
(A) 36 mother-infant pairs gave 

nasal swabs monthly over the 

first year after birth. Culture test-

ing for S. aureus was performed 

on all samples and a subset 

(n=208 after QC) were profiled 

with shotgun metagenomic se-

quencing. 

 

(B) The percent of positive time 

points after S. aureus acquisi-

tion was not significantly differ-

ent between early and late ac-

quirers, likely due to the small 

sample size (n=28).

(C) Identification of S. aureus by 

culture and sequencing showed 

strong, although not complete, 

concordance. 

 

Infants display striking patterns 

of S. aureus carriage

Microbiome drivers of infant S. 

aureus phenotypes

Infants rapidly diverged from their species composition at birth, 

but the rate of change slowed over time indicating stabilization 

toward a more mature microbiome. Infants were more similar to 

their own mother than to unrelated mothers at month 1 (PER-

MANOVA, p=0.005), although infant composition was distinct 

from maternal composition at all months except 8 (p<0.05).

Infant nasal microbiomes 

mature over the first year, but 

remain distinct from mothers

Determinants of S. aureus carriage in the developing 

infant nasal microbiome
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Staphylococcus aureus is a leading cause of healthcare- and community-associated 

infections and can be difficult to treat due to antimicrobial resistance. About 30% of in-

dividuals carry S. aureus asymptomatically in their nares, a risk factor for later infec-

tion, and interactions with other species in the nasal microbiome likely modulate its 

carriage. It is thus important to identify ecological or functional genetic elements within 

the maternal or infant nasal microbiomes that influence S. aureus acquisition and re-

tention in early life. We recruited 36 mother-infant pairs and profiled a subset (n=208) 

of monthly longitudinal nasal samples from the first year after birth using shotgun 

metagenomic sequencing. The infant nasal microbiome is highly variable, weakly in-

fluenced by maternal nasal microbiome composition, and primarily shaped by devel-

opmental and external factors, such as daycare. Infants display distinctive patterns of 

S. aureus carriage, positively associated with Acinetobacter species, Streptococcus 

parasanguinis, Streptococcus salivarius, and Veillonella species and inversely associ-

ated with maternal Dolosigranulum pigrum. In gene-content based strain profiling, 

infant S. aureus strains are more similar to maternal strains. Mothers may represent a 

sporadic early source for S. aureus transmission to the naïve infant microbiome, but 

microbiome determinants become more important later in the first year. Furthermore, 

we identified a specific protein family that is highly predictive of infant S. aureus status, 

significantly anticorrelated with S. aureus positivity in both infants and mothers, suffi-

ciently prevalent to drive widespread patterns of S. aureus carriage, and which ecolog-

ically interacts with the commensal species D. pigrum. In subsequent companion 

work, we determined that this (misannotated) protein family was a non-protein-coding 

sequence acting as a phylogenetic marker of a likely novel bacterial clade. Our study 

provides an improved understanding of how the infant nasal microbiome develops in 

early life, and how it can act to promote or exclude S. aureus colonization.
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Strain genotypes show similar-

ity in mother & infant S. aureus
Infant S. aureus strains were more similar to those of their own 

mothers, compared to unrelated mothers or other infants.
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Infant Acinetobacter unclas., S. parasanguinis, S. salivarius, and 

Veillonella unclas. and maternal D. pigrum were significantly as-

sociated with infant S. aureus carriage. 
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Many species in the infant microbiome were predictable (11/13 

using species, 9/13 using ECs), but S. aureus was consistently 

difficult to predict, although performance improved using ECs.
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Assessing saliva microbiome collection and processing methods
Abigail JS Armstrong, Veenat Parmar, Martin J Blaser

Center for Advanced Biotechnology and Medicine, Rutgers the State University, Piscataway, NJ

Abstract
The oral microbiome has been connected with lung health and may 
be of significance in the progression of SARS-CoV-2 infection. 
Saliva-based SARS-CoV-2 tests provide the opportunity to leverage 
stored samples for measuring the oral microbiome. However, these 
collection kits have not been tested for accuracy of measuring the 
oral microbiome. Saliva is highly enriched with human DNA and 
reducing it prior to shotgun sequencing may increase the depth of 
bacterial reads. We examined both the effect of saliva collection 
method and sequence processing on measurement of microbiome 
depth and diversity by 16S and shotgun metagenomics. We collected 
56 samples from 22 subjects. Each subject provided two saliva 
samples with and without preservative; 6 subjects provided a second 
set of samples the following day. 16S rRNA gene (V4) sequencing 
was performed on all of the samples, and shotgun metagenomics 
was performed on 8 of the samples collected with preservative with 
and without human DNA depletion before sequencing. We observed 
beta diversity distance within subjects over time was smaller than 
between unrelated subjects, and distances within subjects were 
smaller in samples collected with preservative. Samples collected with 
preservative had higher alpha diversity measuring both richness and 
evenness. Human DNA depletion before extraction and shotgun 
sequencing yielded higher total and relative reads mapping to 
bacterial sequencing. We conclude that collecting saliva with 
preservative may provide more consistent measures of the oral 
microbiome and that depleting human DNA increases yield.

Results

Study Design

Figure 2. Phylogenetic beta diversity for 16S rRNA analyses of saliva samples by collection 
method and across time.  Top panels: Unweighted (A) and weighted (B) UniFrac distance of 
all samples according to collection method. Left panels: Median (and IQR) distances in 
within-sample comparisons (P vs. P; No P vs No P), and across samples (P vs. No P). 
Right panels: PCoA plots of all samples by sample collection method. Bottom panels:
Unweighted (C) and weighted (D) UniFrac distances of the paired specimens from 6 
subjects sampled on two consecutive days and according to collection method. Left panels:
Distance between unrelated subjects (gray) or within an individual across days (pink). Right 
panels: PCoA plot of all samples with only 6 multi-day subjects visualized. For all left panels, 
pairwise Wilcox test with FDR correction ** q < 0.01, *** q < 0.001. Lines connect 
specimens collected from the same subject on the same day (solid) or different days 
(dotted).

Figure 1. Saliva collection study design. Subjects provided 2 saliva samples: collected alone 
and collected with the Spectrum sDNA-1000 kit including preservative. The collection order 
was randomized. The 6 subjects provided samples the day following initial collection, using 
the same protocol as previous day. For metagenomic studies, we assessed the effects of a 
protocol to deplete human DNA, using only samples in which the original preservative was 
used (n=14 samples).

Figure 3. Alpha diversity of samples, by collection method and over time. A. alpha diversity 
measures based on Faith PD and Pielou evenness, by sample collection with preservative 
(P) or not (No P). Lines connecting points indicate sample pairs. ** p < 0.01, *** p < 
0.001; linear mixed effects model. B. Absolute value of the differences in alpha diversity 
between all unrelated subjects (pink circles), and longitudinal samples within the same 
subject (gray circles). * p <0.05, ** p < 0.01; Kruskal-Wallis test.

Figure 4. Bacterial DNA shotgun sequencing efficiency by extraction method (Standard or with 
depletion of human DNA). A. Total reads (post-trimming). B. Total bacterial reads. C. Bacterial 
reads as a percent of total reads; paired T-tests, * p < 0.05:  NS = p > 0.05. 

Figure 5. Phylogenetic beta diversity metrics of taxonomy determined from shotgun 
sequencing. Unweighted (A) and weighted (B) UniFrac of all samples according to DNA 
extraction method. Left panels: Median distances in within-sample comparisons (standard 
vs. standard; human depletion vs human depletion), and across samples (standard vs 
human depletion). Right panels: PCoA plots of all samples by extraction method; pairwise 
Wilcox test with FDR correction * q < 0.05. Lines connect specimens collected from the 
same subject on the same day (solid) or different days (dotted).

Conclusions
• Kits used to collect saliva for the purpose of SARS-CoV2 testing 

sufficiently preserve the microbiome DNA and are comparable to saliva 
collected without preservative. 

• Preservative did not hinder human DNA depletion which increased 
bacteria DNA in shotgun sequencing. 

• We found less variation within individuals over time compared to 
unrelated individuals, suggesting that longitudinal evaluation of subjects 
may provide valuable insights into oral microbiome changes. 

• These results make it practical to use saliva samples obtained for 
SARS-CoV-2 testing to examine the salivary microbiome
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Microbiota-Induced Vitamin A Mobilization by Serum Amyloid A and Its Role in Intestinal Immunity
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Vitamin A and its derivative retinol are

essential for the development of intestinal

adaptive immunity. Retinoic acid (RA)-producing

myeloid cells are central to this process, but how

myeloid cells acquire retinol for enzymatic

conversion to RA is unknown. Here, we show

that serum amyloid A (SAA) proteins, retinol

binding proteins induced in intestinal epithelial

cells by the microbiota, deliver retinol to myeloid

cells. We identify LDL receptor-related protein 1

(LRP1) as an SAA receptor that facilitates

endocytosis of SAA-retinol complexes and

promotes retinol acquisition by RA-producing

intestinal myeloid cells. Consequently, SAA and

LRP1 are essential for vitamin A-dependent

immunity, including T and B cell homing to the

intestine and immunoglobulin A production. Our

findings identify a key mechanism underpinning

vitamin A’s effects on the immune system and

provide insight into how the microbiota promotes

intestinal immunity.

SAA delivers retinol to myeloid cells by
binding to LRP1 and thus promotes vitamin
A-dependent adaptive immunity in the
intestine. SAA delivers retinol to intestinal CD11c+

myeloid cells by binding to LRP1. LRP1 facilitates
endocytosis of SAA-retinol complexes, and the
retinol is converted to retinoic acid (RA) through a
two-step enzymatic reaction. Myeloid cell RA
promotes vitamin A-dependent intestinal adaptive
immune responses. These include the induction of
intestinal homing receptors, such as CCR9, on
CD4+ T cells and B cells, and IgA production by B
cells. (Illustration was created in BioRender.)

4SAA and LRP1 promote 

retinol uptake by intestinal 

CD11c+ myeloid cells in vivo

SAA and LRP1 promote vitamin A-dependent immunity in intestine

2LRP1 mediates cell surface binding and 

cellular uptake of SAA1-retinol complexes

1

(F, G) Cellular 3H-retinol uptake at 37⁰C. (F) 3H-retinol was added to the cells either as free retinol or in
complex with SAA1. Counts per minute (cpm) in the cell pellets were determined and normalized to cell
number. (G) RAP was added to cells together with SAA1–3H-retinol complex for competition analyses.
(H, I) Cellular SAA uptake. Cells were incubated with His-SAA1–retinol complex and subsequently treated
with trypsin to remove surface-bound SAA1. Cells were lysed and cellular SAA uptake was analyzed by
immunoblotting using an anti-His antibody.

His-SAA1–retinol complex was incubated with fibroblasts (Lrp1+/+ and Lrp1-/-) at 4°C, and binding of SAA to
cell surface is analyzed by flow cytometry. (A,B) Binding of SAA. (C) LRP1-specific SAA1 binding to the cell
surface indicating a saturable binding. (D) Competitive binding assays by adding to the cells increasing
concentrations of non-His tagged SAA1 together with His-SAA1. (E) Receptor-associated protein (RAP) was
added to fibroblasts together with 1 µM of His-SAA1.

LRP1-dependent binding of SAA to cell surface

LRP1-dependent uptake of SAA-retinol complex

Background

 Important for the development of 

intestinal adaptive immunity
 Recruitment of lymphocytes to intestine

 IgA production 

Serum Amyloid A (SAA)

Hypothesis

Hu and Bang et al. PNAS 2019

Retinol 

(Vitamin A)

 Retinol binding protein 

 Expression in intestinal epithelium are 

induced by microbiota & vitamin A

: SAAs transport retinol into the intestinal immune cells and 

regulate vitamin A-dependent immune development

 Intestinal myeloid cells: enzymatically convert retinol 

to its bioactive metabolite retinoic acid (RA) 

 central to vitamin A-dependent immune regulation 

 Its transport requires retinol 

binding proteins that shield it from 

the aqueous environment

Unanswered Question

: How do intestinal myeloid cells acquire retinol to 

convert RA?  

Wild-type (WT) and Saa-/- mice (A-D) or Lrp1fl/fl and Lrp1ΔCd11c (E-H) mice
were analyzed. (A,E) Mice were gavaged with 3H-retinol and CD11c+ cells
were isolated from the small intestinal (sm. int.) lamina propria. (B,F) Q-PCR
analysis of transcripts encoding proteins involved in conversion of retinol to
RA in sm. Int. CD11c+ cells. (C,G) Retinaldehyde dehydrogenase (RALDH)
activity of CD11c+MHCII+ myeloid cells was assessed by Aldefluor assay.
Representative histograms showing Aldefluor fluorescence are shown. Filled
grey histograms are from controls incubated with the ALDH inhibitor DEAB,
and empty lines show samples without DEAB. (D,H) RALDH activity was
measured as Aldefluor ΔMFI (MFIsample – MFIcontrol).

Binding partner of Prx2

1
LRP1 is a cell surface receptor 

for SAAs

1

(A) Strategy to identify the SAA receptor. (B) Protein complexes were resolved by SDS-
PAGE. Red arrowheads indicate the protein complex subjected to mass spectrometry for
receptor identification. (C) Domain organization of LRP1 showing the ectodomain (ECD)
and ligand binding clusters (CI-CIV). (D) Formation of a complex between SAA1 and LRP1-
ECD confirmed by size exclusion chromatography. (E) Binding affinity between SAA1 and
the LRP1-ECD as determined by microscale thermophoresis. (F and G) Binding of SAA1 to
the LRP1 ligand binding clusters (LRP1-CII, LRP1-CIII, and LRP1-CIV) by pull-down assay.

3
LRP1 is expressed on intestinal CD11c+

myeloid cells

1

SAA and LRP1 are the major retinol transporter-receptor in sm. Int.

LRP1 is expressed on intestinal CD11c+ myeloid cells

(F,G) Flow cytometry analysis of LRP1 expression on LP
immune cells. (F) Representative histograms showing
LRP1 expression. (G) LRP1 expression (ΔMFI) is shown
as the difference in MFI between isotype-matched control
and anti-LRP1 antibody staining (MFILRP1-MFIisotype). (H)
Immunofluorescence detection of CD11c (red), LRP1
(green), and nuclei (blue) in the mouse sm. Int.

IE
C

L
P

(A) Q-PCR analysis of Saa1 and Rbp4 transcripts in ileum and liver. (B,C) Immunoblotting of SAA and RBP4 in
mouse ileum and liver. (D) Q-PCR analysis of Lrp1, Stra6, and Rbpr2 transcripts in mouse ileum. (E) Q-PCR
analysis of Lrp1 transcripts in small intestinal epithelial cells (IEC) and immune cells isolated from the small
intestinal lamina propria (LP).

H

Small intestinal lamina propria
(SILP) cells from wild-type (WT)
and Saa-/- mice (A-I), and Lrp1fl/fl

and Lrp1ΔCd11c mice (J-R) were
analyzed. (A, J) Flow cytometry
plots of CD4+ T cells (live
CD45+CD3+CD4+CD19-CD8-).
(B,K) Frequencies of CCR9+ cells
in CD4+ T cells. (C, L) Total
numbers of CD4+ T cells
(CD45+CD3+CD4+CD19-CD8-).
(D,M) Flow cytometry plots of B
cells (live CD45+CD19+CD3-). (E,
N) Frequencies of CCR9+ cells in
B cells. (F, O) Total numbers of B
cells (CD45+CD19+CD3-). (G, P)
Flow cytometry plots of IgA+ cells
(live CD45+CD3-). (H,Q)
Frequencies of IgA+ cells in total
live CD45+ cells. (I, R)
Quantification of IgA from small
intestinal fecal contents by ELISA.

Wild-type and Saa−/− mice (A,B), and Lrp1fl/fl and
Lrp1ΔCd11c mice (C,D) were immunized with 1010 CFU
of heat-killed Salmonella Typhimurium twice through
oral gavage. Four-weeks after the first immunization,
the mice were orally infected with log-phase
Salmonella Typhimurium. (A,C) Salmonella-specific
IgA in the feces were measured by ELISA. (B,D)
Survival rates were monitored after infection.

WT Saa-/- Lrp1fl/fl Lrp1∆Cd11c

Gut homing of

CD4+ T cells

Gut homing of

B cells

IgA production

5

SAAs and LRP1 promote immunity to enteric bacterial infection

A B C D



 

 

  

 

 

Prioritization and annotation of novel bioactive
small molecules from the microbiome
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Chemical dark matter in IBD Quantitative metabolite annotations
To associate unannotated compounds with chemically annotated metabolites 
i.e. standards, we clustered features based on co-varying abundances in the 
different phenotypes. Of the 44,757 high-quality features, 43,498 features were 
distributed into 606 modules whereas 1,259 were singletons. 

Prioritizing features on strength and significance of IBD association

Prioritized metabolites
Metabolites highly prioritized by MACARRoN include classes 

previously implicated in IBD as well as novel potential bioactives

Enriched metabolites

Primary bile acids

Putrescine derivatives

Depleted metabolites

Short chain fatty acids

Medium chain fatty acids and B vitamins

Accumulation of 
primary bile acids 

due to loss of 
bacterial diversity is 

well understood in 
IBD.

Gut bacteria encode 
enzymes that 

synthesize and 
degrade polyamines: 

putrescine and 
spermidine. 

(Nakamura, 2019)

SCFAs are produced 
via bacterial 

fermentation of 
dietary fiber and are 
typically found to be 

reduced in IBD.

Production of MCFAs 
has been attributed to 

bacterial 
thioesterases.

Conclusions and future work
1. MACARRoN integrates ecological, biochemical and epidemiological 
annotations to prioritize metabolites in the microbiome. 
2. Novel highly prioritized compounds covary with known metabolites, have 
a high relative abundance and are significantly differentially abundant in 
dysbiosis and IBD. 
3. MACARRoN prioritizes known IBD-linked classes such as bile acids and 
SCFAs which serves to validate the workflow. 
4. It also prioritizes lesser-understood classes such as putrescine 
derivatives, medium chain fatty acids and B vitamins whose roles in IBD 
will require further study. 
5. MACARRoN is generalizable to microbial community metabolomes and 
is being developed as an open-source R package.
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MACARRoN methodology Prioritizing features based on ecological importance

Thousands of metabolites have been assayed from microbial 
communities, the gut microbiome in particular, but as yet with 
minimal biochemical characterization or knowledge of their 
therapeutic potential. Here, we developed a new approach, 
MACARRoN (Metabolome Analysis and Combined Annotation 
Ranks for pRediction of Novel bioactives), for identifying potential 
bioactives by integrating knowledge of annotated/standard 
compounds with phenotypic or environmental indicators of 
bioactivity to annotate and prioritize small molecules from 
microbiomes. We have applied this approach to identify novel 
bioactives from the inflammatory bowel disease (IBD) metabolomes 
in the Integrative Human Microbiome Project (HMP2).
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Unannotated (mass-match and unidentified) features are as abundant and 
prevalent as annotated features. We prioritize features that are similarly 
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153 modules contained 
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Gut Microbial Enzymes Drive the Dose-Limiting Toxicity of the Immunosuppressant 
Mycophenolate Mofetil
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Mycophenolate Metabolism

Goal: Which GUSs reactivate MPA-G?

