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iInfant nasal microbiome

Emma Accorsi'?, Eric A. Franzosa'4?, Tiffany Hsu'>, Regina J. Cordy*, Ayala Maayan-Metzger>®, Hanaa Jaber®, Aylana
e ROAD Reiss-Mandel®, Madeleine Kline#’, Casey DuLong', Marc Lipsitch’, Gili Regev-Yochay*~®, Curtis Huttenhower?>°

-

2
‘Q INSTITUTE "Harvard T. H. Chan School of Public Health; “Harvard Chan Microbiome in Public Health Center; *Broad Institute; “Wake Forest University; *Sackler School
of Medicine; °Sheba Medical Center; "Havard Medical School

Staphylococcus aureus is a leading cause of healthcare- and community-associated M icro b i O m e d rive rS Of i nfa nt S_ I nfa nt n asal m i Cro b i O m eS

infections and can be difficult to treat due to antimicrobial resistance. About 30% of in-
dividuals carry S. aureus asymptomatically in their nares, a risk factor for later infec- .

tion, and interactions with other species in the nasal microbiome likely modulate its aure US p he nOtypeS matu re Ove r the fl rSt yea r, bUt
carriage. It is thus important to identify ecological or functional genetic elements within L L

the maternal or infant nasal microbiomes that influence S. aureus acquisition and re- nfant Metadata nfant Metadata i d i t' t f th

tention in early life. We recruited 36 mother-infant pairs and profiled a subset (n=208) kb s re m al n IS I n C ro m m O e rS
of monthly longitudinal nasal samples from the first year after birth using shotgun
metagenomic sequencing. The infant nasal microbiome is highly variable, weakly in- Haemophilus influenzae -
fluenced by maternal nasal microbiome composition, and primarily shaped by devel-
opmental and external factors, such as daycare. Infants display distinctive patterns of
S. aureus carriage, positively associated with Acinetobacter species, Streptococcus
parasanguinis, Streptococcus salivarius, and Veillonella species and inversely associ- Staphylococcus epidermidis =
ated with maternal Dolosigranulum pigrum. In gene-content based strain profiling,
infant S. aureus strains are more similar to maternal strains. Mothers may represent a
sporadic early source for S. aureus transmission to the naive infant microbiome, but
microbiome determinants become more important later in the first year. Furthermore, Veillonella unclassified =
we identified a specific protein family that is highly predictive of infant S. aureus status, — T T T T T T 1
significantly anticorrelated with S. aureus positivity in both infants and mothers, suffi- Infant Metadata

ciently prevalent to drive widespread patterns of S. aureus carriage, and which ecolog- etliogopesios

ically interacts with the commensal species D. pigrum. In subsequent companion Cutibacterium acnes =
work, we determined that this (misannotated) protein family was a non-protein-coding Dolosigranulum pigrum -
sequence acting as a phylogenetic marker of a likely novel bacterial clade. Our study
provides an improved understanding of how the infant nasal microbiome develops in
early life, and how it can act to promote or exclude S. aureus colonization. Propionibacterium unclassified

Staphylococcus epidermidis =

Acinetobacter unclassified —

Infants rapidly diverged from their species composition at birth,
but the rate of change slowed over time indicating stabilization
toward a more mature microbiome. Infants were more similar to
their own mother than to unrelated mothers at month 1 (PER-
MANOVA, p=0.005), although infant composition was distinct

from maternal composition at all months except 8 (p<0.05).
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(A) 36 mother-infant pairs gave (A)
nasal swabs monthly over the

first year after birth. Culture test-
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on all samples and a subset

(n=208 after QC) were profiled

with shotgun metagenomic se-
guencing.
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Assessing saliva microbiome collection and processing methods

Center for Advanced Biotechnology and Medicine, Rutgers the State University, Piscataway, NJ

Abstract

The oral microbiome has been connected with lung health and may
be of significance in the progression of SARS-CoV-2 infection.
Saliva-based SARS-CoV-2 tests provide the opportunity to leverage
stored samples for measuring the oral microbiome. However, these
collection kits have not been tested for accuracy of measuring the
oral microbiome. Saliva is highly enriched with human DNA and
reducing it prior to shotgun sequencing may increase the depth of
bacterial reads. We examined both the effect of saliva collection
method and sequence processing on measurement of microbiome
depth and diversity by 16S and shotgun metagenomics. We collected
56 samples from 22 subjects. Each subject provided two saliva
samples with and without preservative; 6 subjects provided a second
set of samples the following day. 16S rRNA gene (V4) sequencing
was performed on all of the samples, and shotgun metagenomics
was performed on 8 of the samples collected with preservative with
and without human DNA depletion before sequencing. We observed
beta diversity distance within subjects over time was smaller than
between unrelated subjects, and distances within subjects were
smaller in samples collected with preservative. Samples collected with
preservative had higher alpha diversity measuring both richness and
evenness. Human DNA depletion before extraction and shotgun
sequencing vielded higher total and relative reads mapping to
bacterial sequencing. We conclude that collecting saliva with
preservative may provide more consistent measures of the oral
microbiome and that depleting human DNA increases yield.
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Figure 1. Saliva collection study design. Subjects provided 2 saliva samples: collected alone
and collected with the Spectrum sDNA-1000 kit including preservative. The collection order
was randomized. The 6 subjects provided samples the day following initial collection, using
the same protocol as previous day. For metagenomic studies, we assessed the effects of a
protocol to deplete human DNA, using only samples in which the original preservative was
used (n=14 samples).
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Figure 2. Phylogenetic beta diversity for 16S rRNA analyses of saliva samples by collection
method and across time. Top panels: Unweighted (A) and weighted (B) UniFrac distance of
all samples according to collection method. Left panels: Median (and IQR) distances in
within-sample comparisons (P vs. P; No P vs No P), and across samples (P vs. No P).
Right panels: PCoA plots of all samples by sample collection method. Bottomn panels:
Unweighted (C) and weighted (D) UniFrac distances of the paired specimens from 6
subjects sampled on two consecutive days and according to collection method. Left panels:
Distance between unrelated subjects (gray) or within an individual across days (pink). Right
panels: PCoA plot of all samples with on\Y 6 multi- day subjects visualized. For all left panels,
pairwise Wilcox test with FDR correction ** q < 0.01, g < 0.001. Lines connect
specimens collected from the same subject on the same day (solid) or different days

(dotted).
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Figure 3. Alpha diversity of samples, by collection method and over time. A. alpha diversity
measures based on Faith PD and Pielou evenness, by sample collection with preservative
(P) or not (No P). Lines connecting points indicate sample pairs. ** p < 0.01, *** p <
0.001; linear mixed effects model. B. Absolute value of the differences in alpha diversity
between all unrelated subjects (pink circles), and longitudinal samples within the same
subject (gray circles). * p <0.05, ** p < 0.01; Kruskal-Wallis test.
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Figure 4. Bacterlal DNA shotgun sequencing efficiency by extraction method (Standard or with
depletion of human DNA). A. Total reads (post-trimming). B. Total bacterial reads. C. Bacterial
reads as a percent of total reads; paired T-tests, * p < 0.05: NS = p > 0.05.
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Figure 5. Phylogenetic beta diversity metrics of taxonomy determined from shotgun
sequencing. Unweighted (A) and weighted (B) UniFrac of all samples according to DNA
extraction method. Left panels: Median distances in within-sample comparisons (standard
vs. standard; human depletion vs human depletion), and across samples (standard vs
human depletion). Right panels: PCoA plots of all samples by extraction method; pairwise
Wilcox test with FDR correction * g < 0.05. Lines connect specimens collected from the
same subject on the same day (solid) or different days (dotted).
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Conclusions

« Kits used to collect saliva for the purpose of SARS-CoV2 testing
sufficiently preserve the microbiome DNA and are comparable to saliva
collected without preservative.
Preservative did not hinder human DNA depletion which increased
bacteria DNA in shotgun sequencing.
We found less variation within individuals over time compared 1o
unrelated individuals, suggesting that longitudinal evaluation of subjects
may provide valuable insights into oral microbiome changes.
These results make it practical to use saliva samples obtained for
SARS-CoV-2 testing to examine the salivary microbiome
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essential for the development of intestinal
adaptive immunity. Retinoic acid (RA)-producing
myeloid cells are central to this process, but how
myeloid cells acquire retinol for enzymatic
conversion to RA is unknown. Here, we show
that serum amyloid A (SAA) proteins, retinol
binding proteins induced in intestinal epithelial
cells by the microbiota, deliver retinol to myeloid
cells. We identify LDL receptor-related protein 1
(LRP1) as an SAA receptor that facilitates
endocytosis of SAA-retinol complexes and
promotes retinol acquisition by RA-producing
intestinal myeloid cells. Consequently, SAA and
LRP1 are essential for vitamin A-dependent
Immunity, including T and B cell homing to the
intestine and immunoglobulin A production. Our
findings identify a key mechanism underpinning
vitamin A's effects on the immune system and
: provide insight into how the microbiota promotes
. intestinal immunity.

