

Study Design

e Consultation

* Grant assistance

* Power analysis

e Collection methods
 Wetlab

* Drylab

Analysis

e Bioinformatics (raw
data processing,
taxonomic and
functional profiling)

* Downstream analysis
and statistics

Interpretation

* Results

* Discussion

* Manuscript
writing/editing
Response to reviewers

The Harvard Chan Microbiome Analysis Core
Is a part of the Harvard Chan Microbiome In

Public Health Center (HCMPH). Want to learn
more? Visit https://hcmph.sph.harvard.edu
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(c) Assembly-based strain profiling

Map sample reads to reference pa

(a) conserved marker genes.
Strain-level features

distinguish cases & controls  Species X reference pangenome
within a common microbial
species (species X)

as confidently detected (well covered) or confidently absent.
Call and compare single-nucleotide variants (SNVs) in

ngenome. Score genes

SNV calls

Contig  Gene call

C TGAT A

Assemble sample reads into contigs, call genes (ORFs), and annotate against
reference databases to reveal variation in gene content and order (synteny).
SNV-level variation can be directly inferred from assembled haplotypes.

Sequencing fragment

for novel microbial

microbe, or human individual.

discovery.

Haplotype calls
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The Harvard Chan Microbiome Analysis Core supports microbiome analysis for a
variety of molecular data types in human populations or in model systems. Typical
analysis workflow steps include a) molecular data generation of a variety of types,
iIncluding but not limited to sequencing, which are b) bioinformatically processed
into biologically interpretable features and c¢) quality controlled per dataset. This
permits d) microbiome-tailored statistical methods to associate molecular features
with covariates and outcomes, and optionally e) meta-analysis of multiple data
types per project or across multiple projects. Finally, f) the Core can assist with
study design for downstream evaluation of statistical associations in in vivo or in

Shotgun metagenomic and metatranscriptomic sequence data are particularly
amenable to detailed computational analysis, including multiple complementary
methods for a) strain tracking or differential microbial expression. b) Reference-
based methods can identify strains using either single nucleotide or structural
(genomic) variants, and ¢) can be used in tandem with assembly-based methods
d) Whole-community microbial
expression can additionally be detected either in tandem with or in addition to
metagenomic copy number changes, and e) analyzed per gene, pathway,

differential

Mallick, H. et al. Experimental design and quantitative analysis of microbial community multiomics. Genome Biology. 18:228 (2017).

Microbial community profiling

The first step In microbiome molecular data analysis is quality control
(KneadData) and profiling to transform raw data into biologically interpretable

features using a reproducible workflow (AnADAMAZ2).
and

microbial species (MetaPhlAn2)

This includes identifying
strains (PanPhlAn/StrainPhlAn),

characterizing their functional potential or activity (HUMANN3, ShortBRED),

and priotization of bioactive

(MACARRON).

PICRUSt

Predict metagenome
functional content from
marker genes

PhyloPhlAn

Reconstruct microbial
phylogenetic trees

genes

Perform and document

(MetaWIBELE) or metabolites

HUMANN
Profile microbial genes
and pathways; stratify
by contributing species

AnADAMA .
bioBakery

A meta’omic analysis
environment

§

automated scientific
workflows

Downstream analysis and statistics

Once profiled, microbial communities are amenable to downstream statistics
and visualization much like other molecular epidemiology such as human
genetic or transcriptional profiles. Like these other data types, microbial
communities often require tailored statistics for environmental, exposure, or
phenotype association (LEfSe, MaAsLin) or for ecological interaction discovery
(BAnOCC). The Harvard Chan Microbiome Analysis Core also provides a
variety of tools for bioinformaticians working in the microbiome space.
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ARepA

Extract and normalize

‘omics data from online
repositories

population structure

MaAsLin

Associate arbitrarily

complex metadata with
microbiome features

Associate up to two
metadata with
microbiome features

Correct batch effects,
meta-analyze microbes,
genes, and pathways
across multiple studies

MMUPHiIn GraPhlAn

Generate cladograms

and decorate with
metadata

CCREPE

Assess the significance

of similarity measures
in compositional data

BANOCC

Bayesian assessment of

MicroPITA

Select samples for
follow-up analysis in
two-stage tiered
studies

association in
compositional data

Mclver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics, 34:7, 1235-1237 (2018).