In fimo GUS Activity

4MUG4

MMPA-G
****

****

*

**
Microbial β-glucuronidase (GUS) 
activity was measured in purified 
fecal slurry (in fimo) with reporter 
substrate 4MUG and MPA-G.     
n = 3 biological replicates with 
SEM. Two-way ANOVA with 
Sidak’s multiple comparisons 
test comparing one individual’s 
sample rates where                
**** is p ≤ 0.0001, ** is p ≤ 0.01, 
* is p ≤ 0.05.

In vitro MPA-G Reactivation
A sequence similarity network of 
265 GUSs and 
β-galacturonidases (GalAses) 
found in the Human Microbiome 
Project fecal samples 
sequences. Colors indicate 
different loop classes of 
enzymes, with white denoting 
GalAses and gray are unclear in 
loop region. Diamonds indicate 
GUS/GalAse hybrids and large 
icons are investigated further.

MPA-G catalytic efficiency of 15 GUSs in vitro. One-way ANOVA with Dunnett’s multiple 
comparisons test comparing to RhGUS2. n = 3 biological replicates with SEM. **** is p ≤ 0.0001. 
BLQ is below limit of quantification within reasonable conditions.
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Crystal structure of loop 2 BoGUS2 (teal) compared to another loop 2 GUS, BuGUS2 (PDB ID: 
5UJ6, navy). Carbohydrate binding modules (CBM) are in dark green and domain of unknown 
functions (DUF) are in purple.

Investigation of predicted calcium ion binding sites in BoGUS2. One-way ANOVA with Dunnett’s 
multiple comparisons test comparing to BoGUS2 wild type. n = 3 biological replicates with SEM.   
** is p ≤ 0.01. BLQ is below limit of quantification within reasonable conditions.

MPA-G catalytic efficiency of BuGUS2 mutants in vitro. One-way ANOVA with Dunnett’s multiple 
comparisons test comparing to BuGUS2 wild type. n = 3 biological replicates with SEM.            
**** is p ≤ 0.0001, ** is p ≤ 0.01, * is p ≤ 0.05.

Conclusions
� GUS enzymes in fecal microbiota can reactivate MPA-G, 

but are not inhibited by previously established inhibitors.

� A wider range of GUS subtypes can reactivate MPA-G 
compared to other drug-glucuronides.

� GUS active site loop composition and C-terminal domain 
motifs are important for MPA-G processing.
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BLQ BLQ BLQ BLQ
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mL2

mL1,2

NL

NTL

FMN

In fimo percent activity 
with 10 μM 
UNC10201652. n = 3 
biological replicates 
with SEM. Two-way 
ANOVA with Dunnett’s 
multiple comparisons 
test comparing 
sample percent 
activity with inhibitor to 
100% where             
**** is p ≤ 0.0001,      
** is p ≤ 0.01,              
* is p ≤ 0.05. ND 
indicates percent 
activity not 
determined.

UNC10201652

Established 
GUS 

Inhibitors

MPA-G catalytic 
efficiency of BoGUS2 
mutants in vitro. 
One-way ANOVA with 
Dunnett’s multiple 
comparisons test 
comparing to BoGUS2 
wild type. n = 3 
biological replicates 
with SEM.                   
** is p ≤ 0.01,               
* is p ≤ 0.05.

Structure Guided Analysis Impact of Inhibitors

In vitro percent activity with MPA-G by 
four GUS isoforms. n = 3 biological 
replicates with SEM. Two-way ANOVA 
with Dunnett’s multiple comparisons test 
comparing percent activity to 100% for 
each GUS, where **** is p ≤ 0.0001,       
* is p ≤ 0.05.

MPA-G percent activity in fimo 
when incubated with 10 µM 
UNC7087. n = 3 biological 
replicates with SEM. Two-way 
ANOVA with Sidak’s multiple 
comparisons test comparing 
percent activity to 100% for 
each patient sample, where  
**** is p ≤ 0.0001. ND indicates 
percent activity not determined.
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Discovering novel antibiotics through 

microbiome metabolome integration
Brejnrod A1,2, Qing Fang1, Manimozhiyan Arumugam1, Pieter Dorrestein2

1: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark

2: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States

Table 2: Candidate Evaluation. Significant mediation scores from all producers were selected

and grouped to form a list of candidates for evaluation. Evaluation was done on the basis of 

literature score (explained below), a safety evaluation and considerations of solulibility. 

Literature scores: 1: No relevant literature, 2: Killing effect of a similar drug on some

organisms, 3: antibacterial effect of this drug on some bacteria 4:  Antibacterial effect of this

drug on 5: Enterococcus Antibacterial effect of this drug on VRE 

Figure 1: Schematic diagram of feature selection. For each putative

producer-target relationsship a regularized linear model is fitted to 

identify spectra (M1 … Mp) that might explain the negative association 

between the bacteria. The models partitions the variance into the direct

effect (gamma), the correlations between producer and spectra (alpha) 

and negative correlations between spectra and target (beta) 

Candidate compounds show antibiotic effect in vitro

Figure 2: Growth curves of clinical relevant isolates exposed to tested

compounds in different concentrationto determine MIC values of the 

tested compounds.

Candidate’s that are novel and  known in the literature selected

Summary of collected datasets

Table 1: Summary of collected datasets

Identifying of metabolites mediating correlations

Contact

Email: abrenjrod@health.ucsd.edu

Twitter: @askerbrejnrod

Table 3: Final MIC determination of a panel of bacteria. Numbers in red is moderate or better activity against the 

target organism. 3 of the tested compounds showed moderate activity against VRE. Oleanoloci acid displayed activity

against several organisms.

Candidate display activity against a panel of pathogens

mailto:abrenjrod@health.ucsd.edu


16S Sequencing in Pediatric Blood Detects DNA Signatures of Commensal and 
Pathogenic Microbes that Correlate with Subject’s Medical History
Matthew Brock1,2, Bo Zhang1,2, Patricia Pichilingue-Reto1, Carlos Arana1,2, Lora Hooper1 Nicolai S.C. van Oers1 and Prithvi Raj1,2

1Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA 
2Microbiome Research Laboratory (MRL) at UT Southwestern Medical Center, Dallas, TX, 75235, USA Contact: prithvi.raj@utsouthwestern.edu

matthew.brock@utsouthwestern.edu

We performed 16S rRNA sequencing on blood/serum specimens from 147 apparently

healthy 1- and 2-year-old children to explore potential microbial signatures in circulation.

Interestingly, 16S data detected some common pediatric pathogens in 6 out of 147

children. These pathogens were Staphylococcus, Streptococcus, Haemophilus and

Deinococcus. Additionally, our sequencing assay detected DNA signatures of several
commensal bacteria such as Firmicutes, Bacteroides and Proteobacteria. 16S data

stratified samples into four major clusters differing in microbial composition. Cluster 1 was

dominated by Proteobacteria. Cluster 2 was present in almost 50% of the samples, which

comprised of 60-70% Firmicutes. Cluster 3 was mix in composition and presented in 18%

of the samples. Cluster 4 was dominated by Actinobacteria and represented only 4% of

the samples. Interestingly, Cluster 1 was found to be significantly (p=0.002) associated

with higher BMI in children. To investigate the potential source of microbial signatures

within the blood we studied resident microbiota in stool, skin and blood of germ-free and
conventional mice. Our data suggest that 16S sequencing assay can rapidly detect

microbial DNA signatures of commensal and pathogenic species within the blood to assist

with diagnosing infectious diseases in children.
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2. 16S Sequencing Results

3. Phylum Level OTUs

4. Genus Level OTUs

5. Blood Microbial DNA Clusters in Children and Adults

7. Association of Clusters 

with BMI in Children
6. Composition of Clusters

8. Microbial DNA Clusters and Immune Responses

S1

S2

9. Detected Pathogenic Signatures 

• 16S rRNA gene sequencing  in pediatric blood detects DNA signature of 

commensal and pathogenic microbes.

• About 4% (6/147) specimens show presence of significant amount of genetic 

material from known pathogens. However, if these signatures are from 

historic or active infections remains to be established.

• Signatures from commensals can be stratified into four major clusters.

• Cluster 1 show association with BMI in children.

Please email prithvi.raj@utsouthwestern.edu, if you have any question or any 

potential collaboration opportunity. Thanks for visiting our POSTER !!! 
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S4

10. Blood Microbial Signatures in 

Germ-free and Conventional Mice

11. Summary
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Pre-Symptomatic Detection of COVID-19 from Smartwatch Data
Tejaswini Mishra*, Meng Wang*, Ahmed A Metwally*, Gireesh K Bogu*, Andrew W Brooks*, Amir Bahmani*, Arash Alavi*, Alessandra Celli, Emily Higgs, Orit Dagan-Rosenfeld, 
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Figure 1: Phase I Study overview. In the phase I (N=7,492) we ob-

tained data and developed algorithms to predict COVID-19. Some 

individuals developed COVID-19 (red), some developed other 

illnesses (yellow), and many remained healthy. 

Figure 4: Alarms detected relative to COVID-19 symptom onset. 

Each row represents 21 days around an individuals symptom 

onset, with RHR-Diff alarms in green and HROS alarms in orange. 

Colored groups highlight alarm accuracy as a single clear alert 

around symptom onset, as well as repetetive, and other alerts 

patterns. One individual with flu is shown for comparison.  

Figure 3: Four participant COVID-19 detection examples. Vertical 

lines represent one day (grey solid), symptom onset (dotted red), 

and diagnosis date (dotted purple). For RHR-Diff the black lines 

represent normalized RHR residuals, orange arrows encompass 

the 28-day baseline window, and red arrows represent periods of 

alarm.  For HROS dark blue lines represent normalized heart rate, 

and red dots timepoints when anomalies are detected.  

- Tuneable parameters

- High sensitivity

- Reduce false positive alarms

Requirements: For Phase II implementation of alerts. 

- Individually adaptive

- Train on single dataset

- Work within one month

- HROS: Compares Heart-Rate Over Steps (HROS).

- RHR-Diff: Focuses on periods of Resting Heart Rate (RHR).  

References
1. CDC COVID-19 Data Tracker. October 2020.

https://covid.cdc.gov/covid-data-tracker

2. Digital Health: Tracking Physiomes and Activity Using Wear-

able Biosensors Reveals Useful 

Health-Related Information. 2017. 

https://doi.org/10.1371/journal.pbio.2001402

3. Pre-symptomatic detection of COVID-19 from smartwatch 

data. 2020.

https://www.nature.com/articles/s41551-020-00640-6

Wearable technologies will provide a useful approach for 

personalized management of epidemics.

3. Real-time detection is effective at COVID-19 detection 

at or before symptom onset in 63% of cases.

2. Alarms raised before symptom onset in 88% of cases.

Conclusions
1. COVID-19 is associated with changes in wearable 

measures for 80% of infection cases examined.

Future Directions
Phase II data will be published, and results compiled across 

two study phases to seek FDA approval of algorithms. We 

will also further investigate detection of other infectious 

diseases, and roles of activity and lifestyle in false alerts. 

Other Wearable Measures
Other wearables measures reflect COVID-19  as well.

Figure 7: Real-time vs RHR-Diff around symptom onset. 

Real-time adaption does not limit algorithm accuracy.

Figure 6: Real-time alarms simulated on existing data. 

Alarms appeared far more frequently after COVID-19 onset 

within 30 day averages around illness periods.

Real-Time COVID-19 Detection
Algorithms were adapted for detection of COVID-19 from 

real-time wearable data, where Phase II alarms are sent to 

participants based on daily uploads.  

Predicting COVID-19
Algorithms were extensively refined using 32 gold 

COVID-19 cases, 15 individuals with other respiratory 

illnesses, and 79 healthy control subjects.

COVID-19 Detection Algorithms
In Phase I we refined algorithms using clear “Gold 

COVID-19” cases defined by robust wearable data, survey 

responses, and verified test results from 32 individuals. 

During phase II (in preparation for publication), these algo-

rithms were implemented to send red (elevated signal) or 

green (normal signal) alerts to thousands of study partici-

pants twice a day. Algorithms developed include:

Introduction
The COVID-19 pandemic caused by the SARS-CoV-2 virus 

has resulted in 32 million infections and 577,041 deaths in 

the US alone1. This paramount microbiological crisis of our 

lifetimes is fueling unprecendented investment in tradi-

tional avenues of treatment such as vaccines, but also 

warants the use of novel technologies toward early public 

detection and monitoring of COVID-19. Our lab previously 

demonstrated the utility of wearable health trackers in 

predicting other respiratory infections2.

  Project Aim: Implement algorithms to predict COVID-19 

prior to symptom onset using data from wearable devices.
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Figure 5: Alarm summary 

around illness onset. Histogram 

of fist alarm across participants 

in days around symptom onset 

or diagnosis. Median estimates 

indicate COVID-19 detection 

occurs four days prior to symp-

tom onset and one week before 

diagnosis. Similar patterns 

appear for 5/9 other illnesses.

A
la

rm
 C

o
u

n
t

Alarm Count / 30 Days for COVID-19 Cases

0

AX
628

1V

AYW
IE

KR

AQ
C
0L

71

AH
YIJ

D
V

AAXAA7Z

A7
EM
0B
6

AA2K
P1S

AKXN
5Z

Z

AV2G
F3B

A0V
FT1N

A0N
VTR

V

A4E
0D

03

A3
OU
183

AYEFC
W

Q

AM
V7E

Q
F

AS2M
VD

L

APG
IB

2T

AO
YM

4K
G

A4G
00

44

AJW
W

3I
Y

A1K
5D

R
I

ASFO
D
Q
R

AIF
D
JZ

B

1

2

3

After

Before

Early Detection vs. Symptom Day (RHR-diff)E
a
rl

y
 d

e
te

c
ti

o
n

 v
s
. 
S

y
m

p
to

m
 D

a
y

(R
e
a
l-

T
im

e
 R

H
R

-D
if
f)

-25 -20 -15 -10 -5 0 Missed
-25

-20

-15

-10

-5

0

Missed AYEFCWQA4E0D03

AIFDJZB
A1K5DRI

ASFODQR

AJ7TSV9

Early detection vs. Symptom Day (RHR-Diff)

A
la

rm
 T

o
ta

l 
D

u
ra

ti
o
n
 (

h
o
u
rs

)

0

250

500

750

1000

p=0.01612
p=0.01236

p=5.39E-3

p=0.006557

�

�

�

�

�

�
�

�

�

�

�
�
�

�

�

�

�

�

COVID-19

Positive

Other

Illness

Potentially 

Healthy

During-Sickness

Post-Sickness

Potentially Healthy

Pre-Sickness

Figure 8: Real-time COVID-19 alarms more during illness 

periods, and significantly more than healthy rates. 
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Figure 9: Sleep and step alterations during COVID-19.

Figure 2: Phase II study returning real-time COVID-19 predictions. 

In phase II wearable data from 3,528 participants is analyzed twice 

daily. Data is retreived to cloud based algorithm system using our 

lab developed My Personal Health Dashboard (MyPHD) phone 

application. Analysis algorithms based on activity, heart-rate, and 

sleep generate alerts of elevated signals related to COVID-19. 

Alerts are then returned to participants through the MyPHD ap-

plication along with surveys to assess prediction accuracy.

- Night Signal: Detects elevated heart rate during sleep.
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Introduction
Clostridioides difficile infection (CDI) is the most common hospital acquired infection in the U.S., causing ~450,000 cases and 29,000 deaths annually. CDI recurrence in patients is high: ~25% for the first recurrence and increasing with

each episode. The initial development of CDI and its recurrence are mechanistically tied to disruption of the normal gut microbiota. Metabolites reflect functional activities of the microbiome and pathways common to multiple

bacterial species, and thus may provide a clearer picture than microbial compositional data alone. In order to gain insights into gut-related factors contributing to CDI recurrence, we analyzed stool samples from 53 participants at

diagnosis of CDI, directly after cessation of treatment, and weekly or bi-weekly for 4-6 weeks or until recurrence occurred. Each sample was interrogated using 16S rRNA amplicon sequencing and liquid-chromatography/mass-

spectrometry (LC/MS) untargeted metabolomics. Using lasso-penalized logistic regression on these data, we developed predictors of CDI recurrence. Our predictor achieved a median cross-validated area-under-the-curve (AUC) of

0.771 with a 95% interval (0.753, 0.790) when using only metabolome data, compared to a median 0.601 AUC (0.550, 0.662) when using only microbial composition data. The combined data achieved a median AUC of 0.760 (0.689,

0.833) and moreover selected only metabolite covariates, suggesting no gain in predictive capability from the microbial composition data. We found several metabolites that predict recurrence, including a host inflammatory

biomarker, a metabolite reported to affect permeability of the intestinal lumen, and a metabolite highly associated with microbial-host co-metabolism.

Recurrence Prediction

Input Features
Over 49 Folds

Median AUC 95% Interval

1. 16s rRNA OTUs 0.601 (0.550, 0.662)

2. LC-MS Metabolomics 0.771 (0.753, 0.790)

3. 16s rRNA + LC-MS 

Metabolomics

0.760 (0.689, 0.833)

Lasso logistic regression performs L1 logistic

regression (eqns 1 & 2) and then shrinks the

less important feature coefficients to zero

• Metabolomic data is a significantly stronger predictor

of CDI recurrence than 16s rRNA amplicon data

• Combining data sources achieved a very similar AUC

to predicting from metabolites alone

• All significant features found in the combined model

were metabolites.

- Our results indicate that gut-metabolites can accurately predict CDI recurrence and may provide mechanistic insights

into CDI; we did not find that microbial composition data could predict CDI with a simple logistic regression model.

- These gains in prediction and better understanding CDI recurrence could enable prompt, targeted treatments to short-

circuit the vicious cycle of recurrence

Significant 
biomarkers

Over 49 folds and 50 random seeds

Median Odds Ratio 90% Interval

Metabolite 1 1.474 (1.338, 1.630)

Metabolite 2 1.394 (1.301, 1.572)

Metabolite 3 1.162 (1.036, 1.249)

Metabolite 4 1.113 (1.0, 1.221)

Metabolite 5 0.9289 (0.884, 1.0)

Metabolites that predict recurrence include:

• A host inflammatory biomarker

• A metabolite reported to affect permeability of the

intestinal lumen

• A metabolite highly associated with microbial-host co-

metabolism

The metabolite that predicts protection against CDI

recurrence has been implicated in antimicrobial activity

and cell cycle regulation .

To build on this work, we plan to:

- Create a novel computational model that uses prior biological knowledge with the aim of higher predictive accuracy

and discovery of a broader array of metabolomic features

- Create joint models of microbial and metabolomic data to capture data dependencies expected to improve predictive

accuracy and interpretability

- Incorporate temporal information into models, including non-stationarity of the microbiome

Methods

• Lasso logistic regression was used to predict

recurrence from each participant’s week 1

sample using the 16s data, metabolic data, and

joint data

• Leave one out nested cross validation (CV) was

used to optimize 𝜆.

Results & Discussion

Conclusions & Future Work

Prediction accuracy

Biomarkers selected

This work was supported by the NSF GRFP, the BWH Precision Medicine Initiative, BWH President’s Scholar Award,

Harvard Catalyst and NIGMSR01GM130777.