Background

d Important for the development of

intestinal adaptive immunity

Betlr_‘OI = Recruitment of lymphocytes to intestine
(Vitamin A) = IgA production

W’\m A Its transport requires retinol
binding proteins that shield it from
the aqueous environment

A Intestinal myeloid cells: enzymatically convert retinol
to its bioactive metabolite retinoic acid (RA)
-> central to vitamin A-dependent immune regulation

Unanswered Question
: How do intestinal myeloid cells acquire retinol to

convert RA?
\_

Serum Amyloid A (SAA)

d Retinol binding protein
Q Expression in intestinal epithelium are A
induced by microbiota & vitamin A, .4 Bang et a1 PNAS 2019

Hypothesis

: SAAs transport retinol into the intestinal immune cells and

regulate vitamin A-dependent immune development

Vitamin A and its derivative retinol are ™

Microbiota-Induced Vitamin A Mobilization by Serum Amyloid A and Its Role in Intestinal Immunity
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LRP1 is a cell surface receptor
for SAAs
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(A) Strategy to identify the SAA receptor. (B) Protein complexes were resolved by SDS-
PAGE. Red arrowheads indicate the protein complex subjected to mass spectrometry for
receptor identification. (C) Domain organization of LRP1 showing the ectodomain (ECD)
and ligand binding clusters (CI-CIV). (D) Formation of a complex between SAA1 and LRP1-
ECD confirmed by size exclusion chromatography. (E) Binding affinity between SAA1 and
the LRP1-ECD as determined by microscale thermophoresis. (F and G) Binding of SAA1 to
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SAA and LRP1 promote
retinol uptake by intestinal
CD11c* myeloid cells in vivo
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Wild-type (WT) and Saa” mice (A-D) or Lrp1"" and Lrp1Acd’ic (E-H) mice
were analyzed. (A,E) Mice were gavaged with 3H-retinol and CD11c* cells
were isolated from the small intestinal (sm. int.) lamina propria. (B,F) Q-PCR
analysis of transcripts encoding proteins involved in conversion of retinol to
RA in sm. Int. CD11c* cells. (C,G) Retinaldehyde dehydrogenase (RALDH)
activity of CD11c*MHCII* myeloid cells was assessed by Aldefluor assay.
Representative histograms showing Aldefluor fluorescence are shown. Filled
grey histograms are from controls incubated with the ALDH inhibitor DEAB,
and empty lines show samples without DEAB. (D,H) RALDH activity was
measured as Aldefluor AMFI (MFIsample — M |control)
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complex with SAA1. Counts per minute (cpm) in the cell pellets were determined and normalized to cell
number. (G) RAP was added to cells together with SAA1—2H-retinol complex for competition analyses.

(H, I) Cellular SAA uptake. Cells were incubated with His-SAA1—retinol complex and subsequently treated
with trypsin to remove surface-bound SAA1. Cells were lysed and cellular SAA uptake was analyzed by
iImmunoblotting using an anti-His antibody.
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LRP1 is expressed on intestinal CD11c*

myeloid cells

SAA and LRP1 are the major retinol transporter-receptor in sm. Int.

A B

small
E 100 o

Bl Saa1[CJRbp4 Kpa intestine

8 10-1_

. 20 |
- [ 2% .
B 102 15 *ﬁsm

101

o ] 254
2 104

207 - RBP4

3 il 50+

37

small liver

S S e e | Actin

intestine

intestinal lamina propria (LP).

C D

=
S 124 lsAA [[JRBP4
]

o

i

%* 00

o kL

1 ™
~small liver % ﬁg-
Intestine =

[Tl

Lro1 mRNA copies/gapdh copy
o
S

small
3 mtestme

l_

—
o
=]
©
M
<

—
=
©
—
(&)

-
o
L]

—
o
F-9

o
o
&)

MRNA copies/gapdh copy
o

© o o o o =
o N A G 0 O
l | 1 1 | I

o
o
o

Protein band intensity/A

O o
-

(A) Q-PCR analysis of Saa1 and Rbp4 transcripts in ileum and liver. (B,C) Immunoblottlng of SAA and RBP4 in

f indicati turable bindina. (D) C titive bindi bv addina to th s | i mouse ileum and liver. (D) Q-PCR analysis of Lrp1, Stra6, and Rbpr2 transcripts in mouse ileum. (E) Q-PCR
surface indicating a saturable binding. (D)) Lompetitive binding assays by adding to the cells increasing analysis of Lrp1 transcripts in small intestinal epithelial cells (IEC) and immune cells isolated from the small

LRP1 is expressed on intestinal CD11c* myeloid cells
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(F,G) Flow cytometry analysis of LRP1 expression on LP
immune cells. (F) Representative histograms showing
LRP1 expression. (G) LRP1 expression (AMFI) is shown
as the difference in MF| between isotype-matched control
and anti-LRP1 antibody staining (MFIRP1-MF[isotype)  (H)
Immunofluorescence detection of CD11c (red), LRP1
(green), and nuclei (blue) in the mouse sm. Int.

in intestine

Small intestinal lamina propria
1500 — (SILP) cells from wild-type (WT
T and Saa”’” mice (A-l), and Lrp1™
and Lrp7Acd’’c mice (J-R) were
analyzed. (A, J) Flow cytometry
plots of CD4* T cells (live
CD45*CD3*CD4*CD19-CD8").
(B,K) Frequencies of CCR9* cells
in CD4* T cells. (C, L) Total
numbers of CD4* T cells
(CD45*CD3*CD4*CD19-CD8").
(D,M) Flow cytometry plots of B
cells (live CD45*CD19*CD3"). (E,
N) Frequencies of CCR9* cells in
B cells. (F, O) Total numbers of B
cells (CD45*CD19*CD3"). (G, P)
Flow cytometry plots of IgA+ cells
(live CD45*CD3"). (H,Q)
Frequencies of IgA* cells in total
live CD45* cells. (I, R)
Quantification of IgA from small
intestinal fecal contents by ELISA.
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fmmunization:

Heat-killed Microbiota
Infection:
Salmonella re-colonization Salmonelia

Streptomycin / \ 4( Typhimurium

D-l'f [l-"ﬂ EI}? DI 10 D.l? 8  Check survival

AR

Wild-type and Saa™”~ mice (A,B), and Lrp1"" and
Lrp14 d”C mice (C,D) were immunized with 10" CFU
of heat-killed Salmonella Typhimurium twice through
oral gavage. Four-weeks after the first immunization,

the mice were orally infected with log-phase
Salmonella Typhimurium. (A,C) Salmonella-specific

IgA in the feces were measured by ELISA. (B,D)
Survival rates were monitored after infection.
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SAA delivers retinol to myeloid cells by
binding to LRP1 and thus promotes vitamin

A-dependent adaptive immunity In the

intestine. SAA delivers retinol to intestinal CD11c*
myeloid cells by binding to LRP1. LRP1 facilitates
endocytosis of SAA-retinol complexes, and the
retinol is converted to retinoic acid (RA) through a
two-step enzymatic reaction. Myeloid cell RA
promotes vitamin A-dependent intestinal adaptive
Immune responses. These include the induction of
intestinal homing receptors, such as CCR9, on
CD4* T cells and B cells, and IgA production by B

cells. (lllustration was created in BioRender.)




Prioritization and annotation of novel bioactive
small molecules from the microbiome
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Chemical dark matter in IBD Quantitative metabolite annotations Prioritized metabolites

Metabolites highly prioritized by MACARRON include classes

Thousands of metabolites have been assayed from microbial To associate unannotated compounds with chemically annotated metabolites

communities, the gut microbiome in particular, but as yet with i.e. standards, we clustered features based on co-varying abundances in the previously implicated in IBD as well as novel potential bioactives
minimal biochemical characterization or knowledge of their different phenotypes. Of the 44,757 high-quality features, 43,498 features were Enriched metabolites
therapeutic potential. Here, we developed a new approach, distributed into 606 modules whereas 1,259 were singletons. Primary bile acids

MACARRON (Metabolome Analysis and Combined Annotation
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Prioritizing features based on ecological importance
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Gut Microbial Enzymes Drive the Dose-Limiting Toxicity of the Immunosuppressant
Mycophenolate Mofetil
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Mycophenolate Metabolism Structure Guided Analysis

Impact of Inhibitors
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comparisons test comparing to RhGUS2. n = 3 biological replicates with SEM. **** is p < 0.0001.
BLQ is below limit of quantification within reasonable conditions.

Contact email: Marissa Bivins (bivinsma@email.unc.edu); Matt Redinbo (redinbo@unc.edu)
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| Metabolite = Dataset © Producers  Bacterial prc -~ Litersture

Summary of collected datasets

Microbiome Widentified  # Metabolite

DatasetS ~ Reference  #Paired samples type es/ASVs s MS2 -
foods  Taylor etal, 2019 Metag | 1046, 25 3992

Agp3k Unpublished 1810165 3882 n 3367

AgpS00  Medonald et al, 2018 482 Metage 531 10215

CRC (Healthy subset) Yachida et al, 2019 127 Metag 623 450NA

Framesa Nopmceca, 19 220Metagenome o0 s

Table 1: Summary of collected datasets

Table 2: Candidate Evaluation. Significant mediation scores from all producers were selected
and grouped to form a list of candidates for evaluation. Evaluation was done on the basis of
literature score (explained below), a safety evaluation and considerations of solulibility.
Literature scores: 1: No relevant literature, 2: Killing effect of a similar drug on some

Identifying of metabolites mediating correlations

ay ',.v i -... B organisms, f . :
S g W 5: Enterococcus Antibacterial effect of this drug on VRE
‘-' M: ‘..
Producer .-*" .- T T vy Target
Py ‘* - Candidate compounds show antibiotic effect in vitro
‘ e A K ‘
."..‘. . -... "q
‘..\‘ ‘.‘ Mo, o "".
% 2 Be
f
M i
Mp

Figure 1: Schematic diagram of feature selection. For each putative
producer-target relationsship a regularized linear model is fitted to
identify spectra (M1 ... Mp) that might explain the negative association
between the bacteria. The models partitions the variance into the direct
effect (gamma), the correlations between producer and spectra (alpha)
and negative correlations between spectra and target (beta)

Figure 2: Growth curves of clinical relevant isolates exposed to tested
compounds in different concentrationto determine MIC values of the
tested compounds.