Director: Xochitl C. Morgan

Senior Software Developer: Lauren J. Mclver
Postdoctoral Fellow and Data Analyst: Thomas M. Kuntz

Scientific Director: Curtis Huttenhower
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Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with
obesity and type 2 diabetes, affects up to 25% of the adult population in the
US. Human and mouse studies have suggested gut microbiome as a
causal factor in the pathogenesis of NAFLD. To investigate the role of the
gut microbiome in NAFLD, we examined metagenomics and metabolomics
from 211 subjects with NAFLD and 457 healthy controls from the Nurses’
Health Study Il. We found that NAFLD explains a significant, but relatively
small (>1%), amount of the taxonomic and metabolic variability in the
microbiome. Despite this relatively weak signal, we identified several
metabolites and species associated with the disease phenotype.
Specifically, we highlight the role of the microbially produced bile acid,
iIsoallolithocholic acid (isoalloLCA) in NAFLD. Our results link together
previous research on microbial manipulation of Treg and Th17 immune
cells, and the role of the immune system in NAFLD. All together this study
represents the largest multi-omics study to date of the microbiome in
NAFLD.

Participants characteristics:
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Number of samples
Fraction of samples

6.0 6.5 7.0 7.5 20 30 40 50 60 55 60 65 70

Log 10 final reads Subject BMI Subject age
NAFLD
Control Case P-value
n 457 21
Age (mean (SD)) 62.2 (4.2) 62.2 (3.9) 0.90
Hypertension (%) 118 (25.8) 77 (36.5) 0.01
. . Hypercholesterolemia (%) 137 (30.0) 86 (40.8) 0.01
We adjusted for the most recent diabetes Diabetes Meltus (%) 253 a@is <000
d|ag NOSIS, Cumu|at|ve average Of Pack-Years (mean (SD)) 12.8(101)  147(11.1)  0.21
" " Physical activity (mean (SD)) 24.0 (19.3) 17.1 (15.8) <0.001
body mass index (BMI), cumulative average """ " ase wr6n 00
Of Alte rn at|Ve H ealthy Eatl ng I nd eX (AH E I ), Postmenopausal Hormone Use (%) 0.60
and cumulative average of physical activity. — owenus 0 @19 40(190
Never Used 197 (43.1) 83 (39.3)
Past User 122 (26.7) 64 (30.3)
Aspirin Use (%) 0.07
Curren t user 158 (34.6) 89 (42.2)

Nonuser 299 (65.4) 122 (57.8)

]
Data generation:
" Total Calories (mean (SD)) 1815.6 (452.8) 1876.1 (469.0) 0.11

Metagenomic data was generated by the Broad Institute were using High-
Output Microbial WGS, which yields 12M 2 x 150bp reads. Sequences were
processed using Biobakery Workflows v3 in Nov 2021 using default
parameters. Sequences were trimmed and decontaminated using KneadData,
yielding and average of microbial 7.5M reads per sample (Fig 1C). Taxonomic
composition was then determined with MetaPhlAn 3.0 and functional profiles
were generated in HUMANN 3.0.Metabolites were profiled using hydrophilic
interaction chromatography (HILIC) and C18 HPLC columns, in both positive
and negative ion mode each. Nontargeted spectra were processed using
Progenesis CoMet software (v 2.0, Nonlinear Dynamics) to detect and de-
iIsotope peaks, perform chromatographic retention time alignment, and integrate
peak areas. Peaks of unknown ID were tracked by method, m/z and retention
time (RT). Metabolite identification was conducted by matching measured mass
and RT to reference metabolites matching an internal database of >600
characterized compounds. 10 samples were chosen as internal technical
replicates and processed twice each; metabolite abundances for these 10
samples were averaged across replicates.