Study Design & Data Collection

Samples collected:

- before treatment

- immediately after treatment

- every week or ½ week for 4 weeks or until recurrence

If we have S training instances (x(i), y(i)), i = 1, ..., S
<latexit sha1_base64="MJ1OvtlSvAClMAV+Pu7xU8GPw7s="></latexit>

(1)

(2)

And our data contains M metabolites and B OTUs:
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For 16S data
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For all 3 types of input data x
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b
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k
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x
(i)))
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minβ

SX

i=1

−log p(y(i)|x(i);β) + λ||β||1
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• Primary CDI

• CDI symptoms (diarrhea) 

• Positive C. difficile test 

-by either glutamate dehydrogenase and enzyme           

immunoassay or polymerase chain reaction 

• Currently or imminently undergoing 

CDI treatment

Eligibility Criteria

• Inflammatory bowel disease

• Immunodeficiencies

• Severe / fulminant CDI

• Ongoing non-CDI antibiotic use

• Recurrence in week 1 of study

Exclusion Criteria 49 participants

- 15 Recurred

- 34 Asymptomatic

Samples analyzed by 

LC/MS untargeted 

metabolomics and 16s 

rRNA amplicon sequencing

16S rRNA amplicon analysis

LC/MS untargeted metabolomics

Subsequent filtering and transformations:

- Remove OTUs present in fewer than 15% of

participants of each class at less than the

limit of detection (10 counts)

- Transform counts to proportions & log

transform counts

- Remove OTUs with less than a 5%

coefficient of variance across all

participants’ week 1 data

Samples analyzed and annotated

by Metabolon

M
E
T
A
B
O
L
IT
E
S

SAMPLES

1120 metabolites 

49 participants

123 OTUs

49 participants

O
T
U
s

SAMPLES

16s 

Data Characteristics & Pre-Processing

Raw sequencing results processed

through dada2 pipeline

Subsequent filtering and transformations:

- Remove metabolites present in fewer than 25% of participants of each class

- Standardize values & log transform standardized values

- Remove OTUs with less than a 5% coefficient of variance across all participants’ week 1 data

For both data sources
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Profiling Ruminococcus bromii

strains from >4K gut metagenomesCulture-independent analyses of microbial communities have improved 

dramatically in the last decade, particularly due to advances in methods 

for biological profiling via shotgun metagenomics. Opportunities for 

improvement continue to accelerate given greater access to multi-omics, 

microbial reference genomes, and strain-level diversity. To leverage these 

resources, we present bioBakery 3: a set of integrated and improved 

methods for taxonomic, strain-level, functional, and phylogenetic profiling 

of metagenomes and metatranscriptomes developed using the largest set 

of reference sequences now available.

Expanding our understanding of the

gut microbiome in CRC and IBD
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bioBakery 3 design and evaluation

bioBakery 3 accurately profiles synthetic metagenomes

Microbial differential expression in IBD with HUMAnN 3

We compared MetaPhlAn 3 with other taxonomic profiling methods in the 

task of identifying and quantifying species from synthetic metagenomes. 

MetaPhlAn 3 displayed high and often superlative accuracy, including in 

murine and non-human-associated communities. 

Discover bioBakery software and tutorials via

http://huttenhower.sph.harvard.edu/biobakery

Above, StrainPhlAn 3 identified and compared SNV-level strains of the 

common human gut microbe R. bromii from 4,077 geographically diverse 

metagenomes; two distinct subspecies-level clusters were observed, one 

of which was enriched in individuals from China.

ChocoPhlAn 3
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MetaPhlAn 3 species associated with CRC (Wilcoxon, FDR q<0.05)

Left, Nine CRC datasets 

totaling >1.2K samples 

broadly overlapped in 

species composition 

(weighted UniFrac).

Below, MetaPhlAn 3 

species enabled strong 

cross-validated (CV) and 

leave-one-dataset-out 

(LODO) prediction of 

CRC status; 11 species 

were individually and 

consistently differentially 

abundant during CRC.

Meta-analyzing the CRC gut microbiome with MetaPhlAn 3

Clostridium bolteae Eisenbergiella tayi Clostridium lavalense
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We applied HUMAnN 3 to profile microbial enzymes from 

1,603 metagenomes (DNA) and 794 metatranscriptomes 

(RNA) from subjects in the IBDMDB cohort (HMP2).

Hydrogen dehydrogenase NADP(+)

Left, examples from >500 enzyme families that were 

differentially expressed (DE’ed) in samples with IBD-linked 

dysbiosis after controlling for gene (DNA) copy number.

Below, HUMAnN 3 reveals species contributions to a 

representative DE’ed enzyme; contributors with bold 

names are new to the bioBakery 3 platform.

Below, PanPhlAn 3 compared the gene content of well-covered strains to 

R. bromii isolate genomes, highlighting functional consequences of strain 

differentiation (e.g. enrichment for membrane proteins in Cluster 2).

Below, HUMAnN 3 was similarly highly accurate in quantifying microbial 

enzyme families (functional profiling) from the same metagenomes.

bioBakery 3 is based on ChocoPhlAn 3: a 

newly designed catalog of microbial pange-

nomes and gene families efficiently sourced 

from NCBI and UniProt resources.
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CD8+ T Cells Mediate Colon Epithelial Cell Death in an Organoid 

Model of HIV Pathogenesis
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Results

Methods

Figure 2. Colon mucosal immune cells drive epithelial cell death 

in organoid model.

Future directions
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Summary

Figure 1. Colon epithelial disruption during HIV pathogenesis
Figure 3. CD8+ T cell contact-dependent epithelial cell death
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Apoptosis (CC3) in donor-derived colon epithelium (in vivo)

Apoptosis (CC3) in donor-derived colon organoids (ex vivo)

Deformed cytoskeleton (F-

actin) in donor derived colon 

organoids (ex vivo) 
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Post-passage Day 4 colon 

organoids from human 

donors

CD8+ T cells from HIV infected 

LPs/IELs invade autologous colonoid

• Characterization of CD8+ T cells responsible for epithelial apoptosis

(Natural Killer T cells?).

• Metabolic profiling of CD8+ T cells in colon mucosa.

• Mechanism of CD8+ T cell mediated epithelial apoptosis.

1. Primary colonoid derived 

from HIV positive patient
2. Secondary colonoid 

passaged from primary without 

autologous LP/IEL

3. Secondary colonoid 

cocultured with autologous 

LP/IEL

In vitro HIV 

uninfected IEL/LP

In vitro HIV 
infected IEL/LP

Colon epithelium

CD8+ T cells

Epithelial apoptosis

HIV negative patient’s colon mucosa HIV positive patient’s colon mucosa

• Only partial CD4 recovery in the gut 

is observed in HIV patients.

• Gut barrier damage persists even 
when viral load is suppressed by 

ART.

• Gut barrier disruption can lead to 

translocation of microbes and 
microbial products, leading to 

systemic inflammation.

• Soluble CD14, marker of systemic 

inflammation and iFABP, marker of 
intestinal barrier disruption remain 

upregulated in HIV positive patients 

with ART treatments (i).

• Tight junctions remain intact in HIV 
positive patients’ gut epithelium (ii).

i.

ii.

Contact: Leah M Froehle, lfroehle@mgh.harvard.edu
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CD8/E-cadherin/KI67
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• Colonoids derived from biopsy pinches of HIV 

positive patients and were maintained as primary 

culture. 

• Colonoids were passaged and maintained for 

further experiments.
• Colonoids were co-cultured with primary Lamina 

Propria (LP) derived immune cells.

• Colonoids and LP were cultured from excess 

surgical colon of HIV negative patients.

iii.

iv.

Appearance of colon epithelial disruption upon 

autologous LP immune cells co-culture from HIV 

positive patients.

HIV  Neg

HIV  Pos
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Modern biological screens yield enormous numbers of measurements, 
and finding interpretable, statistically significant associations among 
features is essential. Here, we present a novel hierarchical framework, 
HAllA (Hierarchical All-against-All association testing), for structured 
association discovery between paired high-dimensional datasets. 
HAllA efficiently integrates hierarchical hypothesis testing with false 
discovery rate correction to reveal significant linear and non-linear 
block-wise relationships among continuous and/or categorical. We 
optimized and evaluated HAllA using heterogeneous synthetic 
datasets of known association structure, where HAllA outperformed all-
against-all and other block testing approaches across a range of 
common similarity measures. We then applied HAllA to a series of real-
world multi-omics datasets, revealing new associations between gene 
expression and host immune activity, the microbiome and host 
transcriptome, metabolomic profiling, and human health phenotypes. 
An open-source implementation of HAllA is freely available at http://
huttenhower.sph.harvard.edu/halla along with documentation, demo 
datasets, and a user group.

HAllA methodology
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This "HAllAgram" shows the HAllA's result when applied to paired stool 
metabolomic and 16S rRNA gene sequencing data from the 
DIABIMMUNE cohort, in which infants were recruited at birth and sampled 
monthly for the first three years of life. The data comprise 104 samples 
and describes the abundance of 20 genera and 284 labeled metabolites. 
Here, we show the 30 strongest associations ranked by p-value (target 
FDR=0.05). Block associations are numbered in descending order of 
significance, and feature pairs that are marginally associated are dotted.
 

We simulated paired, 200-dimensional datasets with 50 samples and 10 
association blocks across a variety of association structures, then applied 
HAllA and AllA with a variety of association metrics, then examined the 
difference in statistical power and false discovery rate between the two 
methods. HAllA provided superior power and comparable false discovery 
rate in each case.

Andrew R. Ghazi1,2, Kathleen Sucipto1, Gholamali Rahnavard1,2, Eric A. Franzosa1,2, Lauren J. McIver1,2, Jason Lloyd-

Price1,2, Emma Schwager1, George Weingart1, Yo Sup Moon1, Xochitl C. Morgan3, Levi Waldron4, Curtis Huttenhower1,2

High-sensitivity pattern discovery in large, paired 
multi-omic datasets with HAllA

Hierarchical All-against-All Association testing (HAllA) identifies block 
associations between two potentially heterogeneous datasets co-
indexed along one axis. This co-indexing is referred to as the 
"samples" axis (columns), and the measurement axis as 
"features" (rows). For a pair of datasets containing measurements that 
describe the same set of samples and a specified pairwise similarity 
measure, the HAllA algorithm proceeds by 1) optionally discretizing 
features to a uniform representation (if required by the similarity 
measure), 2) finding the Benjamini–Hochberg (BH) FDR threshold, 3) 
hierarchically clustering each dataset separately to generate two data 
hierarchies, 4) iteratively dividing blocks of hypotheses according to 
Gini score gain in the data hierarchies and a false negative tolerance 
(FNT) threshold.

HAllA is well-powered while 
controlling false discovery rate

Using 50 pairs of synthetic datasets with 200 features and 50 samples 
containing clusters with quadratic block associations were analyzed. A) with 
FNT = 0.2, HAllA maintains the simulated FDR below the target (here (0.05, 
0.1, 0.25, and 0.5), with associated trade-offs in statistical power. In addition, 
HAllA is consistently better powered than all-against-all (AllA) association 
testing across this range of target FDR values. Dashed lines parallel to the x-
axis indicate the target FDR value in each comparison. B) By increasing the 
FNT, HAllA can improve the true positive rate with a comparatively minor 
increase in FDR..

We applied HAllA to paired data comprising 120 hepatic transcript levels 
and 21 liver lipid levels in a set of 40 previously profiled mice. Each 
numbered block corresponding to a group of co-expressed transcripts 
related to a group of co-occurring lipids. A total of 114 block associations 
achieved significance at FDR 0.05, matching the previous study's 
threshold based on canonical correlation. HAllA’s associations included all 
those found earlier by CCA. Spearman correlation was used as a similarity 
metric.

HAllA identifies microbe-metabolite 
and gene-fatty acid association 
blocks

Why HAllA?
· Broad applicability: HAllA's methodology works on nearly all 
commonly found data types. A variety of user-configurable parameters 
such as false negative tolerance and similarity metric are set to 
common-sense defaults providing good performance from the outset.

·  Well-powered: Relative to all-against-all (AllA) pairwise association 
testing, HAllA consistently provides higher power.
· Interpretable: HAllA groups large feature sets into coherent 
association blocks. Built-in visualization methods make it easy to see 
the contents and association strength of these blocks.
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Reconstruction of metagenome-scale models of the gut microbiota 
metabolism at species-level resolution in Inflammatory Bowel Disease

Pilot Study: Comparing the Microbiota of 4 IBD and 4 Control Subjects

Methods

Conclusion

Objective: Use GEMs and data from HMP to investigate metabolic interactions 
between the gut microbiota and host in IBD to better understand microbial and 
molecular mechanisms underlying these interactions.

• Inflammatory Bowel Disease (IBD) is a chronic inflammatory condition of the 

intestinal tract that affects over three million Americans each year.

• IBD has been linked to alterations in the gut microbiota and previous studies 
have used amplicon and metagenomic sequencing and metabolomics to associate 

microbial species and microbially-derived metabolites in the gut microbiota with 
IBD but underlying causal mechanisms of the disease are unknown.

• All data used in this project is from the Human Microbiome Project (HMP)

Next Steps: 
• Large-scale simulations: Analyze all IBD vs control microbiomes from HMP
• Integrate models with a GEM of human intestinal epithelial cell in order to simulate microbial interactions with the human intestinal barrier. 
• Analyze the results to determine relevant metabolite, inter-species, and host-microbiota cross-talk differences between the control and IBD models. 

Our preliminary results support the feasibility of this study, and they will serve as a platform for large-scale computational 
studies of the host-microbiota interactions 

• Assume a cell can be 
approximated by the 
network of its 
metabolic pathways 

and can be analyzed 
to trace a metabolite’s 
production back to a 

specific microbial 
species in the gut. 

Genome-Scale Metabolic Models

Top 20 differentially produced metabolites in 
4 cases vs 4 controls 

Species-resolved metabolite productions in on IBD subject (MSM5LLER)

Species-resolved metabolite production in one non-IBD subject (SRS017247)
* Indicates a metabolite that has been previously implicated in IBD
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Additional differentially 
produced metabolites 
(not in the top 20) that 
have been previously 

linked to IBD:

Isobuteric acid

Glycine

Formic acid

Chorismate

Spermidine

Uridine

Proline

Histidine

*

*
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Deletion of innate effector serum amyloid A alters gut microbiome 

and drives metabolism in mice
Yue Sandra Yin 1, Laura J. den Hartigh2, Xue-Song Zhang1, Shari Wang2, Zhan Gao1, 

Abigail Armstrong1, Jincheng Wang3, Maria Gloria Dominguez-Bello3, Martin J. Blaser1

1CABM, Rutgers University; 2University of Washington; 3SEBS, Rutgers University 

The serum amyloid A (SAA) proteins, mostly produced in the liver,

are acute-phase reactants. SAA also is expressed in the intestinal

epithelium, which is an interface between gut microbes and host

immunity. SAA stimulates Th17 cells and functions as an

inflammatory marker in infectious disease and metabolic disorders.

Here, using two murine models, we investigated the role of SAA in

mediating host responses and metabolism and the intestinal

microbiota. In germ-free (GF) and conventional (CONV) C57BL/6N

mice, we assessed ileal and colonic SAA expression over time. Then

we examined microbiota perturbation and microbiota-mediated

phenotypes comparing wildtype (WT) and SAA1/2-/- (KO) mice

derived from Het/Het crosses to ensure common ancestry. WT and

KO mice were either reared separately or co-housed post-weaning.

Dextran sodium sulfate (DSS) colitis was induced in a separate

cohort of WT and KO mice. We monitored body weight and colitis

development, characterized the fecal microbiome, and measured

lipid levels and expression of inflammatory marker genes. GF and

CONV mice expressed differential microbiota-dependent regulation

of SAA subtypes in the ileum and colon. SAA expression was

depressed in the absence of microbes in the ileum but increased in

the colon. SAA KO led to significantly higher post-weaning weight

gain (with effects in females>males), and cohousing diminished this

effect, suggesting a critical role of gut microbes. Microbial community

structure differed in the WT and KO mice, with specific taxonomic

differences. In the KO mice, expression of genes indicative of

adipocyte differentiation and inflammation was increased in white

adipose tissues. DSS treatment led to increased colonic shortening

and slower recovery in the KO mice. Our results suggest that

intestinal SAAs have major effects on local inflammation and

microbiome characteristics, and mediate microbiota-dependent

effects on host metabolism through alterations of inflammatory

cytokines, adipogenesis, and lipid cycling.

Introduction

SAA proteins comprise a family of apolipoproteins, whose gene

sequences are highly conserved across vertebrates, suggesting

important biological functions. The acute-phase SAA isoforms, SAA1

and SAA2, are markedly induced by diverse inflammatory stimuli.

Colonizing germ-free (GF) mice with segmented filamentous bacteria

(SFB) upregulated SAA1/2 expression, which then promoted Th17

cytokine production. SAA1/2 proteins also have been suggested to

play a role in intestinal immune homeostasis, but their exact

interaction with the microbiota remains understudied.

Objective: To assess the effects of SAA1/2 deletion on mouse meta-

bolism, gut microbiota, and disease outcome of DSS-induced colitis. 

Fan et al., Amyloid Diseases 2019 Ivanov et al., Cell 2009

Uhlar & Whitehead, 

Eur J Biochem 1999

Mouse chromosome 7p

Methods

- Experiment 1 -

Cohousing 

- Experiment 2 -

Dextran sulfate 

sodium (DSS)

Results

← Murine SAA1/2 expression 

was remarkedly depressed in 

the absence of microbes in the 

ileum but increased in the 

colon. The microbial regulation 

predominantly occurred at P42 

and in the ileum.

↓ SAA KO led to significantly 

higher post-weaning weight 

gain, with greater effects in fe-

males than in males.

Ileal SAA1/2 Colonic SAA1/2 

P23 P23 P42P42
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A. Weight gain in female mice by genotype

C. Weight gain in male mice by genotype

B. Weight gain in female mice by genotype and housing

D. Weight gain in male mice by genotype and housing

SAA KO markedly reduced species richness and evenness in females. Male KO mice

showed greater microbiota alpha diversity than female KO but no genotype effects.

Specific taxa changed in abundance in the KO, including Alistipes spp. and SFB.

Female Male

Acute-phase SAAs are major host factors mediating microbiota-dependent effects on

host metabolism through alterations of inflammatory cytokines, adipogenesis and lipid

cycling. Further investigations of immune-microbiota interactions will deepen insights

into the association of SAA with metabolic abnormalities and their pathophysiological

impacts on infectious disease.

Send questions to yy542@cabm.rutgers.edu
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Future Directions

DSS-treated SAA KO mice experienced slower recovery post treatment and showed

significantly shortened colon length on the day of termination, compared to the WT.

Abstract



The gut microbiota is associated with HIV acquisition
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Future Directions
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q HIV remains one of the most critical global 
health problems today. 

q HIV infection induces a dysbiosis in the gut 
microbiota[1]—which plays a vital role in host 
physiology and alters outcomes of numerous 
infectious diseases[2]—but the converse of this 
observation is not yet clear: it remains unknown 
whether the gut microbiota is causally related to 
HIV acquisition, and, if so, the specific microbes 
and mechanisms involved.