Candidate display activity against a panel of pathogens

Minimum Inhibitory Concentration (ug/mL)

Strain 4'-Hydroxy-3"- S-a- CarvedilolOleanclic VAN AMP FDX
methylacetophenone Cholestane acid
Enterococcus faecium DSM 13590(VRE) 69.57 >500 745 62.7 390.6 0.193 <0.098
Clostridioides difficile DSM 27543 >500 >500 >500 644 7813 <9.76 0.39
AC albicans ATCC 10231 1758 >500 163.1 98.53 1250 <9.76 >50
Escherichia coli ATCC 25922 >500 >500 >500 >500 630 408 50
Enterococcus faecalis ATCC 29212 471.0 >500 1300 708 <9.76 <9.76 >50
Pseudomonas aeruginosa ATCC 27853 267.9 >500 2146  >500 <976 0.56 156
Staphylococcus aureus ATCC 25923 316.4 >500 206.3 >500 <9.76 <9.76 1.56
Streptococcus B. ATCC 12386 1404 >500 61.71 327 <976 <9.76 0.78
Staphylococcus epidermidis ATCC 35984 1733 >500 7.76 1531 <9763.49 <098
Staphylococcus haemolyticus clinical isolate  148.5 >500 >500 >500 625 327 >S50

87A

Table 3: Final MIC determination of a panel of bacteria. Numbers in red is moderate or better activity against the
target organism. 3 of the tested compounds showed moderate activity against VRE. Oleanoloci acid displayed activity

against several organisms.

Contact

Email: abrenjrod@health.ucsd.edu

Twitter: @askerbrejnrod
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16S Sequencing in Pediatric Blood Detects DNA Signatures of Commensal and
Pathogenic Microbes that Correlate with Subject’s Medical History

Matthew Brock!?, Bo Zhang'-?, Patricia Pichilingue-Reto?!, Carlos Arana'?, Lora Hooper! Nicolai S.C. van Oers! and Prithvi Raj!-2

U.I.s th | t Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
' ou wes ern ’Microbiome Research Laboratory (MRL) at UT Southwestern Medical Center, Dallas, TX, 75235, USA Contact: prithvi.raj@utsouthwestern.edu
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1. Abstract 5. Blood Microbial DNA Clusters in Children and Adults | 9. Detected Pathogenic Signatures

We performed 16S rRNA sequencing on blood/serum specimens from 147 apparently
healthy 1- and 2-year-old children to explore potential microbial signatures in circulation. S
Interestingly, 16S data detected some common pediatric pathogens in 6 out of 147 A. One-year-old children B. Two-year -old chlldren |
children. These pathogens were Staphylococcus, Streptococcus, Haemophilus and _

Deinococcus. Additionally, our sequencing assay detected DNA signatures of several cit '
commensal bacteria such as Firmicutes, Bacteroides and Proteobacteria. 16S data : @1
stratified samples into four major clusters differing in microbial composition. Cluster 1 was Ca— 1)
dominated by Proteobacteria. Cluster 2 was present in almost 50% of the samples, which
comprised of 60-70% Firmicutes. Cluster 3 was mix in composition and presented in 18% C3 |
of the samples. Cluster 4 was dominated by Actinobacteria and represented only 4% of :
the samples. Interestingly, Cluster 1 was found to be significantly (p=0.002) associated

with higher BMI in children. To investigate the potential source of microbial signatures

within the blood we studied resident microbiota in stool, skin and blood of germ-free and C2
conventional mice. Our data suggest that 16S sequencing assay can rapidly detect

microbial DNA signatures of commensal and pathogenic species within the blood to assist

with diagnosing infectious diseases in children.

2. 16S Sequencing Results
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Introduction
The COVID-19 pandemic caused by the SARS-CoV-2 virus
has resulted in 32 million infections and 577,041 deaths in
the US alone'. This paramount microbiological crisis of our
lifetimes is fueling unprecendented investment in tradi-
tional avenues of treatment such as vaccines, but also
warants the use of novel technologies toward early public
detection and monitoring of COVID-19. Our lab previously
demonstrated the utility of wearable health trackers in
predicting other respiratory infections2.

Project Aim: Implement algorithms to predict COVID-19

prior to symptom onset using data from wearable devices.

w Daily Symptom
w w Logs
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Figure 1: Phase | Study overview. In the phase | (N=7,492) we ob-
tained data and developed algorithms to predict COVID-19. Some
individuals developed COVID-19 (red), some developed other
illnesses (yellow), and many remained healthy.
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Figure 2: Phase Il study returning real-time COVID-19 predictions.
In phase |l wearable data from 3,528 participants is analyzed twice
daily. Data is retreived to cloud based algorithm system using our
lab developed My Personal Health Dashboard (MyPHD) phone
application. Analysis algorithms based on activity, heart-rate, and
sleep generate alerts of elevated signals related to COVID-19.
Alerts are then returned to participants through the MyPHD ap-
plication along with surveys to assess prediction accuracy.

Pre-Symptomatic Detection of COVID-19 from Smartwatch Data

Tejaswini Mishra*, Meng Wang*, Ahmed A Metwally*, Gireesh K Bogu*, Andrew W Brooks*, Amir Bahmani*, Arash Alavi*, Alessandra Celli, Emily Higgs, Orit Dagan-Rosenfeld,
Bethany Fay, Susan Kirkpatrick, Ryan Kellogg, Michelle Gibson, Tao Wang, Erika M Hunting, Petra Mamic, Ariel B Ganz, Benjamin Rolnik, Xiao Li**, Michael P Snyder**

Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
Nature Biomedical Engineering3 - *Co-First Authors - **Corresponding Authors

COVID-19 Detection Algorithms

In Phase | we refined algorithms using clear “Gold
COVID-19” cases defined by robust wearable data, survey
responses, and verified test results from 32 individuals.
During phase Il (in preparation for publication), these algo-
rithms were implemented to send red (elevated signal) or
green (normal signal) alerts to thousands of study partici-
pants twice a day. Algorithms developed include:

- RHR-Diff: Focuses on periods of Resting Heart Rate (RHR).
- HROS: Compares Heart-Rate Over Steps (HROS).
- Night Signal: Detects elevated heart rate during sleep.

Requirements: For Phase Il implementation of alerts.

- Tuneable parameters

- High sensitivity

- Reduce false positive alarms

- Individually adaptive
- Train on single dataset
- Work within one month
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Figure 3: Four participant COVID-19 detection examples. Vertical
lines represent one day (grey solid), symptom onset (dotted red),
and diagnosis date (dotted purple). For RHR-Diff the black lines
represent normalized RHR residuals, orange arrows encompass
the 28-day baseline window, and red arrows represent periods of
alarm. For HROS dark blue lines represent normalized heart rate,

and red dots timepoints when anomalies are detected.

Predicting COVID-19

Algorithms were extensively refined using 32 gold
COVID-19 cases, 15 individuals with other respiratory

illnesses, and 79 healthy control subjects.
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Figure 4: Alarms detected relative to COVID-19 symptom onset.
Each row represents 21 days around an individuals symptom
onset, with RHR-Diff alarms in green and HROS alarms in orange.
Colored groups highlight alarm accuracy as a single clear alert
around symptom onset, as well as repetetive, and other alerts
patterns. One individual with flu is shown for comparison.
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Real-Time COVID-19 Detection

Algorithms were adapted for detection of COVID-19 from
real-time wearable data, where Phase Il alarms are sent to
participants based on daily uploads.
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Figure 6: Real-time alarms simulated on existing data.
Alarms appeared far more frequently after COVID-19 onset
within 30 day averages around illness periods.
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Figure 7: Real-time vs RHR-Diff around symptom onset.
Real-time adaption does not limit algorithm accuracy.
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Figure 8: Real-time COVID-19 alarms more during illness
periods, and significantly more than healthy rates.

COVID-19 Wearables

Snyder Lab - Stanford Genetics

Other Wearable Measures

Other wearables measures reflect COVID-19 as well.
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Figure 9: Sleep and step alterations during COVID-19.
Conclusions

1. COVID-19 is associated with changes in wearable
measures for 80% of infection cases examined.

2. Alarms raised before symptom onset in 88% of cases.

3. Real-time detection is effective at COVID-19 detection
at or before symptom onset in 63% of cases.

Wearable technologies will provide a useful approach for
personalized management of epidemics.