Ordination analyses:

PCoA shows patterns characteristic of human stool microbiome, such as a
Firmicutes gradient along the first principal component of species composition (A).
However, we see very little differentiation between NAFLD and healthy subjects
for both species and metabolites (B,C)
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Taxonomic changes in NAFLD:
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33 species differed between NAFLD and healthy controls. A fermanova of
Bray-Curtis similarity revealed that NAFLD explained a small (R“ = 0.005), but

significant (p < 0.001) amount of variation in microbial species abundances.

Metabolic changes in NAFLD:

We observed changes in
several bile acids, fatty
acids, and increases in
acylcarnitines in NAFLD.
Because bile acids are
known to be involved in
NAFLD, we pay special
attention to this group.
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Acylcarnitines make up the
largest class of the
compounds higher in
subjects with NAFLD.
Increases in acylcarnitines
In response to steatosis and
liver fibrosis has been noted
previously in plasma.
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Violin plots of the abundance of the secondary bile acids isalloLCA (A),
phenylalanocholic acid (PheCA, B), and leucocholic acid (LeuCA, C) stratified by
NAFLD.
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Introduction & Methods

Hypothesis
Limiting the consumption of three specific simple sugar groups (fructose, oligo-

saccharides, polyols) to a cumulative total of less than 40 grams per day per individual
will improve the symptoms of Acne Vulgaris (AV)

Objectives
1. To observe the effect of an exclusion diet on cases with Acne Vulgaris (AV) over a

period of 15 days
2. To compare differences in stool microbiota of cases before and after a dietary
intervention with symptom relief

Limiting fructose, oligosaccharides & polyol sugar groups
Malabsorption of three simple sugar groups were thought to trigger a rapid inflammatory
effect appearing as AV but potentially moderated by limiting simple sugars in the diet.

While the microbiome can be modified within 3-5 days (David 2013) a 15-day elimination
diet was applied to a small adult AV cohort in order to allow sufficient time both to adjust
the gut microbiome and to observe the effect on acne severity. A comparison of DNA
sequenced stool samples at baseline and endpoint was used to identify common trends
in this cohort.

The usual diet for Lao people is already low in the target sugars under review suggesting
better adherence, while adult AV candidates were chosen for their reliability and expected
adherence rather than a teenage cohort. Skin microbiome or specific blood bio-markers
were not examined and no other intervention (e.g. pharmaceutical / OTC preparation)
formed part of the study.

A local restaurant was contracted to deliver a meal plan that conformed with the study
requirements, supplying three meals/snacks per day/per case. Cases collected meals in-
person every two days from the restaurant where for each visit the Co-PI observed their
skin and asked each case a standard checklist of questions in relation to dietary
adherence and bathroom frequency.

picture booklet designed for project

Foods to enjoy vs. Foods to avoid

AV severity evaluation

Observations of acne severity at baseline (Day 1) and at endpoint (Day 15) were agreed
by two independent dermatologists using the Investigator Global Assessment

(IGA scale 0-5) for a total of 27 AV cases (Dreno 2011). Photographs were taken at
baseline and endpoint of each case by a professional photographer.

While the microbiome can be expected to be modified within 3-5 days (David 2013) the
15-day timeframe allows for both for AV to be observed, as well as allowing an
expectation for high dietary adherence. DNA sequencing of the microbiome from stool
samples at baseline and endpoint were retrieved to establish if a statistical significant
change in gut microbes could be matched across the cohort with AV improvement.

Microbiome analysis
DNA sequencing of stool microbiome was completed at baseline and endpoint for every
case by Diversigen Laboratories MN USA (https://www.diversigen.com)

Intestinal parasites

Considerable effort was made to ensure cases were clear of intestinal parasites as prior
(unpublished) work by co-Pl indicated parasites appeared to increase malabsorption of
target sugars in AV cases.

Infection or re-infection of intestinal parasites may be due to non-adherence, however to
limit the risk of false-negative results, parasite exams were cross-checked by using two
separate laboratories.