Introduction

Highlights

Analyses and Results

——Studied a unique NHP HIV vaccine cohort——

Acknowledgements

Gut* Microbiome HIV Infection

üDysbiosis in HIV+ individuals

qImpact susceptibility?

v Understanding	of	HIV	pathogenesis

v Potential	for	novel	HIV	therapeutics

*Initial	site	for	

HIV	infection

v“MIVO6”: testing a pediatric vaccine in protecting 
nursery-reared infant rhesus macaques against 
oral SHIV challenges, a nonhuman primate [NHP] 
model for breastfeeding transmission of HIV.

vThe vaccine elicited a virus-specific antibody 
response but conferred no protection.

vThere is dramatic variability in time to HIV 
acquisition across all animals, allowing us to 
investigate the role of gut microbiota in HIV 
susceptibility with this cohort.

HIV association Taxa identified (resolution)

Decreased

Susceptibility

L. gasseri (species)

Lachnospiraceae (family)

Increased
Susceptibility

Parabacteroides (genus)

Bacteroides (genus)

Colidextribacter (genus)

Solobacterium (genus)

Christensenellaceae (family)

Catenibacterium mitsuokai (species)

——Identified 8 taxa related to HIV susceptibility——

vWe analyzed 16S rRNA gene sequencing data from 
this NHP study using a microbe-phenotype 
triangulation approach we previously 
developed[3].

v8 bacterial taxa are bioinformatically associated 
with HIV susceptibility (one has been  
experimentally validated[4]).

vDADA2[5]was	used	to	process	the	microbiome	data	(n=292)	generated	from	MIV06	(Figure	1).

v Vaccination	has	an	impact	on	the	microbiome	from	6	weeks	of	age	onward	(Figure	2).	

vWe	utilized	microbe-phenotype	triangulation,	an	approach	we	developed	that	identifies	with	

high	specificity	microbes	causally	related	to	a	phenotype	of	interest[3],	based	on:

1) increase	in	HIV	challenge	dose	(Figure	3a;	3c	row	1	and	2)

2) distribution	of	number	of	challenges	to	infection	(Figure	3b;	3c	row	3	and	4).	

vWe	used	DESeq2[6] to	detect	differentially	abundant	taxa	in	each	comparison	and	identified	a	total	of	

8	taxa	that	are	bioinformatically	associated	with	time	to	HIV	acquisition	(Figure	3c;	Table	1).

vNotably,	Lactobacillus	gasseri,	one	of	the	protective	taxa,	has	been	experimentally	validated	as	

inhibiting	in	vitro	HIV	infection	of	human	tissue	[4].

Figure 1. Study design of an NHP vaccine study that allows us to investigate the

role of gut microbiota in HIV acquisition.

Figure 2. The microbiota differs between the

vaccine and control groups beginning at week 6.

(PCoA of unweighted Unifrac distance for weeks 0–

15 with adjusted p-values from PERMANOVA)

Figure	3.	Microbe-phenotype	triangulation	identified	8	taxa	associated	with	HIV	acquisition.	

Ø Determine the causal effect of these 
bioinformatically identified taxa on HIV 
infectivity (Table 1) using a previously 
established HIV infection model for human 
pediatric tonsillar cells.

Ø Compare metagenomics and targeted 
metabolomics data (short chain fatty acids, 
bile acids, etc.) to identify microbial features 
related to acquisition of HIV at a more 
granular level (i.e., species compositions and 
functional profiles)

1. Williams B, Landay A, Presti RM. Microbiome alterations in 
HIV infection a review. Cell Microbiol. 2016;18(5):645-651.

2. Libertucci J, Young VB. The role of the microbiota in 
infectious diseases. Nat Microbiol. 2019;4(1):35-45.

3. Surana NK, Kasper DL. Moving beyond microbiome-wide 
associations to causal microbe identification. Nature. 
2017;552(7684):244-247.

4. Nahui Palomino RA, Vanpouille C, Laghi L, et al. 
Extracellular vesicles from symbiotic vaginal lactobacilli 
inhibit HIV-1 infection of human tissues. Nat Commun. 
2019;10(1):5656.

5. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, 
Holmes SP. DADA2: High-resolution sample inference from 
Illumina amplicon data. Nat Methods. 2016;13(7):581-583.

6. Love MI, Huber W, Anders S. Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. 
Genome Biol. 2014;15(12):550.

Table	1.	Taxonomy	of	the	8	bioinformatically	identified	ASVs.

§ HIV Vaccine Research and Design (HIVRAD) 
Program (P01)

§ Neil Surana Lab, Duke University

§ Sallie Permar Lab, Duke University-Weill 
Cornell Medicine

a.

b.

c.
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Identification of bacteria-derived
HLA-bound peptides in melanoma
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Secreted IFNγ

0.87

2.53

Peptide/ctrl: 2.91

16S rRNA sequencing show similarity of bacterial

Using HLA peptidomics we were able 

Bacteria peptides are presented by
tumor cells and antigen presenting cells

Patient 51
Patient 55

1 2 3

YIESNELYF − C*08:02
YIESNELYF − B*15:01
YIESNELYF − A*01:01/C*03:04
VLTDTYLTL − B*15:01
VLTDTYLTL − B*14:02/C*08:02
VLTDTYLTL − A*02:01/C*03:04
VLILVRPTI − A*02:01
VIATLVIIL − C*08:02
VIATLVIIL − A*02:01/C*03:04
TVKEINTQL − C*03:04
TVKEINTQL − B*15:01
TVKEINTQL − B*14:02/C*08:02
TVEAIATAV − C*08:02
TVEAIATAV − C*03:04
TMAEDLVTV − B*14:02/C*08:02
TMAEDLVTV − A*02:01/C*03:04
TLTGFILGV − A*02:01
TITKLTPTY − B*15:01
TITKLTPTY − A*01:01
SVVVDELFEV − A*02:01
SLTDKISII − C*08:02
SLTDKISII − A*02:01
LTDKKLEEY − C*08:02
LTDKKLEEY − A*01:01
LSDLGKSIY − C*08:02
LSDLGKSIY − B*15:01
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Characterization of a novel microbiome marker anti-correlated 
with S. aureus carriage in the infant nasal microbiome

Madeleine C. Kline1,4, Emma K. Accorsi2,4, Eric A. Franzosa2,3,4, Curtis Huttenhower2,3,4

1Harvard Medical School   2Harvard T.H. Chan School of Public Health  3Broad Institute of MIT and Harvard
4Harvard Chan Microbiome in Public Health Center  

Staphylococcus aureus carriage in the nasal microbiome is an important 
determinant of subsequent S. aureus soft tissue infection. Identifying elements 
of the nasal microbiome that influence carriage provides insight on how to 
modulate these factors to prevent progression to infection. Prior work by 
Accorsi et al. 20201 discovered an uncharacterized, taxonomically unassigned 
ORF that was the major predictor of whether infant microbiome samples 
evaluated with shotgun metagenomic sequencing contained S. aureus. 
Subsequent investigation indicated that this ORF was actually a segment of 
16S rRNA gene sequence incorrectly annotated by UniProt as a protein-coding 
gene. Our analyses provide substantial initial support for the hypothesis that 
this sequence represents a phylogenetic marker for a novel clade with 
genomic similarity to Streptococcus species and D. pigrum, which could 
antagonize S. aureus during colonization of the infant nasal microbiome. 

 

Study Design and Methods
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Our work supports the hypothesis that the UOI is a fragment of 16S rRNA 
that represents a novel species. It is genomically similar to D. pigrum and  
Streptococcus species. Further in vitro experimentation, including 
amplification the sequence from related bacteria via RT-qPCR could help 
to characterize this novel clade. 

UOI partially classifies to S. 
salivarius in updated analysis, but 
only unclassified UOI is 
signficantly negatively correlated 
with S. aureus.
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D. pigrum gene families from version 2 were still present in version 3, but r ~ 
0.28, likely due to increased resolution of Streptococcus species in version 
3. 

Conclusions and future work

Assembled contigs containing UOI reads  analyzed for  
length, # of UOI reads, BLAST taxonomic results and % 
identity, and rRNA or tRNA annotation. 

Covariation-based genome 
reconstruction

A sequence marker of a novel clade 
predicts S. aureus exclusion

UOI (UniRef of Interest: 
UniRef90_X5NU12), a 42 aa 
sequence, is the strongest 
predictor of S. aureus carriage.

It is homologous to 16s rRNA 
from many species.

Updated taxonomic and functional 
profiling of S.aureus dataset
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Instability, Heterogeneity, and Pathogenicity Reservoirs 
in the Skin, Oral, and Gut Microbiota of Older Adults

Peter Larson1,2, George Kuchel MD1, James Grady PhD1, Julie Robison PhD1, Julia Oh PhD2.
1. UCONN Health (University of Connecticut), Farmington, CT.  2. The Jackson Laboratory for Genomic Medicine, Farmington, CT. 
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Introduction
Despite their elevated risk for morbidity and mortality from infections, the microbiome of older adults remains 
understudied. While colonization resistance from resident microflora is a promising means to prevent 
infections, little is known about pathogenicity reservoirs and colonization resistance in this vulnerable 
population.  We studied the skin, oral, and gut microbiome dynamics of older adults in both community and 
Skilled Nursing Facility (SNF) settings, investigating relationships between age, frailty, environment, 
microbiota, and pathogenicity reservoirs. 
 

Results

Demographic Characterisitics CD SNF

Total No. 25 22
Age range, y 65-91 65-97
Age, y, Mean (SD) 78.2(7.59) 82.9 (8.46)
Sex, No. (Self-Reported)

Male Participant 11 2
Female Participant 14 20

Race

American Indian or Alaska Native 1 0
White 24 20
More than one race 0 2

Ethnicity

Hispanic or Latino 1 2
Non-Hispanic or Latino 24 18

Height, mean (SD), cm 167 (11.9) 160 (8.5) 
Weight, mean (SD), kg 69.0 (15.4) 78.7 (23.9)
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Skin

We conducted a longitudinal metagenomic whole genome shotgun survey of 47 adults age 65+ years of 
age; 22 residents of 3 different SNFs and 25 community dwelling individuals. We performed metagenomic 
whole genome shotgun sequencing on stool, oral, and skin samples from 8 sites, 1421 total. To correlate 
clinical and behavioral variables, we measured frailty, collected medical records, and interviewed 
participants on diet and lifestyle. We also draw comparisons with previous younger cohorts1-3.

Figure 1 Instability, Heterogeneity, Hyperdiversigication, and Anarchy in the Aging Skin Microbiome. Compared to younger adults, or when SNF residents are 
compared to Community-Dwelling older adults the taxonomic composition of the skin microbiota was generally characterized by: 

A. Decreased stability over time. Yue-Clayton Theta Index comparing samples from an individual at different timepoints. Where most younger adult skin sites are 
relatively constant overtime, the skin microbiota of older and frailer adults appears to vary substantially. 

B. Decreased inter-individual similarity. Yue-Clayton Theta Index comparing samples between individuals in each cohort. Older and frailer adults exhibited far less 
skin microbiome similarity to their peers than younger adults, demonstrating higher Heterogeneity. 

C. Hyper-diversification (Shannon Index of diversity representing the number and evenness of species). This trend was also observed in the gut. 

D.Biogeographic divergence. Biogeographic determinism, site-specific community composition, is a hallmark of the skin microbiota in older adults, but is different in 
older adults.  Yue-Clayton Theta Index comparing samples from different skin sites on the same individual at the same timepoint. Rather than becoming more similar 
with skin aging, skin sites appear to diverge in the older and frailer cohorts. v

CD=Community-Dwelling; SNF= Skilled Nursing Facility; YA=Younger Adults. Bidirectional Wilcox tests, *=p<0.05, **=p< 0.0005, ***=p<5E-8. 

Figure 2: Taxonomic Compositional Differences in the Microbiota of Older Adults. Relative abundance of species according to MetaPhlAn 
3.04 classification. Each bar represents 1 subject, 1 timepoint represented per subject. Older adults, especially SNF residents, exhibit marked 
decrease in cutaneous Cutibacterium acnes abundance, with a reciprocal increase in Staphylococci, Corynebacteria, and in some cases 
Malassezia and oral species. High inter-individual heterogeneity in older cohorts is also evident here. Oral (tongue dorsum) had notably higher 
abundance of Rothia species, and notably less Proteobacteria in the SNF cohort. Gut microbiota of SNF residents had a higher 
Firmicutes:Bacteroides Ratio, and in many cases increased Proteobacteria and decreased Akkermansia mucinophila.  

Heterogeneity, Stability, or Intra-individual 
Heterogeneity (Anarchy). Only significant (fdr 
adjusted p < 0.05) Spearman’s Coefficients 
shown. Age was a poor predictor of all 
variables. Frailty was negatively correlated 
with C. acnes abundance and heterogeneity 
across skin sites. 
We hypothesized that skin aging, 
characterized by follicular atrophy and 
decreased sebum production, creates a less 
favorable environment for C. acnes growth, 
and that the resulting decrease is correlated. 
Because the Rockwowrd Frailty Index is an 
aggregate score not directly indicating skin 
condition, we tested the relationship between 
C. acnes and the other variables, finding 
strong correlations at nearly all skin sites, 
indicating a pattern of dysbiosis. 

Figure 3: Associations Between 
Age, Frailty, and Structural 
Differences in the Skin 
Microbiome. Mixed Effects Model 
controlling for temporal 
pseudoreplication testing linear 
correlation by skin site between 
age,  frailty (Rockwood Index), or 
C. acnes abundance and Shannon 
Diversity Index, Inter-individual 

Figure 4: Skin a Reservoir for 
Specific Pathobionts. 
Presence/Absence heatmap of 
specific pathobionts identified with 
metagenomic shotgun sequencing. 
This method is less sensitive for 
low-abundance pathogens than 
culture-based screening, but still 
found clinically significant 
pathobiont colonization in the skin 
more frequently than oral or gut. 
Red = present; black = absent.  

Figure 5: Skin Major Reservoir of Plasmid Anti-Microbial 
Resistance and Staphylococcal virulence in older adults. 

A) Abundance of Plasmid antimicrobial resistance (AMR) class. Each 
column represents a subject. One timepoint per subject. 
B) Differential Abundance of plasmid AMR classes between CD and 
SNF cohorts. SNF resident skin microbiome exhibited significantly 
higher abundance of many clinically significant AMR classes. 
To identify plasmid ARGs, contigs generated from quality-controlled 
reads using MEGAHIT were classified as plasmid or genomic using 
Plasflow. Plasmid genes were identified from contigs with Prodigal, 
and finally mapped to DeepARG5-8. Samples RPKM normalized to 
account for differences in sequencing depth between samples and 
differences in target gene length. RPKM=Reads per kilobase million.
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We conducted a novel, longitudinal, gut, oral, and skin 
metagenomic whole genome shotgun study of older adults 
both in skilled nursing facilities and living privately in the 
greater community. To the best of our knowledge, this is 
also the largest report to date of the skin metagenome in 
older adults. 
We found that in particular the skin microbiota of older 
adults are substantially different to those of younger adults. 
In particular, we found: 

• Major compositional differences between healthy older 
adults and younger adults, as well as SNF residents to 
Community-Dwelling older adults including: 

o Decreased relative abundance of C. acnes 
o Increased Staphylococci, Corynebacteria, fungi, 
and oral species 

• Substantially decreased stability of the skin microbiota 
• High inter-individual heterogeneity 
• Biogeopgrahic divergence t
• Age alone is a poor predictor of these changes.
• There are strong correlations between decreased C. 
acnes abundance and instability, hyper-diversification, 
and hyper-heterogeneity. This indicates a pattern of 
dysbiosis. 
• The skin microbiome in older adults, and particularly 
SNF residents, serves as a major reservoir of clinically 
important pathobionts and antimicrobial resistance.

Conclusions
Although preliminary, we believe that these results 
represent foundational findings in our understanding 
of the microbiota of older adults. In particular, they 
demonstrate dramatic differences in the skin 
microbiome among older adults. We suspect that skin 
aging is a key driver in these changes, adversely 
affecting C. acnes and leading to a breakdown in 
community structure, although this possibility cannot 
be directly addressed by our dataset and must be a 
subject of future research. Most importantly, our 
findings draw attention to the skin as potentially a 
more important reservoir than the oral and gut 
microbiota for clinically relevant pathogens and 
antimicrobial resistance. 

Instability, Heterogeneity, Diversification, and Biogeography in the Aging Skin Microbiome 

Taxonomic Compositional Differences in the Microbiota of Older Adults.

Associations Between Age, Frailty, and Structural Differences in the Skin Microbiome

Skin a Reservoir for Specific Pathobionts in Older Adults

Skin Major Reservoir of Plasmid Anti-Microbial Resistance in Older Adults
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NEUTROPHIL CYTOKINE PRODUCTION

RESULTS Fiber consumption was similar between groups

with no statistical difference [BASELINE: 23,65 ± 10,53

(PL); 24,92± 19,15 (PR); POS-SUP= 25,63± 15,61 (PL);

15,61±15,25(PR)]. The peroxide and cytokines production

by neutrophils were no different between groups. From the

gut microbiota analyses, it was identified 2.634 OTUs

based on 173.096 final sequences. Regarding beta-

diversity, UniFrac weighted index was different between

groups (p=0,04; PERMANOVA) and the relative

abundance of Lactobacillus ruminis was significant

different between groups, in which PR exhibited significant

high levels after supplementation period. .

Probiotic Supplementation and Marathon Runners: there are any effect up to Gut Microbiota and neutrophil function? 
Geovana S F Leite1, Ayane S Resende5, Edgar Tavares3, Helena A P Batatinha2, Ricardo A Fock4, José C R Neto2, Ronaldo V T dos Santos3, Antonio H Lancha Junior6. 

1.Department of Biodynamics of the Movement of the Human Body, School of Physical Education and Sports, University of São Paulo, São Paulo-SP, Brazil.  2- Department of Cell and Tissue Biology, Institute of Biomedics Science, 

University of São Paulo, São Paulo-SP, Brazil ; 3- Department of Psychobiology, Federal University of São Paulo, Brazil; 4- Departament of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São 

Paulo, São Paulo-SP, Brazil; 5- Department of Health Science, Federal University of Sergipe, Aracaju, Sergipe – Brazil; 6- Laboratory of clinical Iinvestigation: Experimental surgery, LIM26, Hospital das Clínicas, Faculdade de 

Medicina, University of são Paulo

INTRODUCTION Probiotic supplementation can induce

positive alterations in intestinal environment, however the effect

of a month period short of probiotic supplementation on gut

microbiota and neutrophil function of endurance athletes is not

known. .

PURPOSE: Investigate the effect of thirty days of probiotic

supplementation up on gut microbiota composition and

neutrophil function in marathon athletes. .