Future Directions
Phase Il data will be published, and results compiled across
two study phases to seek FDA approval of algorithms. We
will also further investigate detection of other infectious
diseases, and roles of activity and lifestyle in false alerts.
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biomarker, a metabolite reported to affect permeability of the intestinal lumen, and a metabolite highly associated with microbial-host co-metabolism.
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Introduction

Clostridioides difficile infection (CDI) is the most common hospital acquired infection in the U.S., causing ~450,000 cases and 29,000 deaths annually. CDI recurrence in patients is high: ~¥25% for the first recurrence and increasing with
each episode. The initial development of CDI and its recurrence are mechanistically tied to disruption of the normal gut microbiota. Metabolites reflect functional activities of the microbiome and pathways common to multiple
bacterial species, and thus may provide a clearer picture than microbial compositional data alone. In order to gain insights into gut-related factors contributing to CDI recurrence, we analyzed stool samples from 53 participants at
diagnosis of CDI, directly after cessation of treatment, and weekly or bi-weekly for 4-6 weeks or until recurrence occurred. Each sample was interrogated using 16S rRNA amplicon sequencing and liquid-chromatography/mass-
spectrometry (LC/MS) untargeted metabolomics. Using lasso-penalized logistic regression on these data, we developed predictors of CDI recurrence. Our predictor achieved a median cross-validated area-under-the-curve (AUC) of
0.771 with a 95% interval (0.753, 0.790) when using only metabolome data, compared to a median 0.601 AUC (0.550, 0.662) when using only microbial composition data. The combined data achieved a median AUC of 0.760 (0.689,
0.833) and moreover selected only metabolite covariates, suggesting no gain in predictive capability from the microbial composition data. We found several metabolites that predict recurrence, including a host inflammatory

s . -
Study Design & Data Collection
Eligibility Criteria Exclusion Criteria 49 participants

* Primary CDI * |Inflammatory bowel disease — > -15Recurred

* CDI symptoms (diarrhea) * Immunodeficiencies - 34 Asymptomatic

e Positive C. difficile test * Severe / fulminant CDI Recurrence(15)

-by either glutamate dehydrogenase and enzyme © Ongoing non-CDI antibiotic use
immunoassay or polymerase chain reaction e Recurrence in week 1 of study :CF ﬁl (34)
* Currently or imminently undergoing e o
CDI treatment 0 T 15 2 25 3 4

\ weeks )

Samples collected:
- before treatment
- immediately after treatment
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Data Characteristics & Pre-Processing

/\

PARTICIPANTS LC/MS untargeted 16s rRNA
metabolomics amplicon
HRPHRRRPRARRPRPHRRPRRRPRRRPRRPRRRPRRPRRRPRRRPRPRPRPRPRPRPRRRPRRPRRRPRRRRERERERRE .
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Samples analyzed by
LC/MS untargeted
metabolomics and 16s
rRNA amplicon sequencing

\ Recurrence Prediction

Methods o | | If we have S training instances (X(i), y(i)),i -1,...,5

* Lasso logistic regression was used to predict And our data contains M metabolites and B OTUs:
recurrence from each part|C|pant.s week 1|p . etabolic data For 16S data For both data sources
sample using the 16s data, metabolic data, and <) ¢ pM X(i) c RB X(.z') c RM+B
joint data v . j i i (71]) (%)

* Leave one out nested cross validation (CV) was For all 3 types of input data z") € {x7(n)71xb Ty}
used to optimize 1. P(y = "RECUR”|x"), 8) = (1)

- . - 1 4 exp(—(Bo + STx())

Lasso logistic regression performs L1 logistic S | |

regression (eqns 1 & 2) and then shrinks the ming Z—log p(y' %D 8) + N84 (2)

less important feature coefficients to zero i=1

AN

16S rRNA amplicon analysis

Raw sequencing results processed |

through dada?2 pipeline é
Subsequent filtering and transformations: ° * %
- Remove OTUs present in fewer than 15% of 5 BT

participants of each class at less than the
limit of detection (10 counts)

- Transform counts to proportions & log
transform counts
Remove OTUs with less than a 5%
coefficient of variance across all
participants’ week 1 data

LC/MS untargeted metabolomics |/

Samples analyzed and annotated w, N
by Metabolon 9

3‘

Subsequent filtering and transformations:
-  Remove metabolites present in fewer than 25% of participants of each class
- Standardize values & log transform standardized values
-  Remove OTUs with less than a 5% coefficient of variance across all participants’ week 1 data
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Results & Discussion

Prediction accuracy

* Metabolomic data is a significantly stronger predictor
of CDI recurrence than 16s rRNA amplicon data
* Combining data sources achieved a very similar AUC 1. 16s rRNA OTUs 0.601 (0.550, 0.662)
to predicting from metabolites alone 2. LC-MS Metabolomics 0.771 (0.753, 0.790)
* All significant .features found in the combined model , ;. o\ L1 cvis 0.760 (0.689, 0.833)
were metabolites. .
Metabolomics

Biomarkers selected

Metabolites that predict recurrence include: Over 49 folds and 50 random seeds

Significant : _
* A host inflammatory biomarker bigmarkers Median Odds Ratio 90% Interval

* A metabolite reported to affect permeability of the |Mmetabolite 1 11474 (1.338, 1.630)
intestinal lumen .

* A metabolite highly associated with microbial-host co- Wetabolite 2 11.594 (1.301, 1.572)
metabolism Metabolite 3 (1.162 (1.036, 1.249)

The metabolite that predicts protection against CDI |Metabolite4 [1.113 (1.0, 1.221)

recurrence has been implicated in antimicrobial activity pmetabolite 5 109289 (0.884, 1.0)

and cell cycle regulation .

Conclusions & Future Work

- Our results indicate that gut-metabolites can accurately predict CDI recurrence and may provide mechanistic insights
into CDI; we did not find that microbial composition data could predict CDI with a simple logistic regression model.

- These gains in prediction and better understanding CDI recurrence could enable prompt, targeted treatments to short-
circuit the vicious cycle of recurrence

To build on this work, we plan to:

- Create a novel computational model that uses prior biological knowledge with the aim of higher predictive accuracy
and discovery of a broader array of metabolomic features

- Create joint models of microbial and metabolomic data to capture data dependencies expected to improve predictive
accuracy and interpretability

- Incorporate temporal information into models, including non-stationarity of the microbiome

Acknowledgements This work was supported by the NSF GRFP, the BWH Precision Medicine Initiative, BWH President’s Scholar Award,
Harvard Catalyst and NIGMSR01GM130777.
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Abstract
1,772 cancer patients Compare tissue Extract tissue-
from TCGA & blood samples resident microbiome
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Statistical
decontamination
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\ Analyze host-microbe interactions

Studying the microbial composition of internal organs and their
associations with disease remains challenging due to the
difficulty of acquiring clinical biopsies. We designed a statistical
model to analyze the prevalence of species across sample
types from The Cancer Genome Atlas (TCGA), revealing that
species equiprevalent across sample types are predominantly
contaminants, bearing unique signatures from each TCGA-
designated sequencing center. Removing such species
mitigated batch effects and isolated the tissue-resident
microbiome, which was validated by original matched TCGA
samples. Mixed-evidence species can be further distinguished
by gene copies and nucleotide variants. We thus present The
Cancer Microbiome Atlas (TCMA), a collection of curated,
decontaminated microbial compositions of oropharyngeal,
esophageal, gastrointestinal, and colorectal tissues. This led to
the discovery of prognostic species and blood signatures of
mucosal barrier injuries and enabled systematic matched
microbe-host multi-omics analyses, which will help guide future
studies of the microbiome’s role in human health and disease.

Study Design

Cancer Type Sample Type

B s o=
Es B

We examined TCGA whole-genome (WGS) and whole exome
(WXS) sequencing of solid tissue and blood samples from
colorectal cancer (CRC) and brain cancer patients (BC).

Sequencing

Anders B. Dohlman’, Diana Arguijo Mendoza', Shengli Ding', Michael
Gao?, Holly Dressman?, lliyan D. lliev*, Steven M. Lipkin4, Xiling Shen'

The Cancer Microbiome Atlas (TCMA): A Resource for Querying Host-Microbe Interactions

! Department of Biomedical Engineering, Center for Genomics and Computational Biology, Duke Microbiome Center, Duke University, Durham, NC 27708, USA
2 Duke Institute for Health Innovation, Duke University, Durham, NC 27701, USA

3 Department of Molecular Genetics and Microbiclogy, Director of Duke Microbiome Center, Duke University, Durham, NC 27708, USA

“ Department of Medicine, Weill-Cornell Medical College, Comell University, New York City, NY 10065, USA

Results

Distinguishing tissue-resident taxa from contamination. We identified two species populations: one “tissue-resident”
(unique to CRC tissue) and one “equiprevalent” (equally prevalent across sample types) (Fig. 1). We then isolated the tissue-

resident population, by decomposing observed metagenomic data into tissue-resident and contaminant fractions (Fig. 2).
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Experimental validation. To validate decontaminated TCGA
microbiomes, we obtained original tissue and blood samples
from five TCGA patients and performed 165 rRNA
sequencing. Decontaminated profiles were consistent with
16S results of matched tissue.
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Resolving “mixed-evidence” species. For some species,
reads counts come from some unknown combination of

endogenous and contaminant bacteria. One such species is E.

Observed = Tissue-resident + Contamination ¢O/- Wwhich is equiprevalent (Fig. 1) but ubiquitous among
— , human microbiomes. We identified several E. coli genes that
o £ !-'.;-.:::‘- Z 3 were enriched in tissue and can be used to resolve mixed-
® o = _,.,* x o evidence cases (Fig. 3).
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Figure 2. Observed metagenomic data (K) contains both biological and Prevalence (blood)

technical variation but can be decomposed into tissue-resident (T) and
contaminant (C) fractions using a mixture model of the form K= mT + nC. The
tissue-resident fraction retains biological variation (top), while the contaminant
fraction retains technical variation related to sequencing center (bottom).

Figure 3. Prevalence of genes belonging to B. vulgatus (left; tissue-resident), A. junii
(center; contaminant), and E. coli (right; mixed-evidence) in blood vs. tissue. Large
dots indicate species-level prevalence. Arrow indicates tissue-enriched E. coli genes.
TCMA can_be compared with multi-omic _molecular data from TCGA to analyze host-microbe interactions.

Decontaminated metagenomic profiles of TCGA tissues are matched to clinical metadata as well as epigenetic, genomic,

transcriptomic, and proteomic profiling, allowing an integrated multi-omic analysis. We identified several known and novel taxa

associated with CRC tumors compared with matched normal tissue (Fig. 6). Tissue microbiomes clustered into “Bacteroides”

and “Fusobacterium” coabundance groups, which were predictive gene expression (Fig. 6).
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Figure 7. Left. We identified two coabundance groups of genera

in CRC tumors. Right These
coabundance groups were predictive of gene transcription (RMA-seq) and protein expression (RPPA).
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Figure 6. Heat-tree showing genera
tumor samples (blue) and matched normal tissue (yellow).