Included BT : Excluded
summary BRI s Ve e v T summary

polished rice fruit; fruit juice
rice noodles ‘ : fruit products
meat; fish; poultry ' , R AR » honey
eggs; dairy products ¥ S s S added fructose
low-fat UHT milk HFCS / FOS
wheat products
soy-bean oil
onions; garlic
mushrooms
beans/lentils
sorbitol, xylitol

fiber was increased
(oats/nuts/vegetables)

no restrictions on
glycemic load

Pilot Study

An exclusion diet to examine the effect on Acne Vulgaris (AV)
limiting fructose, oligosaccharides & polyol sugar groups for 15 days

Marie Ryan M.Med.Sc (Epi) M.Man (Health)& Dr. Laurent Ferradini M.D (Derm) PhD (Immun)

in cooperation with the Lao National Center for Dermatology & Venereology (NDC)

Methods

Study Type Non-randomized, prospective observational dietary study

Inclusion Criteria

* Adults >18 years with persistent moderate-severe facial acne for the previous five
years

* Resident in Vientiane within the radius of supplied map for 6-8 weeks
Must be contactable by smart phone, and be registered users of WhatsApp
Must have completed their food diaries from pre-inclusion interview to Day 1

Exclusion Criteria

» Use of oral isotretinoin, or antibiotics in the past three months

» Persistent intestinal parasite infection

» Diagnosed food allergy or intolerance, celiac, Crohn’s disease, ulcerative colitis

* Veganism, vegetarianism or other restrictive diet

» Current consumption of soft drinks containing fructose that exceeds 600ml per day

* Intended continued use of complimentary medicines, supplements or anabolic
steroids

» Other: Diabetes; PCOS; pregnancy; current diagnosis of dengue fever, chikunguyna
fever, malaria; alcohol intake more than three standard drinks per day; illicit drug use;
physical or mental illness

Study population A total of three small groups comprising 27 adult cases were
recruited in Vientiane, Laos (October 2019-June 2020) via advertising on social media
and word-of-mouth. Interested candidates forwarded a ‘selfie’ of their skin condition via
WhatsApp messenger and a follow-up phone call was made with screening questions
according to the inclusion/exclusion criteria.

Pre-enrolment evaluation Candidates were requested to record their dietary habits
leading up to the pre-inclusion group information session, where the Informed Consent
form was signed at the Lao National Center for Dermatology and Venereology (NDC). At
pre-inclusion, candidates provided a blood sample for general FBC testing, and stool for
a parasite exam. Weight, height and blood pressure were also recorded.

Cases were confirmed but were not given specific details regarding foods
included/excluded in the study.

Day 1 a second stool sample was obtained both for parasite exam and also for DNA
sequencing. Cases were asked not to change their usual skin regimen and to supply
photographs of all products used on their skin prior to/during the intervention.

Exclusion diet implementation

Day 1 cases were photographed and received the baseline skin assessment (IGA) by
two dermatologists. Detailed information about the study was provided Day 1 with Q&A.
Any additional information throughout the intervention was sent to all cases via group
chat using WhatsApp messenger so as not to bias or influence individual behaviors.
However, all cases were expected to refer to detailed printed information and food
picture book.

Exclusion diet The same meals/snacks were collected by cases every two days. The co-
Pl was present for each collection to monitor cases. A standard set of questions was
asked of each case regards their dietary adherence and bathroom frequency. A review
was made of the completeness of individual diet diaries along with a record of skin
condition. Self-reported adherence was around ~90% although infection by intestinal
parasites by five cases during the intervention would suggest reported adherence was
likely lower at least for these cases.

Parasites diagnosis and treatment A parasite exam was applied in the week prior to Day
1, again on Day 1 and lastly on Day 15, with appropriate medication as necessary.
Administration of Albendazole (for example) has a one day wash out and was not
expected to alter the gut microbiome'!