METHODS : Twenty-seven marathon runners were double-

blind randomly assigned to either a Probiotic (PR) (35,96 ± 5,81

years,79,30 ±10,99Kg) or Placebo (PL) group (PL= 40,46 ±
7,79 years, 72,67 ±10,20Kg). PR consumed Lactobacillus

Acidophilus and Bifidobacterium Lactis (10x109UFC +

maltodextrin) during 30 days in a sachet form, while PL

received a sachet with maltodextrin (5g/day). The gut

microbiota composition was evaluated before (BASELINE) and

after the supplementation period (POS-SUP). Fiber

consumption was evaluated using one-day diet record at the

baseline and Pos-sup. Blood collection was realized

(BASELINE and POS-SUP) to verify neutrophil function, after

blood cell neutrophil isolation peroxide and cytokine production

(IL-1-β; TNF-α; IL-6; IL-8) was analyzed. The Bacterial DNA

were extracted using QIAamp Fast DNA Stool Mini Kit® and

faecal microbiota composition was assessed by 16S rRNA

sequencing, V3-V4 regions, with Illumina® MiiSeq plataform.

Operational taxonomic units (OTUs) and diversity indices were

obtained after bioinformatic treatment on Qiime2® software. β-

diversity was computed considering the sampling of 1,800

sequences per sample, which was based on the rarefaction

curve. To test differences among groups and time, it was

performed a pairwise PERMANOVA for beta-diversity and

ANCOM for OTUs relative abundance. Data analyses were

conducted using SAS Statistical Software version 9.3® (p<

0.05) and multiple tests corrected when necessary). For

neutrophil function was used the of repeated measures

statistical test mixed Model (with 'group' and 'time' as factors)

being used with Tukey's post hoc - GraphPad Prim8 ®.

*

GUT MICROBIOTA COMPOSITION  

DISCUSSION: Probiotic induced changes in the intestinal

environment or increased interaction among specific

bacterial species leading to an increase in the relative

abundance of lactic acid bacteria, such as Lactobacillus

ruminis. This effect seems to be a positive change from

the supplementation toward athletes’ health, since this

specie is a probiotic bacteria known for its

immunomodulatory activity

CONCLUSION: Without fiber consumption influence, 30

days of Lactobacillus Acidophilus plus Bifidobacterium

Lactis (10x109UFC/day) supplementation not modify

neutrophil peroxide and cytokine (IL-1-β; TNF-α; IL-6; IL-8)

production however cause specific modification in gut

microbiota composition increasing relative abundance of

Lactobacillus ruminis. .

Grouped mixed Model (p< 0.05) * different to baseline in the both groups

SUPPORT
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The Harvard T.H. Chan School of Public Health
Microbiome Collection Core

Chengchen Li1, Jeremy E. Wilkinson1, Curtis Huttenhower1,2,3

1Department of Biostatistics, Harvard T.H. Chan School of Public Health  2Broad Institute of MIT and Harvard

The Microbiome Collection Core at the Harvard T.H. Chan School of Public 
Health (HCMCC) was established in response to a strong demand among 
the research community for validated microbiome sample collection kit 
configurations and easy usability for in-home sampling. Under the umbrella 
of the Harvard Chan Microbiome in Public Health Center (HCMPH), 
HCMCC aims to support population-scale microbiome sample collection 
and expand our understanding of the microbiome to improve population 
health. The HCMCC has developed a multi carrier-compatible home stool 
and oral sample collection kit that permits cost-effective multi’omic 
microbiome studies, leveraging the intellectual and infrastructure 
foundation laid by the HMP2 (the 2nd phase of the NIH Human Microbiome 
Project) and the MLSC (Massachusetts Life Sciences Center)-funded 
MICRO-N (MICRObiome Among Nurses) collection. By providing this 
customizable microbiome collection kit, we enable researchers to perform 
multiple different molecular assays and tailor collection plan to study-
specific needs.

 

A scalable gut and oral microbiome 
sample collection platform

 

 

HCMCC-supported study activities 
within the BIOM-Mass platform

https://hcmph.sph.harvard.edu/hcmcc
https://huttenhower.sph.harvard.edu

 

This customizable microbiome sample collection kit avoids the need for 
expensive, bulky, and inconvenient ice packs by providing several different room 
temperature storage media that are also compatible with multiple different 
molecular assays including any combination of amplicon (16S), metagenomic, 
metatranscriptomic sequencing, metabolomics, and other molecular 
assays. This kit further includes a collection method that uses anaerobic 
transport media that yields live microbes for culture or gnotobiotic research. 
 

In addition to storage media, this sample collection kit includes user-friendly 
instructions and toilet accessories to maximumly facilitate and smooth the in-
home stool sample collection experience. Standardized questionnaires, as 
companions to collected samples, are included to capture recent medications, 
diet, anthropometric measurements, and gastrointestinal health status 
measured by the Bristol Stool Scale. The modularity of this kit allows 
researchers to tailor kit components to study-specific needs and conduct cost-
effective microbiome research ranging from pilot studies to large-scale studies 
involving 10,000s of participants.

 

  

Project Manager: Chengchen (Cherry) Li                                           

Scientific Director: Curtis Huttenhower

HCMCC services

Microbiome Analysis Core Director: Jeremy E. Wilkinson                                            

Microbiome population health 
research opportunities

  
Special thanks to the the Massachusetts Life Sciences Center (MLSC), the 
Harvard Chan Microbiome Platform Steering Committee, the Harvard Chan 
BiOS Freezer Director Eric Rimm, the BWH/Harvard Cohorts Biorepository 
Laboratory Manager Christine Everett.

3Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health

The Microbiome Collection Core is a part of the Harvard 
Chan Microbiome in Public Health Center (HCMPH). 
Want to learn more? Visit https://hcmph.sph.harvard.edu

At-home sample collection

Microbiome sample collection 

plan development

- Collection kit configuration

- Kit distribution & logistics

- Sample transport plan

- Sample handling & storage plan

Kit ordering & shipment 

- Kit customization & implementation

- Ambient temperature shipping 

- to selected clinical sites

- direct to participants 

Pre-paid return shipment

Streamlined post-collection 

assistance

 - Automated aliquoting 

 - Barcode tracking

 - -80˚C storage in the BiOS Freezer

 - Fast sample retrieval

 - Sample shipment to sequencing 

   labs for meta’omics & metabolomic

   profiling

- Accessible microbiome population studies' data on the BIOM-Mass Data Portal 

  https://biom-mass.org 

- Integrative microbiome informatics and analysis via the Harvard Chan

  Microbiome Analysis Core https://hcmph.sph.harvard.edu/hcmac/ 

- Long-term sample storage via the Harvard Chan BiOS Freezer Core

- Gnotobiotic mice experiments via the Harvard Chan Gnotobiotic Center

  for Mechanistic Microbiome Studies

- Course offerings on microbial communities and human microbiome research

  via the Harvard Chan Microbiome in Public Health Center

Post-collection

 - Sample aliquoting via 

   Hamilton STAR automated

   liquid handler

 - Long-term -80˚C storage

   via the BiOS Freezer Core

 - Data generation

 - Data analysis via the

   Microbiome Analysis Core 

Collection

 - Self-collection

 - Sample return through 

   pre-paid shipment

Pre-collection

 - Participant enrollment

 - Kit ordering

 - Kit distribution
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Abstract
The microbiome is inherently dynamic over time. Analyzing the relationship between microbiome dynamics and host

outcomes is critical for defining predictive models and ultimately understanding the mechanisms through which the

microbiome causes disease. Although off-the-shelf machine learning methods are widely deployed in the field, many

methods do not consider temporal patterns in the data or the microbial phylogenetic structure, and moreover are not

interpretable. We present a new, highly scalable model, MDITRE: Microbial Differentiable and Interpretable Temporal Rule

Engine, based on our earlier fully-Bayesian method MITRE [1]. MDITRE is a supervised machine learning model that learns

human-interpretable rules to predict host outcomes from microbial time-series data. Our model learns rules that capture

relevant features in the phylogenetic and temporal space via domain-specific attention mechanisms. Our inference

algorithm deployed on GPUs demonstrates that MDITRE achieves similar predictive performance as MITRE while running

30x – 70x faster on a suite of longitudinal microbiome datasets. Moreover, our model learns biologically meaningful

relationships that our prior model did not. Our results indicate that MDITRE is highly scalable and accurate, and moreover

can provide novel insights into complex and dynamic host-microbial ecosystems.

Model and Inference

• We developed a differentiable model with

domain-specific attention mechanisms that

dynamically learns relevant features in

phylogenetic and temporal space to predict

host outcomes from microbial time-series data.

• Our model is accurate and highly scalable, and

can provide novel insights into the complex and

dynamic host-microbial ecosystems

Future Work
• Incorporate additional prior knowledge into the model such as

knowledge about the taxonomy of microbes and biologically

relevant time windows, to boost the model accuracy and

robustness

• Add extra capability to the model to link rate of change of

microbial abundances over time to host outcomes

• Explore alternate inference methods such as Variational

Inference and Hamiltonian Monte Carlo

Experiments and Results

Conclusions

Prediction Accuracy and Scalability

This work was supported by BWH President’s Scholar Award, Harvard Catalyst and NIGMSR01GM130777.Acknowledgements

Model F1 score (running time) for all datasets

David [2] Bokulich [3] Vatanen [4]

MITRE [1] 0.77 (23 hrs) 0.64 (30 hrs) 0.83 (64.5 hrs)

MDITRE (new method) 0.81 (0.45 hrs) 0.58 (1 hr) 0.82 (0.83 hrs)

Sample Learned Rules (not found by prior method MITRE [1])

References
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[2] David et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature, 2014.

[3] Bokulich et al., Antibiotics, birth mode, and diet shape microbiome maturation during early life, Sci Transl Med, 2016.
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• David et al. [2] studied the effect of exclusive

Plant/Animal based dietary intervention (spanning

5 days) on the dynamics of 185 microbes with 20

human subjects over 16 days.

• Rule: TRUE for subjects on Animal diet if the

aggregated abundance of selected microbes A is

above 0.31% between day 7 and day 11.

• Rule is biologically relevant as the selected

microbes are known to increase in presence of

dietary lipids or chondroitin sulfate (component of

animal cartilage)

Inputs

Differentiable 5-layer Neural Network Model

TRUE for outcome Y if the aggregated abundance of selected microbes (A) within

selected time window (C, D) is above B% AND if the aggregated abundance of

selected microbes (E) within selected time window (F, G) is above H% .

Inference

• We demonstrate the accuracy and scalability of our model on 3 longitudinal microbiome datasets David

[2], Bokulich [3] and Vatanen [4] and compare to our prior method MITRE [1].

• We use F1 score as the metric to quantify the predictive performance using cross-validation

A: Binary host outcomes, e.g. disease or healthy

B: Relative abundances over time of microbes

C:Phylogenetic tree of microbes, encoding prior

evolutionary relationships
A B C

A

B

C

D

A: Aggregate abundances of phylogenetically similar 

microbes

B: Average abundances from A over a relevant time 

window

C: Compute detector response via sharp logistic function

D: Rule response as soft logical conjunction of detectors 

A

B

C D

Selected microbes
We perform Maximum-a-Posteriori

(MAP) inference inference on our fully

probabilistic model using gradient-

descent optimization. We use prior

distributions on number of rules and

detectors to encourage sparsity and

interpretability.

• Bokulich et al. [3] studied the effect of

Formula/Breast-milk dominant diet on the dynamics

of 65 microbes in 35 infants observed for a year.

• Rule: TRUE for subjects on Breast-milk dominant

diet if the aggregated abundance of selected

microbes B is above 3% between day 0 and day 93.

• Rule is biologically relevant as selected microbes are

known to express enzymes necessary to digest

human milk oligosaccharides.

Novel domain-specific attention mechanisms

A learned rule as logical conjunction of 2 detectors

E H

F G

Rules as logical conjunctions of detectors

Detector 1 Detector 2

A

B





Infant Gut Microbiome and Infections and Symptoms: 

A Prospective Cohort Study 
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Hongzhe Li4, Zhigang Li5, Juliette Madan1, Margaret R. Karagas1

1Dartmouth College, 2Marine Biological Laboratory, 3Stanford University, 4University of Pennsylvania, 5University of Florida

Background

• Generalized estimating equations with Poisson 

regression; log-alpha diversity and log-relative 

abundance of stool on repeated measures of 

counts of health outcomes

• Stool samples collected at 6 weeks post partum

• Telephone interviews conducted with infant’s 

caregivers at 4, 8, 12 months postpartum

Prospective cohort data from the New Hampshire 

Birth Cohort Study (NHBCS)

Method

Study

Design

Data 

Collection

Statistical 

Analysis

Outcomes
Total Sample

N = 185

All 

Infections 

and 

Symptoms

Veillonella unclassified

Diarrhea Streptococcus peroris

Streptococcus salivarius

The developing gut microbiome plays a critical role 

in immune maturation and infant health. 

Outcomes
Caesarian

N = 56

All Infections and 

Symptoms

Haemophilus influenzae

Upper RTI Veillonella parvula

Corynebacterium pseudodiphtheriticum

Streptococcus peroris

Clostridium butyricum

Coprobacillus unclassified

Table 1: Selected Metagenomics Species Associated 
with Health Outcomes (N = 185)

Figure 1: Risk Ratios of Selected 16S Alpha Diversities 
Associated with Counts of Health Outcome (N = 464)

All analyses adjusted for maternal 

BMI, delivery type, sex, breast 

feeding at 6 weeks, perinatal 

antibiotic use, and gestational age. In 

tables, black represent positive 

association, and red indicates 

negative association

Takeaways:

• High Alpha Diversity at 6 weeks Associated with Risk 

of All Infections and Symptoms, Upper RTI, Wheeze, 

and Diarrhea
• Clostridium, Streptococcus, and Veillonella Species in 

Gut Associated with Infant Outcomes



cILR: Taxonomic Enrichment
Analysis with Isometric Log
Ratios
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Introduction

Standard microbiome analyses often aggregate variables to sets,
commonly Linnean taxonomic categories (e.g.  Phylum) identi�ed
through sequence classi�cation. Aggregation can help with standard
challenges with microbiome relative abundance data, such as high-
dimensionality and sparsity. 
However, most researchers perform aggregation through the pairwise
summation of counts, preventing comparison across sets of
different sizes. Count-based aggregation methods also do not
preserve inter-sample distances, due to fact that microbiome data is
uniquely compositional. 
Here we developed a method to aggregate variables through
computing a competitive enrichment score, comparing those inside
the set and those outside the set.
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Results

Sample-level signi�cance testing

Figure 1: Type I error and power of sample-level enrichment testing using cILR compared against a
naive Wilcoxon Rank Sum test. Panel (A) presents type I error evaluated in parametric simulations
under different set sizes, inter-taxa correlation and sparsity. Panel (B) presents power evaluated in
parametric simulations under different effect sizes, inter-taxa correlation and sparsity. For panels (C)
and (D), we utilized the the 16S rRNA sequencing dataset of supragingival and subgingival sites from
the Human Microbiome Project where supragingival sites are known to have enriched aerobic
microbes. Here, we test for the enrichment of aerobic microbes across all samples, and considered a
true positive is when a sample is signi�cantly enriched for aerobic microbes and labelled as
supragingival.

Classi�cation capacity

Figure 2: Classi�cation power of cILR scores compared against existing methods in the gene set
testing literature that generates single sample enrichment scores. Area under the ROC curve (AUC)
measures whether scores highly rank samples where the set of interest is known to be enriched.
Panel (A) presents results under different parametric simulation conditions while panel (B) presents
similar analyses on the 16S rRNA sequencing dataset of supragingival and subgingival sites from the
Human Microbiome Project. In this data set, supragingival sites are known to have enriched aerobic
microbes.

Utilizing enrichment scores for disease prediction

Figure 3: Classi�cation performance of a standard random forest model using cILR scores compared
against existing methods in gene set testing literature and the standard centered-log ratio
transformation approach. The learning task involves predicting patients with in�ammatory bowel
disease (including Crohn’s disease and ulcerative colitis) versus controls. Data sets used span both
16S rRNA sequencing (Gevers et al. 2014) and whole genome shotgun sequencing (Nielsen et al. 2014)

Methods
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Our method leverages the isometric
log ratio transformation to generate
enrichment scores for taxa sets that
can be used for standard microbiome
analyses while also allowing for
sample-level signi�cance testing under
a competitive null hypothesis 
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Intestinal inflammation leads to changes in the blood PBMC and plasma 

microbiome
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Despite several studies having confirmed the presence of bacteria in the

blood of humans (1), very little is known about the distribution of microbial

DNA among leukocytes in the systemic circulation (2). The presence of a
blood microbiome more often has been associated with chronic

inflammatory diseases (3) due to impaired barrier function. Existing

drawbacks of low biomass contamination makes the interpretation of the

assay fairly challenging (4).

In this preliminary study, we aimed 1) to evaluate the peripheral blood
mononuclear cells (PBMC) and plasma bacterial microbiome in humans,

and 2) to investigate potential bacterial translocation into systemic
circulation. To address these questions, two groups of patients with

schizophrenia were selected for the microbiome analyses of both plasma

and PBMC samples: one group with acute intestinal inflammation and the
other without it. Each individual in the acute intestinal inflammation group

had high ELISA values (≥ 1) for ASCA IgG in the blood (5).

Objectives

Introduction

Materials and Methods

DNA extraction: Along with microbial community standards, and negative
blank extraction samples, the DNA of the PBMC and plasma samples was

extracted using Ultra-Deep Microbiome Prep Kit (Molzym, G-020-050).

Libraries (including negative controls) were prepared using Illumina

NexteraXT kit targeting 16S v3v4 regions and were sequenced on MiSeq

v3 Illumina platform.

Results
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Figure 1B. - Diversity

Shannon metrics depicting species richness in the four

experimental groups. Kruskall-Wallis pairwise comparison

showed that inflammation leads to species enrichment in both

plasma (q=0.049) and PBMC (q=0.031).

Figure 2. (heatmap below)

Relative abundance at species level

Enterococcus faecalis and Enterobacteriaceae/Escherichia-

Shigella genus were highly abundant in the group with

intestinal inflammation in both plasma and PBMC.

Figure 3. 

E. faecalis PCR

The blank (BLNK)  and 

non-template control 

(NTC) did not produce 

any amplification, while 

the microbiome 

community standard 

(STND)  had a positive 

amplification at 138 bp. 

diluted 

blood

separati

on 

buffer

plasma 
serum

PBMC

granulocytes erythrocytes

hormones, 
platelets, 

cytokines, 

electrolytes

mononuclear cells
• lymphocytes

NK, B, T

• monocytes
dendritic cells, macrophages

2200 

rpm

Samples:

Blood from individuals with 
intestinal inflammation (n=7) 

and without it (n=6) were 
separated into plasma and PMBC 

using gradient centrifugation.  

SEQs

QIIME2 (6)
built-in DADA2 de-

noising + additional 

ENV contaminant 

removal 

TAXONOMY 

ASSIGNMENT 

DIVERSITY 

ANALYSES

BOWTIE 2 (7)
EUK 

contaminant 

removal 

GreenGenes v13.8

Conclusion

• Patients with intestinal inflammation are more likely to have
detectable bacterial microflora than those without it in both

plasma and PBMC.

• The bacterial microflora in each plasma and PBMC pair was

different. This finding suggests that the results cannot be ascribed

to skin flora or the contamination of reagents.

• In the intestinal inflammation group, some highly abundant

species were more likely to originate from the intestine in both

plasma and PBMC.

• Due to the preliminary feature of the study, the main limitations
are the small sample size and lack of correction for potential

cofounders.