Reference

Dohiman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, lliev 1D, Lipkin SM, Shen X.
The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-
resident microbiota from contaminants. Cell Host Microbe. 2021 Feb 10;28(2):281-2088.e5.
doi: 10.1016/.chom.2020.12.001. PMID: 33382980; PMCID: PMC7878430.1

=]
7]

Interactively examine  host-microbe H
A

interactions using the TCMA database.
hitps://ftcma.pratt.duke.edu/



Integrating taxonomic, functional, and strain profiling
of microbial communities with bioBakery 3

F. Beghini', L.J. Mclver?, A. Blanco-Miguez', L. Dubois’, F. Asnicar'!, S. Maharjan?, A. Mailyan?, A.M. Thomas',
P. Manghi', M. Valles-Colomer’, G. Weingart?, Y. Zhang?, M. Zolfo?!, C. Huttenhower?, E.A. Franzosa?, N. Segata’

1Dept. CIBIO, University of Trento; 2The Harvard Chan Microbiome in Public Health Center & The Broad Institute

THE HARVARD CHAN
MICROBIOME IN
PUBLIC HEALTH CENTER

HER®

Culture-independent analyses of micrabial communities have improved gut microbiome in CRC and IBD strains from >4K gut metagenomes
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Modern biological screens yield enormous numbers of measurements, - _ - - T T - _ -
and finding interpretable, statistically significant associations among HA"A IS We" powered Whlle HA"A Identlfles mlcrObe mEtabOIIte
features is essential. Here, we present a novel hierarchical framework, contro"ing false discovery rate and gene_fatty acid association
HAIIA (Hierarchical All-against-All association testing), for structured
association discovery between paired high-dimensional datasets. bIQCks
HAIIA efficiently integrates hierarchical hypothesis testing with false ikl EDR |
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HAIIA methodology
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Hierarchical All-against-All Association testing (HAIIA) identifies block rate in each case.
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describe the same set of samples and a specified pairwise similarity T ‘ ‘ ; RPN SN —3 PR We applied HAIIA to paired data comprising 120 hepatic transcript levels
measure, the HAIIA algorithm proceeds by 1) optionally discretizing 20_25 ‘ L. L o FOR and 21 liver lipid levels in a set of 40 previously profiled mice. Each
features to a uniform representation (if required by the similarity &OOO IR R P mpsemesp- -+ ' | numbered block corresponding to a group of co-expressed transcripts
measure), 2) finding the Benjamini-Hochberg (BH) FDR threshold, 3) o | AIA HAIA Al HAIA AIA HAIA Al HAIA relﬁ_ted tdo a_grc_)fL_Jp of CO'Q{CCESI'_\?Q (l)'%'gs- A t?tﬁ! of 1t1h4 block ,aSSOC'?t'g”,S
- - - | o | achieved significance a .05, matching the previous study's
E:ZEEE:gzllydjlﬂztreal?icgleadCiCi gli?]tasbel’é skespaorfa the ly ;?hgggse rgiecg\pé?ndatg Improving TPR with increased false negative tolerance threshold based on canonical correlation. HAIIA's associations included all
gy ) y dividing o yP . J o " | | those found earlier by CCA. Spearman correlation was used as a similarity
Gini score gain in the data hierarchies and a false negative tolerance 2 075 ‘ metric
(FNT) threshold. go.so g TPR .
X 0.25 "OR
Why HAIIA? g L Lo L Acknowledgments
Broad applicability: HAIIA's methodology works on nearly all : 3 ENT h - We thank Alex Kostic, Tommi Vatanen, and Vincent Carey for assistance
commonly found data types. A variety of user-configurable parameters Using 50 pairs of synthetic datasets with 200 features and 50 samples obtaining and curating datasets for the applications section; Hera
such as false negative tolerance and similarity metric are set to containing clusters with quadratic block associations were analyzed. A) with || V/amakis, Hector Corrada Bravo, William Shannc]zn, A. Brafntley Hall, Himel
common-sense defaults providing good performance from the outset. FNT = 0.2, HAIIA maintains the simulated FDR below the target (here (0.05, Ma”'Ck’t. Slyuand fmadb a?(d _”?usatnd Holmes ort getl)p L"AI\ d'SIgUSS'O”SH
0.1, 0.25, and 0.5), with associated trade-offs in statistical power. In addition, suggestions, and reedback. 1 his study was supporied Dy Army ~esearc
. . . L. : - ) - e Office grant W911NF-11-1-0429, NSF DBI-1053486, and NIH
- Well-powered: Relative to all-against-all (AllA) pairwise association HAIIA is consistently better powered than all-against-all (AllA) association US4DE0>3798 to Curtis Huttenhower
testing, HAIIA consistently provides higher power. testing across this range of target FDR values. Dashed lines parallel to the x- - 1

axis indicate the target FDR value in each comparison. B) By increasing the

FNT, HAIIA can improve the true positive rate with a comparatively minor http://huttenhower.sph.harvard.edu/halla
Increase in FDR..

Interpretable: HAIIA groups large feature sets into coherent
association blocks. Built-in visualization methods make it easy to see
the contents and association strength of these blocks.




Reconstruction of metagenome-scale models of the gut microbiota
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metabolism at species-level resolution in Inflammatory Bowel Disease "

Isabella M. Goodchild-Michelman 123, Analeigha V. Colarusso 234, Ali R. Zomorrodi 23

1 Department of Molecular and Cellular Biology, Harvard Faculty of Arts and Sciences, Boston, MA. ?Harvard Medical School, Boston, MA. 3Mucosal Immunology and Biology Research Center, Mass General Hospital for Children, Boston, MA. #Department of Biology, Tufts University, Medford, MA.

+ Inflammatory Bowel Disease (IBD) is a chronic inflammatory condition of the
intestinal tract that affects over three million Americans each year.

Top 20 differentially produced metabolites in Species-resolved metabolite productions in on IBD subject (MVSM5LLER)
4 cases vs 4 controls W e W N SN ENEE
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* IBD has been linked to alterations in the gut microbiota and previous studies
have used amplicon and metagenomic sequencing and metabolomics to associate
microbial species and microbially-derived metabolites in the gut microbiota with
IBD but underlying causal mechanisms of the disease are unknown.

~
@

* All data used in this project is from the Human Microbiome Project (HMP)
Objective: Use GEMs and data from HMP to investigate metabolic interactions

between the gut microbiota and host in IBD to better understand microbial and
molecular mechanisms underlying these interactions.

Genome-Scale Metabolic Models

Flux Balance Analysis of a Species-level GEM

Log 10 production flux (BD / control }

* Assume a cell can be
approximated by the
network of its
metabolic pathways
and can be analyzed
to trace a metabolite’s
production back to a
specific microbial
species in the gut.

INPUTS: ~) | OUTPUTS:

_— . S
Indicates a metabolite that has been previously implicated in IBD Species-resolved metabolite production in one non-IBD subject (SRS017247)
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Conclusion

Our preliminary results support the feasibility of this study, and they will serve as a platform for large-scale computational
studies of the host-microbiota interactions

&

Se-- a7 Next Steps:
3.. Combine all species level models for each sample into a » Large-scale simulations: Analyze all IBD vs control microbiomes from HMP
community level del using steady-state deling * Integrate models with a GEM of human intestinal epithelial cell in order to simulate microbial interactions with the human intestinal barrier.

techniques (MiCOM or Microbiome Modeling Toolbox) « Analyze the results to determine relevant metabolite, inter-species, and host-microbiota cross-talk differences between the control and IBD models.
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‘Deletion of innate effector serum amyloid A alters gut microbiom