Stool sampling and DNA sequencing Stool samples on Day 1 and Day 15 were
transferred using Diversigen test kits and stored according to manufacturers
specifications before being shipped all together by courier on Day 15 to Diversigen
Laboratories (MN USA)

Director, Dr. Ammala Philavanh

Results

AV clinical score evolution at Day 15

Investigator Global Assessment (IGA) scores (Dreno 2011)
of the AV enrolled patients (n=27) made in agreement by
two dermatologists at baseline and endpoint at Day 15 of
elimination diet.

no change
. . . (6/27)
A clinically meaningful outcome? of at least a two-point

(IGA) improvement from baseline (USA-FDA guidelines) ~ total
was achieved for 6/27 cases with 19/27 cases showed g}f;%“ed lzgr/ozvgd
any improvement while 6/27 showed no change in IGA

score and 2/27 worsened .

2-point improvement

6/19)
While the time for AV lesions to resolve completely can be
in the range of 4-6 weeks, this short 15-day intervention
had a positive effect on the IGA scores improving both skin
quality and self-confidence for 19/27 cases.

Other outcomes of the diet

* Weight loss was observed for 20/27 cases (minus 1-4kg) while weight remained
stable for 7/27 cases.

+ Cases reported that within few days of the intervention the texture of their skin had
improved with reduced oiliness.

» Cases also reported improved intestinal transit with more frequent and easier
bathroom visits.

» Constipation is known to be a symptom of simple sugar malabsorption and can be
further exacerbated by parasitic infection like ascariasis, taeniasis or Opisthorchis
species.

Indeed, parasitic infection was found to be clearly associated to AV lesion worsening in
one case (below) with parasitic re-infection during the diet (suggesting diet non-
adherence) since anti-parasitic treatment at day 15 and strict self-compliance with the
diet led to considerable improvement of AV at 6 weeks post-intervention.

Parasite infection/re-infection was suspected to be from consumption of snacks or low-
cost lunches (often papaya salad or fermented fish paste) purchased from street
vendors.

baseline endpoint self-compliant

week 0 (IGA 4) week 2 (IGA 3) 6 weeks post-intervention
ancylostoma stronglyoid steecoralis

opisthorchis viverrini

DNA analysis

+ DNA was isolated from fecal samples for 26 cases (24F, 2M) and 4
controls by Shallow Shotgun Metagenomic Sequencing (SSMS).

» Comparison of the relative abundances of operational taxonomic units
(OTU) for 26 cases at baseline and endpoint (15-day exclusion diet) is
underway

N

Case characteristics Self-reported

. no new acne if fully adherent to diet
average weight loss

cases  gender lesion(s) within two hours when non-adherent
age (1-4 kg) ;
smoother skin
* less oily skin
D 29 20/27 * reduced pore size
n= (20-48) * easier/more regular bathroom visits

Conclusions

» This exclusion diet limiting simple sugars (<40grams total/day) had a positive
clinical impact on AV evolution

» This exclusion diet also resulted in weight loss and improved frequency and ease of
bowel movements

* Intestinal parasitic infection appeared to worsen AV lesions probably through further
malabsorption of simple sugars.

* The exclusion diet also induced weight loss (minus 1-4 kilograms) during the
intervention

The mechanism of action of the exclusion diet is unknown but was able to modify the
intestinal microbiome. For this reason, a systematic analysis of bacterial DNA at
baseline and after the diet intervention is underway to understand to which extend the
intestinal microbiome could have been modified by the diet and how this correlates with
AV improvement.

Limitations
« Study group was a pilot study on a limited size cohort, a larger cohort study would
be needed to confirm such preliminary data
* SARS-CoV-2 disrupted recruitment from July 2021

Financing is being sought
to resume & expand this important study in 2022/23
please contact AsiaSkinProject.com for partnership opportunities

Asia Skin Project

www.AsiaSkinProject.com
Vientiane, Laos
May 2022

This study was undertaken in cooperation with Lao National Center for Dermatology &
Venereology (NDC).