• The measurement of the microbiome from plasma and PBMC
may provide a new method for the characterization of intestinal

inflammation.
Sequence analyses:

PCR confirmation: Based on the sequencing results, specific primers were
designed for Enterococcus faecalis. The remaining genomic DNA of the

same blood samples was tested in a SYBR Green PCR reaction.
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Visualization: was completed by employing MS-Excel and q2R package (8)
in R.

The higher relative abundance from the amplicon sequencing correlated with higher 

concentration of specific Enterococcus faecalis PCR product in the PCR reaction.

Figure 1A. – Diversity

Principal coordinate analyses of Jaccard dissimilarity 

metrics along with pairwise Permanova analyses 

showed significant differences between patients with 

and without intestinal inflammation in both plasma 

and PBMC.
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Maternal probiotic intake in obese mice reduces anxiety-like behaviour in 

offspring and increases blood and brain lactate
1,2,3Radford-Smith DE., 2Probert F., 3Burnet PWJ. & 1Anthony DC.
1Pharmacology, University of  Oxford, Oxford, UK; 2Chemistry, University of  Oxford; 3Psychiatry, University of  Oxford

Results:

• Maternal obesity increased anxiety-

like behaviour in juvenile and adult 

offspring, independent of  sex 

(Figure 1). Perinatal probiotic 

supplementation protected against 

this increase in anxiety-like 

behaviour, and had a main effect on 

reducing anxiety-like behaviour.

• Maternal probiotic intake increased 

brain Pfkfb3 expression (Figure 2), a 

marker of  brain astrocyte 

metabolism, in offspring at 

postnatal day 21 (weaning) and at 

16 weeks (adulthood).

• Pfkfb3 expression correlated with 

brain lactate levels, which were 

increased in probiotic offspring 

(Figure 3 and Figure 4).

Aim: To investigate how maternal diet-induced obesity affects offspring 

brain development and behaviour, and whether the changes could be 

mitigated by perinatal probiotic exposure.

Background:

• Maternal obesity and depression are growing public health epidemics in 

Europe and the United States (1-3).

• Maternal gut dysbiosis induced by diet affects the offspring 

microbiome, brain, and behaviour (4).

• No studies have investigated whether maternal probiotic intake may 

counter the adverse neurometabolic and behavioural effects of  maternal 

obesity on offspring.

Conclusions:

• We have shown for the first time that maternal probiotic 

supplementation during gestation and nursing is protective against 

increased anxiety-like behaviour, which occurred in the male and 

female offspring of  obese dams.

• We observed pervasive metabolic effects of  maternal obesity across 

the gut-liver-brain axis.

• Maternal perinatal probiotic intake increased blood and brain lactate in 

offspring at weaning age, which may have contributed to the increased 

resilience to maternal obesity exhibited in these offspring.

Study Design and Methods: CD-1 female mice were randomly assigned to receive either

high-fat diet (n=8) or control diet (n=8) prior to and throughout gestation and nursing.

Half of each group received a multi-strain probiotic during gestation and nursing, and the

other half received the vehicle. Offspring behaviour was tested at weaning age (n=27-29

per group) and at sixteen weeks old (n=19-21 per group). Untargeted brain, liver, faecal,

and plasma metabolomics were performed on dams and young offspring. Prefrontal cortex

(PFC) gene expression profiling was performed on young and adult offspring.

Figure 1 (left): Maternal obesity increases

anxiety-like behaviour in the open field test

(OFT) in A) juvenile and B) adult offspring

in the absence of perinatal probiotic

supplementation. Maternal probiotic intake

reduced anxiety-like behaviour. There was a

significant interaction between maternal diet

and probiotic intake on increasing time in

centre in juvenile (F(1, 106) = 10.04, p = 0.0020)

and adult (F(1, 75) = 14.20, p = 0.0003) offspring.

Figure 4: Summary of  top metabolites 

altered in juvenile offspring by maternal      

obesity and/or maternal probiotic 

supplementation according to 

multivariate analyses. 

Funding: DE Radford-Smith is supported by the Newton

Abraham Studentship (Oxford) and the Clarendon fund in

association with the Lincoln College Kingsgate award (Oxford).
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Figure 2 (left): 

Maternal probiotic 

intake increases 

Pfkfb3 expression, 

a marker of  

astrocyte metabolic 

activity, in A) 

juvenile (F(1, 44)

= 23.96, p < 0.0001) 

and B) adult (Q = 

29.96, p = 0.001) 

offspring.

2A 2B Figure 3 (left): 

A positive 

correlation 

exists between 

cortical lactate 

concentration 

and Pfkfb3 

mRNA 

expression in 

the prefrontal 

vortex (r = 0.40, 

p = 0.0053) in 

juvenile 

offspring.



 

 

  

 

Power and sample size calculations 
for microbiome epidemiology

Meghan I. Short1,2,3, Emma Schwager1,2,3, Siyuan Ma1,2,3, Lauren McIver1,2,3, 

Jeremy E. Wilkinson1,2, Eric A. Franzosa1,2,3, Curtis Huttenhower1,2,3

1Harvard T.H. Chan School of Public Health, 2Harvard Chan Microbiome in Public Health Center, 3Broad Institute of MIT and Harvard   

Accurately assessing statistical power as a function of sample size 
and effect size is critical for good study design, particularly with 
respect to complex human populations and high-dimensional 
molecular epidemiology. Microbiome data especially pose unique 
challenges, considering the many biological factors that can influence 
the microbiome, the multiple types of molecular measurements 
possible, and their technical and biological variability including 
compositionality, zero-inflation, and measurement error. Standard 
methods for calculating power may thus be inadequate for measuring 
associations between microbial features and biological variables of 
interest. We demonstrate this using simulated and synthetically spiked 
microbial profiles containing known relationships of varying types.  

 

Benchmarking and expanding power 
calculation methods for microbial 
communities

Microbiome power can be over- and 
underestimated by standard methods

Acknowledgments

Future work: Calibrate traditional 
effect size measures to microbiome 
exposures
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Infection trains the host for microbiota-enhanced resistance to pathogens
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Conclusion

How does prior infection impact the gut 

microbiota?

Does prior infection increase taurine levels?

How does taurine impact the gut microbiota?

How does taurine enhance resistance?

Does taurine alone enhance resistance?

o Prior infection elicits taurine-utilizing Deltaproteobacteria

o Infection-induced Deltaproteobacteria likely expand in response to bile 

acid-derived taurine

2 weeks

taurine

o Taurine amplifies the microbiota’s production of sulfide

o Taurine-derived sulfide restricts K. pneumoniae from utilizing 1,2-

propanediol, a strictly respiratory substrate

o The gut microbiota can be trained by the host after infection

o Training metabolite can be co-opted into a therapeutic
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Introduction

infection-trained

microbiota

o Gut microbiota protects against colonization by pathogens

o Often study microbiota resistance in “clean” laboratory mice

o Can infection-induced microbiota shield against subsequent 

infection?

Infection-induced host models

Does prior infection alter resistance to 
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Antimicrobial resistance poses a major global health threat

The human gut microbiome serves as a reservoir for 
antimicrobial resistance genes (ARG, “the resistome”)

Supplements containing live probiotic microorganisms 
have been suggested to ameliorate resistome expansion –

but evidence are limited and conflicting

Are we looking in the wrong place?

Probiotics alter the antibiotic resistance gene reservoir along the human GI tract
Emmanuel Montassier1,2,3,*, Rafael Valdés-Mas4,*, Eric Batard1,2, Niv Zmora4,5,6, Mally Dori-Bachash4, Jotham Suez4,7,9, Eran Elinav4,8,9

 ,Microbiota Hosts Antibiotics and bacterial Resistances (MiHAR), Université de Nantes,  Nantes, France (2) Department of Emergency Medicine, CHU de Nantes, Nantes, France (3) F-CRIN INI-CRCT, Nancy, France (4) Immunology Department, Weizmann Institute of Science, Rehovot, Israel (5) Sackler Faculty of Medicine, Tel Aviv University (1)
Tel Aviv, Israel (6) Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (7) Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (8) Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany (9) Co-last authors (*) Equal contribution

Can probiotics prevent the spread of 
antibiotic resistance genes?

Stool samples do not accurately
reflect the gut resistome
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Antibiotics expand the resistome in the lower GI

A beneficial or deterimental effect of 
probiotics on the gut resistome is 

antibiotics-dependent & person-specific

Probiotics are associated with increased ARG
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Probiotic Supplementation Increase Monocyte’s Function and Maintain 

Gut Microbiota Alpha Diversity of Marathon Runners 
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Thomatieli-Santos1. 
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Background 

After prolonged physical exercise, the immunological response of athletes can be 

impaired. Recently, the relationship between the intestinal microbiota and the 

immunological response has been postulated. We investigated whether probiotic 

supplementation modulates athlete's intestinal microbiota and the immune 

response before and after a marathon race. 

 

Materials and Methods 

Marathon athletes (n=30) were allocated into placebo (maltodextrin 5g) or probiotic 

(10x109 CFU of Lactobacillus acidophilus LA-G80 and 10x109 CFU of 

Bifidobacterium animalis subsp. lactis BL-G101) and received a double-blind 

supplementation for thirty days. Before the supplementation period (Baseline) and 

24 hours before the race (24h-Pre), faeces were collected to analyze microbiota 

Alpha diversity. Blood was collected at four different times (Baseline, 24h-Pre, 1h-

Post and 5 days after the race) to analyze monocyte’s function and plasma 

cytokine. For ten days after the marathon race, athletes answered a checklist about 

symptoms of URTI. Bacterial genetic sequencing was based on the V3-V4 regions 

of rRNA 16S following Illumina's MiSeq platform system and visualization by 

Quantitative Insights Into Microbial Ecology – QIIME. The data normality was 

verified using the Shapiro-Wilk test, and the Anova Two-Way applied with a 

significance level of p ≤ 5% for immune response. 

 

Experimental Design 

 

 

 
 
 

 

Conclusions 

Supplementation of 10x109 CFU of Lactobacillus acidophilus LA-G80 and 10x109 CFU of 

Bifidobacterium animalis subsp. lactis BL-G101 for thirty days was not sufficient to modify the 

microbiota Alpha diversity of marathon athletes and did not modify symptom parameters of 

opportunistic infections in the upper respiratory tract. However, probiotic supplementation was 

able to modulate the cellular response of monocytes, with a significant increase in phagocytosis 

rate after the supplementation period. Different studies have demonstrated the efficiency of 

probiotic supplementation on the immunological response and intestinal microbiota modulation 

in recent years. We believe it is necessary to investigate different doses and supplementation 

time for this specific population of marathon runners. 
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The gut microbiome in patients with juvenile idiopathic arthritis
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Juvenile idiopathic arthritis (JIA) is among the many chronic systemic 
inflammatory diseases in which the gut microbiome has been implicated, but 
careful multi’omic studies of this complex condition have not previously been 
carried out. Samples were collected from children with juvenile enthesitis-
related arthritis, oligoarticular JIA, polyarticular JIA, and psoriatic arthritis for a 
total of 113 JIA samples, plus 38 samples collected from age matched 
controls. We found that JIA subtype, current arthritis modifying drugs, and 
HLA-B27 status all explained a significant amount of taxonomic and 
functional variability within the gut ecosystem (PERMANOVA R2 2-3%, 
q<0.25). Limited joint count, which is used to determine clinical inflammation 
status, also explained nominal amounts of variation. Age of the patient, as 
expected, explained the largest portion of the taxonomic (but not functional) 
variation. We observed the loss of key gut commensals (e.g. 
Faecalibacterium prausnitzii) associated with inflammatory markers (e.g. 
limited joint counts) and increased prevalence and abundance of 
proinflammatory taxa such as Streptococcus. Additionally, sub-species 
phylogenetic associations were found with age, current drug, and JIA 
subtype. Functionally, several alterations across sulfur related cycling and 
metabolism and carrier protein biosynthensis were observed. 
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The human gut microbiome is altered 

in inflammatory JIA

Patients with JIA exhibit altered clade 

prevelence and abundance 
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in the bioBakery at:

Many clades exhibited gradient 

phylogenetic associations with age

Experimental design for microbiome 

profiling in Juvenile Idiopathic Arthritis
JIA patients range in age from one year old to patients in their mid-thirties with 

differences in diagnosis splitting out around sixteen years of age (top left). Active joint 

count was discretized into either no active joints ("none") or current inflamed joints at 

the time of sample collection ("some"). We used this new categorical variable as a 

systemic inflammatory marker (top right). Current patient inflammation (e.g. Eosinophil 

settling rate (ESR) and limited joint count) explained significant amounts of the overall 

compositional differents in gut (bottom left). JIA subtype did not explain significant 

compositional differences in the gut microbiome (bottom).

N/A

N/A

Functional alteration by subtype and 

inflammatory markers

* Patient discretized joint count 

and subtype both explained the 

prevalence and abundance of 

several typically inflammation 

associated microbes (e.g. 

Streptococcus). 

* Meanwhile, extending our results to the expanded databases within bioBakery v3 

also allowed the discovery of several newly identified taxa associated with diagnosis 

(e.g. Gordonibacter pamelaeae).

* While investigating the subspecies ("strain") 

level associations with JIA, a stark trend of 

subspecies gradient structing with age was 

observed (17/57 species exhibited age 

associations). Here Blautia wexlerae and 

Eubacterium GAG180 are shown, both of which 

exhibited significant associations with patient age.

* JIA subtype was associated with several functional classes of biomolecular 

pathways included amine and polyamine biosynthesis and degradation (left), 

aromatic molecule processing and vitamin B1 and B2 biosynthesis and salvage. 

* While discretized active joint count was associated with isoprenoid biosynthesis 

(right), cell wall modifications, and glycan and amino acid biosynthesis. 
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ObjectivesAbstract

Background

Future Directions

Results

Methods

Host social behavior is hypothesized to influence host-host

transmission dynamics of gut microbiota. In turn, the gut

bacteria may affect host social decision making [1]. A

similar, yet under-explored evolutionary interdependence

could also occur between host mating behavior and its

reproductive microbiota [2]. We therefore characterized

the reproductive tract microbiota of female and male red

junglefowl (Gallus gallus; Figure 1) to investigate the

potential role of reproductive bacteria in host evolution.

© Parmil Kumar, 2019

© JJ Harrison , 2011

• Human reproductive tracts harbor both pathogenic and

mutualistic bacteria [3,4] that may be sexually-

transmitted and affect host health [5]

• Little is known about whether reproductive bacteria could

influence mate choice, determine compatibility between

sexual partners, and affect socio-sexual host network

structure [2]

• Interdependence between host evo-ecology and

microbiota may be easier to investigate studying a non-

human host, e.g., the red junglefowl—the main wild

ancestor of the domestic chicken (Gallus domesticus)

• Female and male fowl mate with multiple partners

(polygynandry), while practicing mate choice [6], allowing

us to explore the possible evolutionary implications of

exchanging reproductive bacteria during mating

BACTERIABACTERIA
Figure 1. Female and male red junglefowl support sex-specific reproductive

tract microbiota that may be exchanged between hosts during mating.
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(1) Reproductive tract microbiota is sex-specific (A), with more pronounced

bacterial diversity variation present in the female reproductive tract (B).
(1) Characterize previously unexplored

bacteria found in female and male

reproductive tracts, and ejaculates

collected from males

(2) Investigate patterns of microbiota

variation in sexually-interacting

groups of individual hosts

Discuss the results in the context of 

host evolution and ecology.

• Given that bacteria may come in contact with the unprotected fertilized egg, mother-

to-offspring vertical bacterial transmission in egg-laying hosts merits more attention

• Further research is needed to test whether a specific reproductive tract microbiota

underlies host attractiveness in a mating context, and elevated offspring number/health

Sterile collection of reproductive tract, 

ejaculate, and cloacal wipe samples

+ controls from the digestive tract

Bacterial DNA extraction and 

qPCR/PCR of the 16S SSU rRNA 

gene V4 hypervariable region

+ inclusion of negative and 

positive control samples

Illumina MiSeq sequencing

Bioinformatic processing 

with DADA2 and statistical analysis

(2) Host cloacal microbiota is affected by the number of secured partners in the mating

population (C). Bacterial exchange during mating is asymmetric between the sexes (D).
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Conclusion: Females show patterns suggestive of host-mediated microbiota maintenance 

in the upper oviduct, which may protect eggs from bacterial infections. 

Conclusion: Mating challenges the established reproductive tract 

microbiota and could be particularly costly for females.



The role of host genetics in the
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The infant gut microbiome is crucial for the maturation of the host 

immune system, and dysbiosis of the infant gut microbiome has been 

linked to autoimmunity later in life. The infant gut microbiome, itself, is 

shaped by a number of factors, including the mode of delivery, 

breastfeeding, and antibiotics. Although studies in adults have reported 

that a handful of taxa are associated with mutations in genes that are 

involved in immunity, it is unclear if host genetics plays a role in 

shaping the infant gut microbiome. The aim of our study is to 

determine if host genetics interacts with the infant gut microbiome.

Cohort and study design

Age dominates over genetics in 
shaping the early gut microbiome

Variation in the MHC region
influences the microbiome

http://huttenhower.sph.harvard.edu

A subset of individual species is
associated with genetic structure

A subset of microbiome features
associates with individual SNPs

A random slopes model was used to identify the additive and indirect

effects of genetics. on the microbiome (Fig. 1 D-G).

Figure 1. Schematic overview of the study.

Figure 2. The structures of the data within the TEDDY cohort.

Figure 3. The species associated with genetic principal components. 

10 species displayed significant additive effects (e.g. Fig. 3 B-C), while 8 

species displayed significant interaction effects (e.g. Fig. 3 E-F).

Figure 4. The abundances of 19 level 4 Enzyme Commission (EC) 

categories associated with genetic principal components.

15 ECs displayed significant additive effects (e.g. Fig. 3 G-H), while 11 

ECs displayed significant interaction effects.

Gene set enrichment analysis of SNP loadings revealed that variants in

the major histocompatibility complex (MHC) drove PC1, which was had

the greatest number of associations with the microbiome.

10 species were 

significantly

associated

with ≧1 SNP.

42 ECs were

significantly

associated

with ≧1 SNP.

Bacteroides dorei

is associated with

the MHC region

and PFKB3 (Fig.

5 A).

Exo-alpha-sialidase is associated with 

CFH (Fig. 5 B).

Figure 5. Associations with individual SNPs.

902 infants from the TEDDY cohort (Fig. 1 A).

Infants at risk of developing type 1 diabetes (T1D).

Infants recruited from 4 countries.

Infants were genotyped using the Illumina Infinium ImmunoArray (Fig. 1 B).

253,702 immune specific markers.

Genotype data was analysed using PLINK 1.90.

Shotgun metagenomics was used to profile the infant gut microbiome

from 0-3 years (Fig. 1 C).

12,159 samples were analysed using bioBakery tools.

The microbiome was characterized by convergence over time (Fig. 2 A-C).

The microbiome did not stratify by country (Fig. 2 D), whereas principal

component analysis of genotype data revealed that Finnish infants

separated along PC1 (Fig. 2 E). The Mantel test indicated that microbiome

structure was not correlated with genetic structure (Fig. 2 F).