and drives metabolism in mice
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( Abstract > C Methods ? ﬁAA KO markedly reduced species richness and evenness in females. Male KO micﬁ
. _ . _ . . showed greater microbiota alpha diversity than female KO but no genotype effects.
The serum amyloid A (SAA) proteins, mostly produced in the liver, Multiple PO P23P24 P42 P58 P65 P79 Specific taxa changed in abundance in the KO, including Alistipes spp. and SFB.
are acute-phase reactants. SAA also is expressed in the intestinal ggr’;‘zrdafr']‘;” | + i + + +*;.¢ Age (days) |
epithelium, which is an interface between gut microbes and host — Saa** 01357 14 21 28 35 | 4 49 56 Cohousing (days) 280 Richness . Richness + Evenness o Evenness
immunity. SAA stimulates Th17 cells and functions as an § Y oy L = 0 0'9_ .
inflammatory marker in infectious disease and metabolic disorders. _ Experiment 1 - P TTSESSY ' neE 2 | T s - - @ = s
Here, using two murine models, we investigated the role of SAA in Cohousing N\ C ||+ Body weight i 1 Sl T T T |£°°] =L T T
mediating host responses and metabolism and the intestinal @ —=§ NI D) N I etiad L 160 S 5- == | > o7
microbiota. In germ-free (GF) and conventional (CONV) C57BL/6N cs7eLeN 1| AV " S Tioscn gone $ 120, §4~ 3 06 L
mice, we qssesseq ilea! and colonic SAA expressic_)n over time. '_I'hen Saa'" g e C ||, prorosson atic § 80 »31 | |85y |
we examined microbiota perturbation and microbiota-mediated ) o E{| lipid analysis O 40 1 9| . 04 | L
phenotypes comparing wildtype (WT) and SAA1/2-/- (KO) mice g Y 0 — 1 oa
derived from Het/Het crosses to ensure common ancestry. WT and . . - 40 WT KO WT KO WT KO WT KO WT KO WT KO
KO mice were either reared separately or co-housed post-weaning. 5o P93 P42 P56(D0) P63 (D7) P65 (DY) Eormale Male Eormale Male Formale Male
Dextran sodium sulfate (DSS) colitis was induced in a separate Multiple generation breeding |+ ————F————+———1{ — Age (days)
cohort of WT and KO mice. We monitored body weight and colitis  Bverie 2 - - D) o1 == ol 8 | [+Body weignt Female| Male A. Plasmal/hepatic ~ B. Adipose tissue
development, characterized the fecal microbiome, and measured Dextran sulfate e A || Fecal occult blood test O_RFIITIg_s_ | oo lipidanalysis  gene expression
lipid levels and expression of inflammatory marker genes. GF and sodium (DSS) ‘@ saa” [n=20]"_ > — TEDSS )| || #Feca 165 sscuercin 2 (hoBHHEIER L . - - .o Pparg
CONV mice expressed differential microbiota-dependent regulation ey ——\a N | Pt LA CHET LS B0l . D150 KO ‘ T
of SAA subtypes in the ileum and colon. SAA expression was C57BL/6N || il | - Rl 1 Colits evaluation S_Parabacteroides distasonis - £ 4]l —
depressed in the absence of microbes in the ileum but increased in Sea” L) e 3% DSS E *Tiosue profein exproesion LS24-7.9_s_ - 2 1007 T
the colon. SAA KO led to significantly higher post-weaning weight o - S / LSRR D Pl . 2;
gain (with effects in females>males), and cohousing diminished this Sauinigococeacedo @ H iL
effect, suggesting a critical role of gut microbes. Microbial community < Results \ LINIIHEE ST 0L % o ; 0"
structure differed in the WT and KO mice, with specific taxonomic | S i L S e e © 301 _» Y stmenest
differences. In the KO mice, expression of genes indicative of lleal SAAT/2 Colonic SAA1/2 « Murine SAA1/2 expression fcorsyzg:z::;:g::e‘?vafgs z 2 T 1
adipocyte differentiation and inflammation was increased in white ’;s; 7 4 & - 25 ~ was remarkedly depressed in - A”Obacul’ug;_s— u 2 6
adipose tissues. DSS treatment led to increased colonic shortening O 61 - _— S0l . * the absence of microbes in the 9 S £ . A
and slower recovery in the KO mice. Our results suggest that 5 o | oye o ileum but increased in the g_Candidatus Arthromitus;s_ - ‘ 0,003 O .
intestinal SAAs have major effects on local inflammation and @ 4 == "515' | colon. The microbial regulation S_Alistipes indistinctus | | L _ﬁ o L
microbiome characteristics, and mediate microbiota-dependent = 3 o o 010 {— predominantly occurred at P42 o_CWO040;f_F16;9_;s_ 0002 & 2 - > .
effects on host metabolism through alterations of inflammatory i 2 —;— f‘;’ . | —':— and in the ileum. s_Alistipes finegoldii . oo i N L . —_  Lpl
' ' ' DI ' > | T - —t— f Lachnospiraceae;q Blautia, aadliN
\ cytokines, adipogenesis, and lipid cycling. / % ; .? ¢r O NP SN R == ¢.SAA <O led 1o s_.ignificgntly _ p g_Rg;eburia;s: Ej o y
o , 1 e?° : 5 . — . . higher post-weaning weight f Christensenellaceae;g ;s O 2- 2:
( Introduction > CONV GF CONV  GF CONV  GF CONV  GF  gain, with greater effects in fe- f Lachnospiraceae:q Dorea:s % N y il
P23 P42 P23 P42 males than in males. f Mogibacteriaceae;q ;s _ o . 0.
SAA proteins comprise a family of apolipoproteins, whose gene A. Weight gain in female mice by genotype B. Weight gain in female mice by genotype and housin WT KO WT KO > Males  Females EWAT IWAT BAT
sequences are highly conserved across vertebrates, suggesting 30' y? y '30 I Ve :yp ) 2 DSS-treated SAA KO mi _ q s { troat ¢ and sh 4
important biological functions. The acute-phase SAA isoforms, SAA1 o | —— wT (r=12) E e - Saa+ (n=8) E ﬂp _ f reaﬂe o dm'?e elxpe?henceth S gwerfrteCO\/.eWJ[_pOS rea mecrl]t a’?h SVV C_I>_We
and SAA2, are markedly induced by diverse inflammatory stimuli. g | —— KO (n=12) - 26 | . ggf((n”;:)) 5 Signiiicantly shortened colon iength on the day of termination, compared 10 the Vv 1.
Colonizing germ-free (GF) mice with segmented filamentous bacteria 2.4 " ! 24 | —— Saa- (n=8) -~ I 107 — ¥ 5 - , 4-
(SFB) upregulated SAA1/2 expression, which then promoted Th17 £ 22 - 2.2 [ o ****** L WT | S WT . *
cytokine production. SAA1/2 proteins also have been suggested to e * 2.0 — S | ptsa &1‘ R - KO \ S 31 KO | 1-0.058
play a role in intestinal immune homeostasis, but their exact > . 1.8 E 561 0] ] aads oo, 2 3 \ 5 _ -'
interaction with the microbiota remains understudied. 9 1? i 12 i e, S| P55 S 5 8 27 /
S ] =l == Mouse chromosome 7p -§ 12 E 12 i § 2. g 1 - g 1+ !
LT ee > st W% - e Uhlar & Whitehead, 2 107 | o | | e o | : | LI : : : ol = |
oK Eur J Biochem 1999 § C. Weight gain in male mice by genotype D. Weight gain in male mice by genotype and housing WT KO WT KO O(P56)1 2 3 4 5 6 7 8 9 0P56)1 2 3 4 5 6 7 8
Infection, Surgery, S TLR2 = [~ Inflammatory) 31 SAA1 °41 SAA2 i gg o WT (n=12) E gg o Saat (n=8) E T \ H,O DSS DS Days 2 Dayy
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Introduction

d HIV remains one of the most critical global
health problems today.

d HIV infection induces a dysbiosis in the gut
microbiotall —which plays a vital role in host
physiology and alters outcomes of numerous
infectious diseases!2l—but the converse of this
observation is not yet clear: it remains unknown
whether the gut microbiota is causally related to
HIV acquisition, and, if so, the specific microbes
and mechanisms involved.

g 0

Gut* Microbiome HIV Infection
1 Jj
\

\

*Initial site for «, % Understanding of HIV pathogenesis
HIV infection *+ Potential for novel HIV therapeutics

Highlights
—Studied a unique NHP HIV vaccine cohort—

 “MIVOG”: testing a pediatric vaccine in protecting
nursery-reared infant rhesus macaques against
oral SHIV challenges, a nonhuman primate [NHP]
model for breastfeeding transmission of HIV.

“+ The vaccine elicited a virus-specific antibody
response but conferred no protection.

% There is dramatic variability in time to HIV
acquisition across all animals, allowing us to
investigate the role of gut microbiota in HIV
susceptibility with this cohort.

—Identified 8 taxa related to HIV susceptibility—

“*We analyzed 16S rRNA gene sequencing data from
this NHP study using a microbe-phenotype
triangulation approach we previously
developed!3!,

8 bacterial taxa are bioinformatically associated
with HIV susceptibility (one has been
experimentally validated!4]).

Analyses and Results

“+* DADA25! was used to process the microbiome data (n=292) generated from MIV06 (Figure 1).

¢ Vaccination has an impact on the microbiome from 6 weeks of age onward (Figure 2).

| HIV Env Protein (15 ug) +3M-052 0.886 0.886 0.009 ***
M IVO 6 . I nfa nt C h d I Ie n g e Vaccinie (0 MVA-HIV Env (2x10° pfu) MIV06 wkO (unifrac) MIVO6 wk3 (unifrac) MIVO6 wk6 (unifrac)
(week 0, 6, 12) /\ MVA-SIV gag/pol (2x10?) pfu i ol

) chAd- SIV gag/pol (5x 10 vp)

Axis.2 [11.4%)

Control

(week 0, 6, 12) . | Placebo vaccine

Axis.2 [9.2%]
Axis.2 [9.5%]

SHIV1157ipd3N4.QNE gp120

Challenge (week 15+) : T Sl ¢ : : N g T | Lok
ge ( ) Saxii vical liad Wedaired Axis.1 [18%] Axis.1 [15.2%)] Axis.1 [15.4%)

MIV06 wk9 (unifrac MIV06 wk12 (unifrac MIV06 wk15 (unifrac
Group 60:Control Group (n=12) Stool samples (every 3 weeks) : * 16S rRNA sequencing 55 Wi tniirmc) Wil luniisme) ( )
l l l Nx up to ; ( g ( Z;—“
(’R | 6 — - N
X month S R 2
InfantAge (weeks): 9 3 6 9 122 15 18 21 24 27 30 32 34 $ % 2,
¥ % k% % 0 N T B S O 3 R O O 3 S | .
T —— " AxisA [11.9%] Axis.A [13.5%] CAxisA [11%]
' 0.009 *** 0.014 ** 0.0855 *
[ v[f% : ; '; ;‘JX up to Regimen Control Vaccine
) 8. . ¢\ @\ months
7Y\ InfantAge (weeks): ; 3 6 o 12 30 32 34 " Figure 2. The microbiota differs between the

15 18 21 24 27
« ox o o+ o+ FTTRTTRTTETTATTETITAT vaccine and control groups beginning at week 6.