Ethics approval was obtained from the
Lao National Ethics Committee for Health Research (No.075/NECHR)
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Sample size calculation for differential
abundance tests in microbiome epidemiology
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Communication Breakdown: sensing of host mucin regulates a
symbiont’s biogeography and inflammatory potential in the intestine
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Introduction Mucin-blind experimental evolution selects for mutants in
Intestinal mucus is thought to promote host health by entangling and distancing potentially inflammatory symbiotic en\"ronmental SenS|ng and ad hESln |0ca|lzatlon pathways
microbes from the gut epithelium. Here we report new evidence that beneficial microbes can self-limit their
intestinal distribution and inflammatory capacity in response to intestinal mucus to actively promote host health. MB isolate MB4 wa
Using experimental evolution, live imaging of bacterial dynamics and host immune cell populations across the entire 5 Locus ID Sy — ZOR001_01899
intestine, we probed the distribution, physiology, and inflammatory potential of a beneficial bacterium Aeromonas — < Function - ad“es(‘fa'gg‘)"a‘m”
sp. ZOR0001 (Aer01) in its native host, the larval zebrafish. Aer0O1 typically forms large aggregates in a distinct il | e //| | : "y /,/! ¢ |
intestinal region and aggregates in response to commercially available mucin in culture. Phenotypic and subsequent J : u—E, ) 3 -

) ) . . o ) . ) { & Mutation R815C (ATTGG)
genomic analysis of evolved Aer01 that do not respond to mucin in culture identified a putative mucin-sensing two- e g target adhesin 2-->1
component system and surface-associated mucin-binding adhesin with analogs in human gut microbiota such as .. WUORURUUI . . :A — = L _ ) )
Oxalobacter, Akkermansia, and Ruminococcus that are crucial for driving Aer01 aggregation and localization in the e e N e MB4=signaling defects MB1= adhesin regulation defects
host intestinal environment. Disruptions in either pathway dramatically transformed Aer0O1 intestinal distribution
and aggregative clustering, and enhanced AerOl1 inflammation potential. We also found Aer01 mucin-sensing
disruptions altered the community composition in defined 2- and 5- member communities. Together, our work MUCin'innd isolates exhibit altered Iuminal aggregation
highlights the important but largely unexplored role of microbial mucin sensory pathways in promoting host health
and contributing to community composition. and Iocalization in a Wild-type host

Or==— ' MB1 and MB4 isolates are more planktonic and poorly aggregated

Leveraging the larval zebrafish to uncover mechanistic
principles of symbiotic host-microbe interactions

MB1

live imaging of microbial populations and host immune cells
symbiont tnfA+ immune cells

planktonic aggregated

> 0.6
o
c
S 04— - o
g
______ v 024 . —
Live stereoscope fluorescent microscopy of wild type Aer01 distribution and TNF+ cells (left) and b I_Jq I_I_I
host neutrophils (right) using transgenic bacteria and zebrafish. ‘_5., 0.0- | [_IIj [f] R i ITI r:ﬁ e
0051152253354 45 0051152253354 45 0 05 1 15 2 25 3 35 4 45
cluster size (10%)
o —
MB1 and MB4 isolates are displaced into the foregut region of the intestine
1.00 1 foregut mid-gut distal gut 1.00 foregut mid gut distal gut 1.00 foregut mid-gut distal gut
7] "
sym biont tan+ immune ce"s . normalized anterior—posterior distance . . normalized anteior—posterior distance . ' norrﬁZIized anteriof—posteriordistlgsnce .
Live light sheet fluorescent microscopy of wild type Aer01 distribution and TNF+ cells in the proximal
and distal foregut highlight the typical Aer01 distribution and luminal aggregate clustering. o o , , o _
Mucin sensing Mucin-blind isolates disrupt
Live imaging reveals Aer01 co-localizes with mucin determines symbiont _| community composition and |
in the intestine and in culture inflammation potential architecture
——) Two-member communities
OcE=— biont WGA-488 e | intestinal
symbion - oc=——7—— t hil Aeromonas WT Enterobacter WT Aeromonas
N neutrophils L0
Aer01-mucin colonization .k
Co-localization ns 4
o 10"

intestinal mucin
10%

102_

bacteria per intestin

101_

skin mucus-producing cells

neutrophils per intestine

Right: Aeromonas and Enterobacter typically co-localize in the distal foregut.
| MB4 antagonizes Enterobacter aggregation, decreasing Enterobacter
MB4 abundance through yet known mechanisms. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>