INTRODUCTION
Although physical activity (PA) is a major approach to weight control, 

PA does not always result in expected weight loss and shows high 

individual variability in body weight responses. 

The gut microbiome plays an important role in host energy balance, 

but how the gut microbiome modulates the body weight response to 

PA remains unknown. 

CONCLUSIONS
• Individuals with a higher A. putredinis abundance may have a better body weight response to PA.

• The modulating role of A. putredinis may be partly attributed to its roles in Glycolysis. 

• More studies are needed to elucidate the potential of A. putredinis as a probiotic in improving body 

weight response to PA.

RESULTS

METHOD
• We collected data on PA type and intensity and body weight 

using the validated biennial questionnaires since 1986 from 

51,529 men enrolled in the Health Professionals Follow-up Study. 

• In a subcohort of 307 healthy men, we collected up to 2 pairs of 

stool samples and 2 blood samples, 6 months apart in 2012-

2013. 

• We profiled 925 stool metagenomes, 340 stool 

metatranscriptomes, and 468 blood samples. 

• One month before and after the stool collections, participants 

were asked to wear accelerometer for consecutive 7 days to 

monitor their PA and received Doubly Labeled Water (DLW) test 

for body weight and fat mass assessment. 

• We assessed the overall gut microbiome configurations, 

microbial species abundances, microbial functional pathways and 

enzymes in relation to 

• recent PA level measured by accelerometer, 

• long-term PA level from questionnaires, 

• body mass index and fat mass percentage measured by DLW, 

• short-term body weight change in 6 months between the 1st 

and 2nd stool collection, 

• long-term body weight change from age 21 to stool collection, 

and 

• plasma high-sensitivity C-reactive protein (CRP) and 

hemoglobin A1c (HbA1c) levels at stool collection. 

• We then examined how the microbial species might modify the 

associations of PA with the body weight measures and 

biomarkers.
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AIM
The current study analyzed the gut microbiomes profiled by shotgun 

metagenomics and metatranscriptomics sequencing in modifying the 

association of recent and long-term PA with body weight measures 

and relevant plasma biomarkers.
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Figure 1. Study design for linking physical activity (PA), body weight measures, plasma biomarkers, and the gut microbiome in the 

Men’s Lifestyle Validation Study (MLVS) and characteristics of participants in the MLVS. a, To associate the gut microbiome with PA 

and body weight measures, we profiled stool metagenomes, metatranscriptomes and blood biomarkers from the MLVS. The MLVS is a 

sub-study of the HPFS, an ongoing prospective cohort totaling 51,529 men. The HPFS has repeatedly collected PA and body weight 

information using validated questionnaires and health-related information since 1986. In the period 2011-2013, the MLVS collected 

stool samples at up to four time points per individual, blood samples at up to two time points, and additional PA information using 

accelerometer and body weight information using Doubly Labeled Water (DLW) from 307 participants. We applied MetaPhlAn 2 and 

HUMAnN 2 to perform taxonomic and functional profiling from stool shotgun metagenomes and metatranscriptomes. Plasma 

biomarkers of inflammation (high-sensitivity C-reactive protein, CRP) and glucose homeostasis (hemoglobin A1c, HbA1c) were 

measured using standard methods. We employed generalized linear mixed-effects regression models to account for within-subject 

correlation due to repeated sampling and occasional missing data. b, Characteristics of participants in the MLVS according to quartiles 

of PA levels measured by accelerometer. Values are means for continuous variables and percentages for categorical variables. The

variable of weight change in 6 months between the 1st and 2nd stool collection was based on the data collected at the 1st stool 

collection.

Figure 2. Associations of 

physical activity (PA), 

body weight measures, 

and relevant plasma 

biomarkers with overall 

gut microbiome 

configuration and 

individual gut microbial 

species abundances. a, 

Principal coordinate 

analysis of all samples 

using species-level Bray-

Curtis dissimilarity. b, 

Proportion of variation in 

taxonomy explained by PA 

measures, body weight 

measures, plasma 

biomarkers, and covariables

as quantified by two-sided 

permutational multivariate 

analysis of variance (based 

on species-level Bray–
Curtis dissimilarity). c, 

Significant associations of 

recent and long-term total 

PA and body weight 

measure with microbial 

species (q ≤ 0.25). d, 

Associations of recent and 

long-term total PA and body 

weight measures with 

microbial functions (as 

MetaCyc pathways). All the 

analyses in these panels 

were conducted based on 

all 925 metagenomes 

collected from 307 

participants. 

Figure 3. Alistipes putredinis abundance modulates the associations 

of physical activity (PA) with body weight measures and plasma 

biomarkers. The interactions between PA and A. putredinis abundance 

(with median level as cutoff for low and high abundance) are significant in 

relation to all of body mass index (BMI), fat mass percentage, short-term 

and long-term body weight changes, and plasma hemoglobin A1c (HbA1c) 

level. a, The interaction between recent total PA and A. putredinis

abundance in relation to BMI. b, Recent total PA levels in relation to BMI 

among participants with low and high A. putredinis abundance separately. 

Box plot centers show medians of the PA measures with boxes indicating 

their inter-quartile ranges (IQRs), upper and lower whiskers indicating 1.5 

times the IQR from above the upper quartile and below the lower quartile, 

respectively. c, Association between recent total PA and BMI according to A. 

putredinis abundance. The dots in the plot indicate beta coefficients in the 

multivariable-adjusted generalized linear mixed-effects regression models, 

with error bars indicating upper and lower limits of their 95% confidence 

intervals. Beta coefficients and Pinteraction were calculated from multivariable-

adjusted generalized linear mixed-effects regression models while adjusting 

for age, smoking, total energy intake, probiotic use, antibiotic use, and 

Bristol stool scale. d, Associations between PA levels with other body weight 

measures, including fat mass percentage, short-term body weight change 

(6-month weight change), long-term body weight change (weight change 

between age 21 and stool collection), plasma HbA1c and high-sensitivity C-

reactive protein (CRP) levels.

Figure 4. Alistipes putredinis is highly 

involved in Glycolysis pathways and 

enzymes. a, A. putredinis contributes to 

nine microbial enzymes within the pathway 

of Glycolysis I, using 340 

metatranscriptome and metagenome pairs 

from 96 participants. The plots are 

schematic representations of the pathway 

of Glycolysis I containing nine key enzymes 

for Glycolysis I. We used EC numbers in 

the rectangles to represent these enzymes; 

the rectangles are in red indicates that all 

the nine enzymes are contributed by A. 

putredinis. The scatter plots show the 

associations of recent total PA with relative 

abundance or transcription levels of 

microbial enzymes. The bar plots show the 

Alistipes species with the greatest 

contributions to each microbial enzyme, 

with metagenomic or metatranscriptomic

samples along the x axes ordered by 

recent total PA level (from the lowest to the 

highest). All statistical tests were two-sided. 

b, The number and percentage of key EC 

enzymes contributed by A. putredinis (in 

red) among all key enzymes (the whole 

bar) within each of the five Glycolysis 

pathways.

The modulating role of the gut microbiome in body weight responses to physical activity

K. Wang1, W. Ma2,3, LH. Nguyen2,3,4, D. Wang5, RS. Mehta2,3, D. Hang5,6,7, L. Al-Shaar5, CH. Pernar1, CH. Lo2,3, B. Fu1, S. Ogino1,8,9,10, EB. Rimm1,5,11, FB. Hu1,5,11, WS. Garrett12,13, Q. Sun5,11, AT. Chan2,3,10,11,12, C. Huttenhower4,10,12, M. Song1,2,3,5

1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 2Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 3Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 4Department of Biostatistics, 

Harvard T.H. Chan School of Public Health, Boston, MA 5Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 6Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, 

Nanjing, China 7Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China 8Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 9Program in MPE Molecular Pathological 

Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 10Broad Institute of MIT and Harvard, Cambridge, MA 11Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 12Department of Immunology 

and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 13Department of Medicine, Harvard Medical School, Boston, MA

mailto:mingyangsong@mail.harvard.edu
mailto:kaiwang@hsph.harvard.edu


Characterizing microbial community viability with
RNA-based high-throughput sequencing

Ya Wang1,2,Yan Yan1,2, Kelsey N. Thompson1, Sena Bae1,2, Jiaxian Shen3,

Hera Vlamakis2, Erica M. Hartman3, Curtis Huttenhower1,2

1Harvard T.H. Chan School of Public Health  2Broad Institute of MIT and Harvard  3Northwestern University

Acknowledgments

http://huttenhower.sph.harvard.edu

 

16S-RNA-seq for viability assessment

Conclusions

Characterizating microbial community viability is of great importance: essentially all 

sequence-based technologies do not differentiate living from dead microbes, 

whereas the functions of microbial communities are defined by biochemically active 

(“viable”) organisms. As a result, our understanding of microbial community 

structures and their transmission mechanisms between humans and our 

surroundings remains incomplete. As a potential solution to this, RNA-based 

amplicon sequencing has been proposed as a method to quantify the viable fraction 

of a microbial community, but its reliability has not been evaluated systematically. 

Here, we present our work benchmarking 16S-RNA-seq (targeting 16S rRNA 

transcripts and genes for parallel RNA and DNA sequencing) for viability 

assessment in synthetic and realistic microbial communities, as well as exploring 

the potential application of protein-coding genes as viability markers in these 

settings. In synthetic communities, 16S-RNA-seq successfully reconstructed the 

viable fraction of Escherichia coli and Streptococcus sanguinis. However, no 

significant compositional differences were observed in human and environmental 

microbial communities spiked with known E.coli controls. Results were slightly 

different in environmental samples of similar origins (i.e. from Boston subway 

systems), where samples were differentiated both by sources as well as by library 

type. Finally, we explored the use of protein-coding genes as viability markers in 

synthetic communities, where the chaperonin-encoding gene cpn60 showed 

promising qPCR results. Overall, these results show that 16S rRNA amplicons do 

not reflect microbial viability outside of very simple, synthetic “communities”; 

alternatively, mRNA amplicon from  protein-coding genes may be promising viability 

markers in natural microbial consortium that worth further exploration.

We first evaluated 16S-RNA-seq in ten synthetic communities comprising live 

and/or heat-killed E.coli and S.sanguinis mixed at different ratios.

Total DNA and RNA were extracted simultaneously, with RNA samples 

immediately reverse transcribed into cDNA followed by amplicon-sequencing 

targeting the V4 region of 16S rRNA for all cDNA and their respective DNA 

samples in parallel.

To evaluate its performance under 

variable biomass, biochemical 

background and diversity conditions, 

we next applied 16S-RNA-seq to 

swabbings of natural microbial 

communities from computer screens 

and mice, soil, and human saliva 

spiked with known concentrations of 

living and heat-killed E. coli controls.

 

We further validated this technique in built environment microbiome samples 

collected from Boston subway systems. Surfaces were swabbed from four seats, 

four walls and four grips in the train cart of the Green Line E branch, and three 

touchscreens of the ticket machines at Park Street Station.

For 16S-RNA-seq, we had a total of 170 samples comprising of those from 

synthetic cultures, E. coli spike-in experiments, subway microbial communities 

and several experimental and technical controls. qPCR was performed targeting 

16S rRNA gene V4 region and protein-coding gene cpn60 and rpoB on the samples 

of synthetic cultures to determine the viable (RNA/cDNA) and overall (DNA) 

bacterial mass.

16S-RNA-seq successfully reconstructs the 

viable fraction in simple synthetic communities
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16S-RNA-seq was able to qualitatively differentiate viable from nonviable microbes 

simple synthetic “communities”.

Viability accurately assessed in groups containing monoculture of viable cells 

(Groups 1, 2, 9 and 10);

In mixed culture groups (Groups 5, 7 and 8), the composition of the two 

microorganisms agreed with the known proportion, though the abundances 

differed slightly;

qPCR signals from RNA (cDNA) samples were counterintuitively higher 

compared to the DNA ones except for the groups containing mostly “dead” cells 

(Groups 2, 4 and 6), suggesting possible inaccuracy existed in the quantitation 

using 16S rRNA as marker.

16S-RNA-seq is not able to differentiate the 

viable vs. whole microbiome in spiked realistic 

communities

0%

25%

50%

75%

100%

Screen

Spike-

DNA

Screen

Spike-

RNA

Screen

Spike+

DNA

Screen

Spike+

RNA

Mouse

Spike-

DNA

Mouse

Spike-

RNA

Mouse

Spike+

DNA

Mouse

Spike+

RNA

Saliva

Spike-

DNA

Saliva

Spike-

RNA

Saliva

Spike+

DNA

Saliva

Spike+

RNA

Soil

Spike-

DNA

Soil

Spike-

RNA

Soil

Spike+

DNA

Soil

Spike+

RNA

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

Taxa

Other

o__Streptophyta

g__Methylobacterium

f__Acetobacteraceae

g__Actinomyces

f__Gemellaceae

g__Sphingomonas

g__Acinetobacter

g__Neisseria

g__Pseudomonas

g__Haemophilus

g__Corynebacterium

g__Staphylococcus

g__Streptococcus

g__Lactobacillus

f__Enterobacteriaceae

Spike- Spike+

S
c
re

e
n
(D

N
A

)

S
c
re

e
n
(R

N
A

)

S
c
re

e
n
(b

e
tw

e
e
n
)

M
o
u
s
e

(D
N

A
)

M
o
u
s
e

(R
N

A
)

M
o
u
s
e

(b
e
tw

e
e
n
)

S
a
liv

a
(D

N
A

)

S
a
liv

a
(R

N
A

)

S
a
liv

a
(b

e
tw

e
e
n
)

S
o
il(

D
N

A
)

S
o
il(

R
N

A
)

S
o
il(

b
e

tw
e
e
n

)

S
c
re

e
n
(D

N
A

)

S
c
re

e
n
(R

N
A

)

S
c
re

e
n
(b

e
tw

e
e
n
)

M
o
u
s
e

(D
N

A
)

M
o
u
s
e

(R
N

A
)

M
o
u
s
e

(b
e
tw

e
e
n
)

S
a
liv

a
(D

N
A

)

S
a
liv

a
(R

N
A

)

S
a
liv

a
(b

e
tw

e
e
n
)

S
o
il(

D
N

A
)

S
o
il(

R
N

A
)

S
o
il(

b
e

tw
e
e
n

)

0.25

0.50

0.75

1.00

B
ra

y-
C

u
rt

is
 D

is
si

m
ila

ri
tie

s

-0.1

0.0

0.1

0.2

-0.1 0.0 0.1 0.2

PC 1 (31.66%)

P
C

 2
 (

2
5

.1
2

%
)

Library

DNA

RNA

Sample type

Screen

Mouse

Saliva

Soil

In preliminary spiked natural community samples, 16S-RNA-seq produced almost no 

differentiation between DNA vs. RNA libraries, i.e. total vs. “viable” microbes.

Bray-Curtis dissimilarities between DNA and RNA libraries are small;

Samples were grouped by source while not by library types in principle coordinate 

analysis. 

16S-RNA-seq is able to differentiate viable vs. 

whole microbial communities in samples of 

similar origins
Results were slightly 

different in samples of similar 

origins (i.e., from subway 

systems), where the viable 

communities could be 

somewhat distinguished 

from the whole community.
Library type made a 

significant contribution to 

the overall dissimilarities

Sample type remained as 

the major effect driving the 

compositional differences;
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The abundances of some human commensals changed consistently between 

DNA and RNA libraries, such as Staphylococcus, Corynebacterium and 

Lactobacillus, suggestting that some microbes are more or less visible in 16S 

rRNA vs. DNA amplicons,  regardless of actual viability.

Protein-coding transcripts provide potential 

targets for viability assessment

Near-universal DNA amplicons such as rpoB 

and cpn60 have been developed as 

phylogenetic sequence markers amenable to 

PCR amplification, raising the possibility that 

“standard” protein coding genes may 

represent promising targets for viability 

assessment using RNA amplification. These  

targets were tested in the ten synthetic 

cultures by qPCR.
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Overall, our results reveal that 16S-RNA-seq is able to profile viable microbial 

communities in simple “communities”, but may be premature for application in 

realistically complex community samples. The immediate next step is to evaluate 

protein-coding gene cpn60 as a target for parallel RNA and DNA sequencing 

(cpn60-RNA-seq) for viability assessment in natural microbial communities.

We are grateful to the Boston MBTA and Transit Police for their 

assistance with this research, particularly for ensuring that study 

personnel and subway passengers were safe and informed. Methods 

for the analysis are available from the bioBakery workflows at:

(q value = 0.014);

16S-rRNA amplicons are not directly, 

quantitatively enriched for viable microbes.

The chaperonin-encoding housekeeping 

gene, cpn60, presented qPCR results 

closer to the expectations in simple 

synthetic communities, suggesting that it is 

promising as an amplicon marker for 

viability assessment in natural microbial 

communities.
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The Harvard T.H. Chan School of Public Health
Microbiome Analysis Core

Jeremy E. Wilkinson1,2, Lauren J. McIver1,2, Chengchen Li1,2, Thomas M. Kuntz1,2, Curtis Huttenhower1,2,3

1Harvard Chan Microbiome in Public Health Center 2Department of Biostatistics, Harvard T.H. Chan School of Public Health  
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The Microbiome Analysis Core at the Harvard T.H. Chan School of Public
Health was established in response to the rapidly emerging field of
microbiome research and its potential to affect studies across the
biomedical sciences. The Core’s goal is to aid researchers with
microbiome study design and interpretation, reducing the gap between
primary data and translatable biology. The Microbiome Analysis Core
provides end-to-end support for microbial community and human
microbiome research, from experimental design through data generation,
bioinformatics, and statistics. This includes general consulting, power
calculations, selection of data generation options, and analysis of data
from amplicon (16S/18S/ITS), shotgun metagenomic sequencing,
metatranscriptomics, metabolomics, and other molecular assays. The
Microbiome Analysis Core has extensive experience with microbiome
profiles in diverse populations, including taxonomic and functional profiles
from large cohorts, qualitative ecology, multi'omics and meta-analysis, and
microbial systems and human epidemiological analysis. By integrating
microbial community profiles with host clinical and environmental
information, we enable researchers to interpret molecular activities of the
microbiota and assess its impact on human health.

 

Microbial epidemiology multi'omics

 

 

Microbial community profiling

https://hcmph.sph.harvard.edu/hcmac
https://huttenhower.sph.harvard.edu

McIver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics, 34:7, 1235-1237 (2018). 

 

Downstream analysis and statistics

 

  

Consultation for microbiome project development 
This includes consultation on experimental design, sample collection and 
sequencing, grant proposal development, study power estimation, 
bioinformatics, and statistical data analysis.
 
Validated end-to-end meta’omic analysis of microbial community data
Using open-source analytical methods developed in the Huttenhower 
laboratory and by other leaders in the field, we provide cutting-edge 
microbiome informatics and analysis.
 
Support fully-collaborative grant-funded investigations and others 
Includes preliminary data development, hypothesis formulation, grant narrative 
development, data analysis and inference, custom software development, and 
co-authored dissemination of findings. We can work on projects in which we 
are included on the grant as well as projects with existing funding. 

Fee-for-service, cost-recovery core laboratory
We support researchers from a variety of institutions including academic and 
industry. Our costs are based on an hourly rate of person time and the amount 
of hours vary depending on the study. Please contact us for more information 
and a quote.