Figure 1. Study design of an NHP vaccine study that allows us to investigate the ~ (PCoA of unweighted Unifrac distance for weeks 0-
role of gut microbiota in HIV acquisition. 15 with adjusted p-values from PERMANOVA)

s We utilized microbe-phenotype triangulation, an approach we developed that identifies with
high specificity microbes causally related to a phenotype of interestl3, based on:

1) increase in HIV challenge dose (Figure 3a; 3c row 1 and 2)
2) distribution of number of challenges to infection (Figure 3b; 3c row 3 and 4).

¢ We used DESeq2!®l to detect differentially abundant taxa in each comparison and identified a total of
8 taxa that are bioinformatically associated with time to HIV acquisition (Figure 3c; Table 1).

** Notably, Lactobacillus gasseri, one of the protective taxa, has been experimentally validated as
inhibiting in vitro HIV infection of human tissue [4l.

Applying a microbe-phenotype triangulation approach:

a. C At 15 weeks of age (prior to challenge)
» 100711 x=number of challenges before infection; n=sample size
- 1:1000 1:100 1:10 12
£ - -
E 60 L Experimental parameter:
b 60+ p——
B o ] @ control (x<14) vs. control(x=14): (increased susceptibility)
E | — —
S 204 == Mock "-l___l (n 8) (n 4)
X ol Vaccine [ — D - @ vaccine (x<14) vs vaccine (x=14): (increased susceptibility)

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 (n=6) (n=6) ++also in @\ @

Weeks since first challenge
b. el o
Data distribution:
Distribution of Challenges to Infection @ VaCCine (XS7) VS. vaccine (XEZO)'
At (n=6) (n=4) Related to susceptibility

@ vaccine (x<7) vs. control (x=7):
(n=6) (n=6)

©), O,

1— 4—@__—_ 15_ _@_” 2_5_—__

30

Related to regimen, NOT susceptibility

Frequenc

5: increased susceptibility
2: decreased susceptibility
Challengeé

Figure 3. Microbe-phenotype triangulation identified 8 taxa associated with HIV acquisition.

Future Directions

> Determine the causal effect of these

bioinformatically identified taxa on HIV
infectivity (Table 1) using a previously
established HIV infection model for human
pediatric tonsillar cells.

Compare metagenomics and targeted
metabolomics data (short chain fatty acids,
bile acids, etc.) to identify microbial features
related to acquisition of HIV at a more
ogranular level (i.e., species compositions and
functional profiles)

HIV association Taxa identified (resolution)
Decreased L. gasseri (species)
Susceptibility Lachnospiraceae (family)
Parabacteroides (genus)
Bacteroides (genus)
Increased Colidextribacter (genus)
Susceptibility Solobacterium (genus)
Christensenellaceae (family)
Catenibacterium mitsuokai (species)

Table 1. Taxonomy of the 8 bioinformatically identified ASVs.
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Identification of bacteria-derived
HLA-bound peptides in melanoma
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9 melanoma patients
17 metastases
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Bacterial peptides can elicit an immune
responce by tumor infiltrating lymphocytes (TILs)
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Bacterial species Z29%%

Acinetobacter cumulans
ctinomyces odontolyticus
Bacteroides dorei
Bacteroides ovatus

3 Bacteroides vulgatus
Brachybacterium alimentarium

12 ampylobacter concisus
Campylobacter lanienae

10 Clostridium clostridioforme
Clostridium ramosum
Corynebacterium afermentans
9 Corynebacterium humireducens
.. Dialister invisus

8 Dialister pneumosintes
Eikenella corrodens
Enterobacter cancerogenus
Enterobacter hormaechei |
Enterococcus faecium
Fusobacterium nucleatum
Gardnerella vaginalis
Kingella denitrificans
__Klebsiella oxytoca
Leptotrichia hongkongensis
Paracoccus marcusii
Photobacterium rosenbergii
Porphyromonas bennonis
Prevotella buccalis

Schaalia odontolytic
Selenomonas artemid
Shewanella decoloration
Sphlnsgomonas dokdonens;
phingomonas melon
Sphingomonas roseifl
Staphylococcus aureus
Staphylococcus capitis
Staphylococcus caprae
Staphglococcus lugdunensis
treptococcus gordonii
Veillonella dispar

Veillonella parvula

ITELNSPVL
ITNTGAVTV
SLTDKISII
SVVVDELFEV
VLTDTYLTL
E%NIDFITL

NA

I

SmEmE

7
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5
4
3
2
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did

Fusobacterium
nucleatum

Staphylococcus
aureus

Staphylococcus
capitis

LEGTVLDTL
TPIVAVNAL

VTSGVTAAY 1 1 I ;

Identified in sample I:I Not identified I:I Bacteria and/or allele not in sample
11 bacterial HLA-I peptides were shared
between metastases and patients

Bacteria peptides are presented by

tumor cells and antigen presenting cells
T As we used bulk tumors

Bacterial | HLA | 5 e we could not indicate if
species | class bacterial peptides were derived
EELSRQNL from tumor cells or antigen
resenting cells. We isolated
Bacilus | HLA | ILDSRGEEIY Zigested gingle cell fresh tumor
megaterium NDQALQPLF based on the CD45 marker to
HLA-Il | PQVILRRMR seperate between immune and
non-immune cells. As indicated
Clostridium |, | | LSNAKSLEL in the table, bacterial peptides
intestinale LSTNSIVSL were identified in both populations

with some overlap.

Bacteria isolated from tumors can

invade tumor cells

We validated that the identified bacterial species, isolated from tumors
can invade melanoma cell lines that were derived from the same tumors
by immunoflourecence and 3D representation and electron microscopy.
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Staphylococcus aureus carriage in the nasal microbiome is an important
determinant of subsequent S. aureus soft tissue infection. Identifying elements
of the nasal microbiome that influence carriage provides insight on how to
modulate these factors to prevent progression to infection. Prior work by
Accorsi et al. 2020" discovered an uncharacterized, taxonomically unassigned

ORF that was the major predictor of whether infant microbiome samples
evaluated with shotgun metagenomic sequencing contained S. aureus.
Subsequent investigation indicated that this ORF was actually a segment of
16S rRNA gene sequence incorrectly annotated by UniProt as a protein-coding
gene. Our analyses provide substantial initial support for the hypothesis that
this sequence represents a phylogenetic marker for a novel clade with
genomic similarity to Streptococcus species and D. pigrum, which could

antagonize S. aureus during colonization of the infant nasal microbiome.

Study Design and Methods

Data collection

Accorsi et al. 2020
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Conclusions and future work

Our work supports the hypothesis that the UOI is a fragment of 16S rRNA
that represents a novel species. It is genomically similar to D. pigrum and
Streptococcus species. Further in vitro experimentation, including
amplification the sequence from related bacteria via RT-gPCR could help
to characterize this novel clade.
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Introduction

Despite their elevated risk for morbidity and mortality from infections, the microbiome of older adults remains
understudied. While colonization resistance from resident microflora is a promising means to prevent
infections, little is known about pathogenicity reservoirs and colonization resistance in this vulnerable
population. We studied the skin, oral, and gut microbiome dynamics of older adults in both community and
Skilled Nursing Facility (SNF) settings, investigating relationships between age, frailty, environment,
microbiota, and pathogenicity reservoirs.

. . agugs : H D hic Ch: isiti CD SNF
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ﬂ\ SNF 3 m ﬁ m Sex, No. (Self-Reported)
Male Participant 11 2
Ah\ w m Female Participant 14 20
R
BaCk w T T T T T @ ﬁ‘ Arance?'ican Indian or Alaska Native 1 0
Whit 24 20
TOI’SO T w T T w T m m Mor:than one race 0 2
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Measures taken Weight, mean (SD), kg 69.0 (15.4) 78.7 (23.9)
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70 80 90
Age

We conducted a longitudinal metagenomic whole genome shotgun survey of 47 adults age 65+ years of
age; 22 residents of 3 different SNFs and 25 community dwelling individuals. We performed metagenomic
whole genome shotgun sequencing on stool, oral, and skin samples from 8 sites, 1421 total. To correlate
clinical and behavioral variables, we measured frailty, collected medical records, and interviewed
participants on diet and lifestyle. We also draw comparisons with previous younger cohorts’?,

Instability, Heterogenelty, Dlversmcatlon and Blogeography in the Aglng Skin Mlcroblome
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Figure 1 Instability, Heterogeneity, Hyperdiversigication, and Anarchy in the Aging Skin Microbiome. Compared to younger adults, or when SNF residents are
compared to Community-Dwelling older adults the taxonomic composition of the skin microbiota was generally characterized by:

A. Decreased stability over time. Yue-Clayton Theta Index comparing samples from an individual at different timepoints. Where most younger adult skin sites are
relatively constant overtime, the skin microbiota of older and frailer adults appears to vary substantially.

B. Decreased inter-individual similarity. Yue-Clayton Theta Index comparing samples between individuals in each cohort. Older and frailer adults exhibited far less
skin microbiome similarity to their peers than younger adults, demonstrating higher Heterogeneity.

C. Hyper-diversification (Shannon Index of diversity representing the number and evenness of species). This trend was also observed in the gut.
D.Biogeographic divergence. Biogeographic determinism, site-specific community composition, is a hallmark of the skin microbiota in older adults, but is different in
older adults. Yue-Clayton Theta Index comparing samples from different skin sites on the same individual at the same timepoint. Rather than becoming more similar

with skin aging, skin sites appear to diverge in the older and frailer cohorts. v

CD=Community-Dwelling; SNF= Skilled Nursing Facility; YA=Younger Adults. Bidirectional Wilcox tests, *=p<0.05, **=p< 0.0005, ***=p<5E-8.