Director: Jeremy E. Wilkinson
Senior Software Developer: Lauren J. McIver
Research Project Manager and Data Analyst: Chengchen (Cherry) Li 
Postdoctoral Research Fellow: Thomas M. Kuntz
Scientific Director: Curtis Huttenhower   

The first step in microbiome molecular data analysis is quality control (KneadData) 
and profiling to transform raw data into biologically interpretable features using a 
reproducible workflow (bioBakery). This includes identifying microbial species 
(MetaPhlAn) and strains (PanPhlAn/StrainPhlAn), characterizing their functional 
potential or activity (HUMAnN), and integrating metagenomics with other data. 

Once profiled, microbial communities are amenable to downstream statistics 
and visualization much like other molecular epidemiology data such as human 
genetic or transcriptional profiles. Like these other data types, microbial 
communities often require tailored statistics for environmental, exposure, or 
phenotype association (LEfSe, MaAsLin, HAllA) or for ecological interaction 
discovery (BAnOCC). The Harvard Chan Microbiome Analysis Core provides a 
variety of analyses for researchers working in the microbiome space.

Services

The Harvard Chan Microbiome Analysis Core is a part of the Harvard Chan 
Microbiome in Public Health Center (HCMPH) and the BIOM-Mass platform for 
microbiome research.
 
Want to learn more? Visit https://hcmph.sph.harvard.edu

The Microbiome Analysis Core supports microbiome analysis for a variety of 
molecular data types. A summary of stages to plan for and considerations at each 
step of microbiome study design and execution. a, Microbiome studies require 
appropriate physical infrastructure and planning. Power calculations for 
microbiome studies can be challenging, given the diverse types of measurement 
possible, their technical variability, and biological factors that can simultaneously 
influence the microbiome. b, Biopecimens can be collected from diverse sites with
varying processing considerations. c, Microbiome analyses are reliant on 
extensive exposures and phenotypes, as many can affect microbial community 
state. d, It is critical to have streamlined, hygienic kits, questionnaires, and 
instructions that are also compatible with downstream sample management and 
assays. e, Often in combination with controls, specimens can be aliquoted and/or 
stored long term, or immediately reduced to molecular components. f–h, A wide 
range of culture-based and culture-independent assays can be applied to 
population-derived biospecimens (f), after which the resulting molecular data are 
handled bioinformatically (g) and statistically (h). 

Wilkinson, J.E., Franzosa, E.A. et al. A framework for microbiome science in public health. Nature Medicine (2021). 

The HCMPH BIOM-Mass platform



Identifying strain-specific functional genes in colorectal cancer
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(A) The top 20 biomarker species and functional pathways (B) 

collectively enriched in CRC subjects, calculated using MMUPHin 

framework on MetaPhlAn 3.0 species abundance and HUMANn 3.0 

pathway abundances. Newly associated (C) biomarker species and (D) 

pathways in the expanded populations. 

Expanded metagenomes and methods 

for meta-analyzing the CRC microbiome

 

Known and novel taxa and pathway enriched 

in CRC, including typically oral microbes 

Strain-specific E. coli gene families 

associated with CRC

A) The clade with the greatest phylogenetic contribution to CRC was P. 

copri (3.8% of variation, FDR q<0.01), and since the species’ subclades 

are also partialy geographically associated (B), this may suggest that 

there are regional contributions by P. copri subtypes to carcinogenesis.

Metagenomics of the stool microbiome in CRC populations. a) size and 

characteristics of the large scale CRC metagenomic datasets. b) 

Performing batch (study) effect adjustment in CRC microbial features. c) 

Principal corrdinate analysis (PCoA) of stool metagenomic species. d) 

Typical of western populations, gradients of Bacteriodetes and 

Firmicutes dominance are seen across populations. 

e 

CRC cases are depleted in geographically-

specific P. copri subtype carriers
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A) CRC associated genes (n=155) within E. coli (rows) associated with 

CRC phenotypes. Each column indicates a strain from CRC subjects 

(n=105), controls (n=73) and reference genomes (n=24). B) E. coli 

genomic diversity in the CRC populations as seen by principal 

coordinates analysis (PCoA) of gene families presence and absence 

profiles. C) We found a group of functional genes unique to subsets of E. 

coli strains associated with CRC phenotypes, comprising annotations to 

transporters, type II secretion system, flagellar and sulfur metabolism.  

Changes in the gut microbiota have been associated with colorectal 

cancer (CRC), but neither the causal mechanisms nor corresponding 

microbial strains and small molecule products have been elucidated 

for CRC. We have developed a new strain-level meta-analysis using 

stool metagenomic profiles of 600 CRC patients, 143 with pre-

cancerous adenomas, and 662 healthy controls from nine recently 

published CRC microbiome studies. We created the MMUPHin 

framework to jointly normalise these datasets and identify potential 

consistently significant links between CRC neoplasia, severity, and 

microbial species and strains. We identified several species as novel 

CRC biomarkers including several typical oral species. We observed 

that CRC cases were depleted in geographically-specific Prevotella 

copri subtype carriers. A group of functional genes unique to subsets 

of Escherichia coli strains was associated with CRC phenotypes, 

comprising annotations to transporters, type II secretion systems, 

flagellar and sulfur metabolism. This study adds further evidence to 

the hypothesis that strain-level genomic variation in gut microbes may 

be a major driver in the initiation or development of CRC.

C. Microbiome profiling (bioBakery 3.0)
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for meta-analysis
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Streptococcus salivarius
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Factors

a

a

a

a

bB3_bug

common species

large_cohort_bug

model_bug

PWY−4702: phytate degradation I

PWY−7288: fatty acid &beta;−oxidation (peroxisome, yeast)

PWY−5747: 2−methylcitrate cycle II

PWY−5723: Rubisco shunt

PWY−5920: superpathway of heme biosynthesis from glycine

PWY−5392: reductive TCA cycle II

PWY0−42: 2−methylcitrate cycle I

PWY−6588: pyruvate fermentation to acetone

PWY−5918: superpathay of heme biosynthesis from glutamate

P221−PWY: octane oxidation

GLYCOL−GLYOXDEG−PWY: superpathway of glycol metabolism and degradation

PWY−5189: tetrapyrrole biosynthesis II (from glycine)

PWY−5677: succinate fermentation to butanoate

PWY−5088: L−glutamate degradation VIII (to propanoate)

PWY−7316: dTDP−N−acetylviosamine biosynthesis

PWY−5675: nitrate reduction V (assimilatory)

P163−PWY: L−lysine fermentation to acetate and butanoate

PWY−7204: pyridoxal 5'−phosphate salvage II (plants)

PWY66−389: phytol degradation

P162−PWY: L−glutamate degradation V (via hydroxyglutarate)
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Effect size

Random Effects

ThomasAM_2019_a

ThomasAM_2019_b

YachidaS_2019

GuptaA_2019

WirbelJ_2019

VogtmannE_2016

FengQ_2015

YuJ_2015

ZellerG_2014

Control enriched Carcinoma enriched

PWY−5508: adenosylcobalamin biosynthesis from cobyrinate a,c−diamide II

PWY−6349: CDP−archaeol biosynthesis

PWY−6478: GDP−D−glycero−&alpha;−D−manno−heptose biosynthesis

PWY−6518: glycocholate metabolism (bacteria)

PWY−6953: dTDP−3−acetamido−3,6−dideoxy−&alpha;−D−galactose biosynthesis

PWY−7046: 4−coumarate degradation (anaerobic)

PWY−7312: dTDP−D−&beta;−fucofuranose biosynthesis

PWY−7332: superpathway of UDP−N−acetylglucosamine−derived O−antigen building blocks biosynthesis
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Log10 of species mean abundace in the updated metagenome
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Top 20 biomarkers
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Alistipes finegoldii

Bacteroides cellulosilyticus

Bacteroides fragilis

Bacteroides fragilis CAG 47

Bacteroides thetaiotaomicron

Eubacterium eligens

Faecalibacterium prausnitzii

Streptococcus salivarius

Anaerostipes hadrus

Dialister pneumosintes

Fusobacterium nucleatum

Intestinimonas butyriciproducens

Campylobacter concisus

Citrobacter amalonaticus

Citrobacter farmeri

Desulfomicrobium orale

Escherichia coli

Escherichia marmotae

Helicobacter cinaedi

Porphyromonas asaccharolytica

Porphyromonas uenonis

Prevotella dentalis

Klebsiella pneumoniae

unclassified

other
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Prevotella copri strain phylogenetic distance

CRC outcomes
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Control subjects (n=662) CRC subjects (n=600)

K01776 Glutamate racemase

The composition of contributing species represented in metagenomes of 

Glutamate racemase (E) and unknown function (F) for control and CRC 

subjects. The relative metagenomic contribution in Glutamate racemase 

of CRC enriched species including B. fragilis, P. asaccharolytica, and F. 

nucleatum were different in control and CRC subjects.  
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Background & Significance

A Cross - link Between Dietary Sodium, Gut Microbiome, and Heart Failure
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Methods and Results Discussion

Conclusions

Conceptual Map

• Inflammation plays a central role 

in the development of heart failure 

(HF). 

• Inflammation directly and 

indirectly modulates the bacterial 

composition of the human 

microbiome. 

• High sodium intake contributes to 

progression of HF through 

inflammation. 

• The mechanism through which 

high sodium diet influences 

vascular inflammation in HF has 

not been fully understood. 

• The role of gut microbiota in heart 

failure prognosis may help explain 

the link between dietary sodium 

intake and heart failure prognosis. 

• Increased proportions of 

proteobacteria may be a sensitive 

indicator of worsening HF caused by 

high sodium intake. 

• Additional research is needed to 

support our finding. 

This study was retrospective. Data was collected from 90 HF patients who were 

the participants of 3 -months cardiac rehabilitation. Daily sodium intake was 

measured by 24 -hour urine excretion. Fecal samples were collected, and gut 

microbiota was assessed through 16sRNA sequencing. Gut microbiota data and 

24-hour urinary sodium excretion were log -transformed and gut microbiota data 

were further standardized before statistical analysis. Mixed -effects models were 

used to assess the association of 24 -hour urinary sodium excretion with gut 

microbiota with adjustment of age, race, sex, body mass index, group assignment, 

visit, and diet.

Gut microbiota were measured from 80 HF patients, who were aged 64.2 ±

10 .4 years old , 56%  m ale, and  58%  C aucasian. Th e average ejec tion frac tion 
(E F) w as 46.7 ± 15.4 % . W e found  a  significant correlation b etw een sod ium  
intake and  th e com p osition of gut p roteob ac teria  (β = 0 .57; P  = 0 .0 26) 

am ong H F p atients.  H F p atients w h o h ad  h igh er d aily sod ium  intake h ad  

inc reased  p rop ortions of p roteob ac teria  in  th eir gastrointestinal (G I) 

system . 

• Th e significant correlation b etw een 

sod ium  intake and  th e inc reased  

p rop ortion of p roteob ac teria  m ay 

b e exp lained  by 

- th e d irec t im p ac t of h igh  sod ium  

intake on th e grow th  of 

p roteob ac teria  

- th e ind irec t effec t th rough  th e 

inflam m ation p rocess. 

• Th e inflam m atory cells release 

reac tive n itrogen sp ec ies w h ic h  are 

used  by p roteob ac teria  for 

anaerob ic  resp iration and  grow th .

• Th e grow th  of p roteob ac teria  is a  

b iom arker of system ic  inflam m ation 

caused  by h igh  sod ium  intake in  H F 

p atients..

Purpose

To exam ine th e relationsh ip s 

b etw een sod ium  intake and  gut 

b ac terial com p osition in  a  group  of  

H eart Failure p atients.



  

Identifying novel bioactive microbial gene products 
in inflammatory bowel disease

Computational prioritization workflow

 

 

Many protein families are uncharacterized, 

but can be assigned new annotations

Uncharacterized proteins implicated in 

bioactivity are prioritized
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Many uncharacterized proteins are prioritized 

 - 90% of prioritized proteins were depleted in disease-active state

 - half of prioritized proteins were uncharacterized with 23% novel proteins

  � 39% of them expanded the pangenomes of common gut taxa

  � 90% of the remainder were assigned at least one putative annotation 

The gut microbiome and associated bioactive compounds are often 

disrupted in gastrointestinal conditions such as the inflammatory 

bowel diseases (IBD). Since more than one-third of all proteins in the 

gut microbiome are uncharacterized, we prioritized potentially bioac-

tive novel proteins from the metagenomes in the Integrative Human 

Microbiome Project (HMP2). Remarkably, >340,000 protein families 

are specifically prioritized as potentially bioactive by integrating crite-

ria based on ecological properties and host disease phenotypes. 

Strikingly, ~23% of them were novel proteins, 36% of which expand-

ed the pangenomes of common gut taxa and >90% of the remainder 

were assigned at least one putative biochemical annotation. Our 

analysis methods are generalizable to other microbial communities 

and human disease phenotypes, and we provide an open source im-

plementation as MetaWIBELE (Workflow to Identify novel Bioactive 

Elements in the microbiome). The prioritized results provide thou-

sands of new microbial genes likely to interact with host immunity in 

IBD and gut inflammation, expanding our understanding of bioactive 

gene products in chronic disease states.

MetaWIBELE: assembly-based workflow to prioritize potentially bioactive 

microbial gene products 

 - identify characterized and uncharacterized protein families

 - assign functional and taxonomic annotations to protein families 

 - prioritize protein families by combining evidences from abundance-based

   and sequence-based annotations

~70% of protein families are uncharacterized

 - a catalog of 1.6M protein families was assembled

   from 1,595 metagenomes in HMP2

 - uncharacterized proteins were identified with global

   homolog search

Strong homology to characterized known proteins

Strong homology to uncharacterized known proteins

Remote homology to known proteins

Non homology to known proteins

Uncharacterized pro-

teins are assigned new 

annotations 

 - biocheminal annota-

   tions were predicted 

   by MetaWIBELE

 - only ~3% were still  

   functionally and taxo-

   nomically unknown

Uncharacterized proteins are 

classified into phylogenetic 

clades

 - uncharacterized proteins   

   covered common gut taxa

 - some novel proteins domi-

   nated in some clades
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Input: non-redundant gene catalogs and abundance table
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MetaWIBELE-characterize: characterize gene products with homology- and network-based methods
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MetaWIBELE-prioritize: prioritize potentially bioactive gene products based on multiple evidences

Meta ranking 

=

sequence annotation
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Uncharacterized proteins expanded the 

pangenomes of common gut taxa
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Actinobacteria Fusobacteria

P
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Classes

Orders

Families

Genera

A: Paraprevotella
B: Clostridium
C: Hungatella
D: Blautia
E: Coprococcus
F: Lachnoclostridium
G: Niameybacter
H: Roseburia
I: Oscillibacter
J: Flavonifractor
K: Pseudoflavonifractor
L: Ruminococcus
M: Subdoligranulum
N: Phascolarctobacterium
O: Veillonella
P: Fusobacterium
Q: Azospirillum
R: Desulfovibrio

Strong homology to known uncharacterized proteins

Strong homology to known characterized proteins

Rmote homology to known proteins

Non homology to known proteins

Strong homology to known

characterized proteins

Strong homology to known

uncharacterized proteins

Remote homology to 

known proteins

−3 −2 −1 0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 1 2
0.00

0.25

0.50

0.75

1.00

effect size

p
ri
o

ri
ty

 s
c
o

re

1

4

16

64

256

counts

0 100
200

300
400 0 100

200
300

400 0 100
200

300
400 0 100

200
300

400

sqrt(# of protein families)

GO(UniProt)

InterPro_signature

Others

PfamDomain

GO(Pfam2GO)

interaction

transmembrane

signaling

extracellular

outerMembrane

cellWall

function_unknown

priority score

SC: Strong homology to known characterized proteins

SU: Strong homology to known uncharacterized proteins

RH: Remote homology to known proteins

NH: Non homology to known proteins

- FDR q > 0.05

* FDR q < 0.05

** FDR q < 0.01

*** FDR q < 0.001
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Clostridium symbiosum
-3 -2 -1 0 1 2

effect size

Clostridium sp. FS41
Veillonella atypica
Klebsiella pneumoniae subsp. pneumoniae
[Clostridium] clostridioforme
Ruminococcus gnavus
[Clostridium] bolteae
Dorea longicatena
Clostridium clostridioforme CAG:511
Veillonella dispar
Veillonella parvula
Clostridium bolteae CAG:59
Clostridiales bacterium 1_7_47FAA
Shigella dysenteriae
Escherichia coli
[Eubacterium] rectale
Alistipes putredinis CAG:67
Ruminococcus sp. CAG:57
Bacteroides thetaiotaomicron
Bacteroides sp. D20
Clostridium sp. CAG:91
Clostridium sp. CAG:7
Bacteroides caccae CAG:21
Bacteroides stercoris CAG:120
Blautia sp. CAG:37
Clostridium sp. CAG:43
Faecalibacterium prausnitzii
Bacteroides ovatus CAG:22
Alistipes putredinis
Firmicutes bacterium CAG:24

Highly prioritized proteins are potentially bio-

active related to gut inflammation during IBD
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Metallopeptidase family M24[PF00557]
Periplasmic binding protein domain[PF13407]
Pili assembly chaperone PapD, C−terminal domain[PF02753]
Molybdopterin oxidoreductase Fe4S4 domain[PF04879]
HlyD membrane−fusion protein of T1SS[PF00529]
PapC N−terminal domain[PF13954]
Outer membrane usher protein[PF00577]
PapC C−terminal domain[PF13953]
Extended Signal Peptide of Type V secretion system[PF13018]
Aldehyde dehydrogenase family[PF00171]
Pili and flagellar−assembly chaperone[PF00345]
Gram−negative porin[PF00267]
Fimbrial protein[PF00419]

DeoR−like helix−turn−helix domain[PF08220]
Metallo−beta−lactamase superfamily[PF00753]
Domain of unknown function (DUF4270)[PF14092]
Domain of unknown function (DUF3794)[PF12673]
Domain of unknown function (DUF4842)[PF16130]
Protein of unknown function (DUF815)[PF05673]
Ribonuclease B OB domain[PF08206]
Bacterial trigger factor protein (TF) C−terminus[PF05698]
4Fe−4S binding domain[PF12801]
Starch−binding associating with outer membrane[PF14322]
RF−1 domain[PF00472]
Domain of unknown function (DUF4968)[PF16338]
Domain of unknown function (DUF5118)[PF17162]
Elongation Factor G, domain II[PF14492]
Domain of unknown function (DUF4858)[PF16150]
TAT (twin−arginine translocation) pathway signal sequence[PF10518]
GGGtGRT protein[PF14057]

0.0 2.5

log2(fold enrichment)

5.0

  - prioritized protein families showed taxonomic agreement with reported

    IBD-associated species

  - enriched pilin proteins could interact with the human epithelial surface
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# of protein families

� domains: PfamDomain, interaction

� host_facing: extracellular, signaling, transmembrane, cellWall,  

  outerMemberane

� InterPro_signature: other types of InterPro protein signatures

� Others: other types of subcellular localization

relative abundance
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Taxonomic and functional enrichment of prioritized proteins

Non homology to 

known proteins
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