Taxonomic Compositional Differences in the Microbiota of Older Adults.

Gut

Face

Taxa
Archaea Proteobacteria
Bacteria |l Escherichia coli Il
Actinobacteria Haemophilusil
Actinomyces [ Moraxella [l I
Brevibacterium Neisseria [ [l
Corynebacterium T | Flermllcutes umil
Cutibacterium acnes [} olosigranuium
: Eubacterium [Jjj I/ 8
Micrococcus luteus [} : ,
.. . Faecalibacterium
Propionibacterium namnetense [}
: Gemella
Rothia
: Staphylococcus Il IHIIE
Bacteroidetes
Alisti - Streptococcus[ M [N BH
istipes putredinis Veillonella [
Bacteroides [l Il I I [ Verrucomicrobia

HE Akkermansia muciniphila
Parabacteroides Fungi

I o | I I .| Porphyromonas somerae Malassezia
B I —I I Prevotella

= - |
! l I- E I- E ! i .

— | Skin site characteristic

Hand
Foot NN
Moist
Oily [ ]

Figure 2: Taxonomic Compositional Differences in the Microbiota of Older Adults. Relative abundance of species according to MetaPhlAn
3.0* classification. Each bar represents 1 subject, 1 timepoint represented per subject. Older adults, especially SNF residents, exhibit marked
decrease in cutaneous Cutibacterium acnes abundance, with a reciprocal increase in Staphylococci, Corynebacteria, and in some cases
Malassezia and oral species. High inter-individual heterogeneity in older cohorts is also evident here. Oral (tongue dorsum) had notably higher
abundance of Rothia species, and notably less Proteobacteria in the SNF cohort. Gut microbiota of SNF residents had a higher
Firmicutes:Bacteroides Ratio, and in many cases increased Proteobacteria and decreased Akkermansia mucinophila.

Associations Between Age, Frailty, and Structural Differences in the Skin Microbiome

| Age | Frailty C. acnes | Spearman's Figure 3: Associations Between
Correlation Age, Frailty, and Structural
face -0.1 -0.5 -0.33 -0.47 0.61 0.25 . 1.0 Differences in the Skin
05 Microbiome. Mixed Effects Model
. controlling for temporal
nares; —0.23 0.24 -0.28 -0.28 035 0.5 0.0 pseudoreplication testing linear
correlation by skin site between
-0.5 age, frailty (Rockwood Index), or
torso; —0.32 B =0.57=0.61 -0.16 ~0.48 24 - C. acnes abundance and Shannon
-1.0 Diverssity Index, Inter-individual
_ _ Heterogeneity, Stability, or Intra-individual
backs 0.21 el N 0.22 =0.34 Heterogeneity (Anarchy). Only significant (fdr
adjusted p < 0.05) Spearman’s Coefficients
forearm; -0.31 -0.27 -0.15 -0.54 -0.36 -0.28 —-0.44 -0.33 0.54 0.39 0.4 Sg(r)i;vtr;lésAglgram?/swgs Pﬁgéat?cgﬂ;czog”&;t:g
with C. acnes abundance and heterogeneity
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favorable environment for C. acnes growth,
foot: 0.06 -0.23 -0.27 -0.25 0.16 -0.14 -0.34 -0.13 -0.3 0.58 and that the resulting decrease is correlated.
Because the Rockwowrd Frailty Index is an
aggregate score not directly indicating skin
condition, we tested the relationship between
C. acnes and the other variables, finding
strong correlations at nearly all skin sites,
indicating a pattern of dysbiosis.
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Skin a Reservoir for Specific Pathobionts in Older Adults

Enterococcus faecalis Klebsiella pneumoniae Moraxella catarrhalis
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specific pathobionts identified with
metagenomic shotgun sequencing.
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Skln Major Reservoir of Plasmid Anti-Microbial Resistance in Older Adults

aminoglycoside RPKM bacitracin RPKM

n;arg% | 500
o - . °
for??al;ﬁ | 200
poplifea 100
& ;
beta—lactam fluoroquinolone
face ] face 400
i " 120 "5y 300
e i - s KR .,
forgar [ [ [ forear [ 200
pophrgéj LI ] 40 popllrce):z% 100
St00 0 St00 0
nce . glycopeptide 600 nce mupirocin
i s00 "B s
ors [ | [ ] ors 10
fortbglﬁg . 200 for%ar R 5
poph%g pOp|Ir881 [ |
St00 0 S100 [ | | 0
tetracycline triclosan
narge [ | [ | 150 n;arg% 30
ora ora
E)Oé(szﬂ L[] H B 100 %Oé(szﬂ | | | | | | 20
for a% - | . i forﬁarn - 1 W |
poplifea [ | [ | || 50 poplifea [ | 10
. : .
St00 St00
YA CD SNF ° YA CD SNF 0
Gut Oral Skin Figure 5: Skin Major Reservoir of Plasmid Anti-Microbial
1.0 . ® Resistance and Staphylococcal virulence in older adults.
08,) 0.5 | . e A) Abundance of Plasmid antimicrobial resistance (AMR) class. Each
s ' e o 0 o column represents a subject. One timepoint per subject.
O ]
g 0.0 B) Differential Abundance of plasmid AMR classes between CD and
L 5 . SNF cohorts. SNF resident skin microbiome exhibited significantly
%; ’ * . higher abundance of many clinically significant AMR classes.
—1.01 S ;) b ® oo OTOOO=mC ¢ To identify plasmid ARGs, contigs generated from quality-controlled
) S S £ SOLTELLTVUTD 8173 % reads using MEGAHIT were classified as plasmid or genomic using
= 2 5 & S£982893ERF =£5 Plasflow. Plasmid genes were identified from contigs with Prodigal,
S 5 £ § 25%a S E EE cag h and finally mapped to DeepARG?2. Samples RPKM normalized to
) S g 2 T E £ 3 g8 SE=Ne] o % account for differences in sequencing depth between samples and
S = = a25cajm o) differences in target gene length. RPKM=Reads per kilobase million.
S £ €
= § G
©
Summary » | Conclusions
We conducted a novel, longitudinal, gut, oral, and skin Although preliminary, we believe that these results

metagenomic whole genome shotgun study of older adults o5 -asent foundational findings in our understanding

both in skilled nursing facilities and living privately in the - : ,
mmuni ot of the microbiota of older adults. In particular, they
greater community. To the best of our knowledge, this is demonstrate dramatic differences in the skin

Iso the largest report t te of the skin metagenome in ; . :
also the largest report to date of the s elagenome microbiome among older adults. We suspect that skin

older adults. o : :

aging is a key driver in these changes, adversely
We found that in particular the skin microbiota of older affecting C. acnes and leading to a breakdown in
adults are substantially different to those of younger adults. community structure, although this possibility cannot
In particular, we found: be directly addressed by our dataset and must be a

- Major compositional differences between healthy older subject of future research. Most importantly, our
adults and younger adults, as well as SNF residents to  findings draw attention to the skin as potentially a

Community-Dwelling older adults including: more important reservoir than the oral and gut
o Decreased relative abundance of C. acnes microbiota for clinically relevant pathogens and
o Increased Staphy|OCOCC| , Corynebacterla, fu ngl, antimicrobial resistance.
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Probiotic supplementation can induce
positive alterations in intestinal environment, however the effect
of a month period short of probiotic supplementation on gut
microbiota and neutrophil function of endurance athletes is not
known. .

Investigate the effect of thirty days of probiotic
supplementation up on gut microbiota composition and
neutrophil function in marathon athletes. .

. Twenty-seven marathon runners were double-
blind randomly assigned to either a Probiotic (PR) (35,96 + 5,81
years,79,30 +£10,99Kg) or Placebo (PL) group (PL= 40,46 %
7,79 vyears, 72,67 £10,20Kg). PR consumed Lactobacillus
Acidophilus and Bifidobacterium Lactis (10x109QUFC +
maltodextrin) during 30 days in a sachet form, while PL
received a sachet with maltodextrin (5g/day). The gut
microbiota composition was evaluated before (BASELINE) and
after the supplementation period (POS-SUP). Fiber
consumption was evaluated using one-day diet record at the
baseline and Pos-sup. Blood collection was realized
(BASELINE and POS-SUP) to verify neutrophil function, after
blood cell neutrophil isolation peroxide and cytokine production
(IL-1-B; TNF-a; IL-6; IL-8) was analyzed. The Bacterial DNA
were extracted using QlAamp Fast DNA Stool Mini Kit® and
faecal microbiota composition was assessed by 16S rRNA
sequencing, V3-V4 regions, with lllumina® MiiSeq plataform.
Operational taxonomic units (OTUs) and diversity indices were
obtained after bioinformatic treatment on Qiime2® software. [3-
diversity was computed considering the sampling of 1,800
sequences per sample, which was based on the rarefaction
curve. To test differences among groups and time, it was
performed a pairwise PERMANOVA for beta-diversity and
ANCOM for OTUs relative abundance. Data analyses were
conducted using SAS Statistical Software version 9.3® (p<
0.05) and multiple tests corrected when necessary). For
neutrophil function was used the of repeated measures
statistical test mixed Model (with 'group’ and 'time' as factors)
being used with Tukey's post hoc - GraphPad Prim8 ®.
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Beta-diversity, UniFrac weighted index was different between groups (p=0,04; PERMANOVA)

NEUTROPHIL CYTOKINE PRODUCTION
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Grouped mixed Model (p< 0.05) * different to baseline in the both groups
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