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Human microbiome science is at a unique point in history: a solid
foundation of basic biology and translational infrastructure has
been created by the research community, and it remains to apply in
therapeutic and prognostic settings.

The microbiome has been strongly associated with health
phenotypes from autism to cancer, but taking advantage of these
associations to develop live cell therapies, microbially-derived
bioactives, or ecological biomarkers of outcome or treatment
response requires population-scale validation.

Much as human genetic epidemiology has, thanks to public health
research, begun to make the leap from academic research to
commercial applications, microbiome epidemiology is approaching
the same opportunity.

The Harvard T.H. Chan Center for the Microbiome in Public Health (HCMPH) was thus created as
an environment for academic-industry partnerships in this space — a resource for the entire life
sciences ecosystem to realize these opportunities.

TnEe CENTER'S SCIENTIFIC FOUNDATION IS UNPARALLELED, COMPRISED OF:

() Pioneering research by Harvard Chan faculty around the interplay of human
and microbial systems.

() Robust research platforms, including high-throughput microbiome sampling,
multi’omic data generation, immunoprofiling, a gnotobiotic facility, and the
computational Microbiome Analysis Core.

® Harvard’s Longitudinal Cohort Studies, a unique epidemiologic resource with
biennial participant data collected from more than 200,000 participants over
30+ years, including measures of lifestyle, behavior, and characterization of
over 60 diseases. These studies have generated more than 3.5 million
biospecimens, and make it possible to study links between lifestyle,
metabolism, genetic susceptibility, and disease.



The Harvard TH. Chan Center for the Microbiome in Public Health

The HCMPH is home to the BIOM-Mass platform for population-scale
microbiome studies, which has developed a standardized oral and gut
microbiome sampling kit, dietary and environmental surveys to detail
microbiome samples, and cost-effective means of collecting molecular and
microbiological culture data from home-collected samples.

The platform’s ongoing flagship collection comprises 25,000 stool and oral
microbiome samples from a subset of cohort participants, with capacity to
collect additional samples from targeted populations/phenotypes.

To facilitate a substantive, symbiotic relationship between academia and
industry and to ensure that the School’s microbiome research platform is
valuable across sectors, HCMPH is establishing the HCMPH Microbiome
Consortium.

Select partner companies will be invited to join the Consortium for a one-time
membership fee of $1 million, funds that will fast-track the collection’s
evolution into a scientific resource with maximum utility to academia and
industry.
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Access to longitudinal metagenomic, metatranscriptomic, and metabolomic data
(both raw and pre-processed) with exclusivity period

Input on the prioritization of sample profiling, creation of targeted collections, subcohorts,
research inquiries, and other projects

@ Collaborative data sharing, discovery advancement and project planning with Harvard
faculty

Unique partnership with the Harvard Chan School to advance research and development in
the life sciences

The HCMPH Microbiome Consortium will:

o Fast-track sample sequencing and further development of the microhiome platform.

@ Shotgun metagenomic and metatranscriptomic data generation
for samples from subject phenotypes of interest to Consortium
members.

® Metabolomic profiling of a subset of samples, chosen based on
disease phenotypes, environmental factors (e.g. diet), or (after
receipt of initial metagenomic data) microbiome configurations.

@ Follow-up metagenomic/metabolomic profiling of additional

Nurses’ Health Study: Micro N Kit . . .
samples, cross-sectionally or longitudinally.

User instruction trifold brochure, stool sample

;é“”ijtg’c”c”e"js’gir;oggj SR GREHICITTIET e e Computational and biostatistical analysis of the data above,
Ty including data informatics, quality control, biological feature
specimen bags with absorbent pads, stool extraction (microbial taxonomic, functional, strain profiling, and

collection kit with 95% ethanol, OMNIgene.- q 8 q . s
GUT stool collection kit, anaerobic stool assembly), and collaborative statistical epidemiology associating the

collection kit, OMNIgene.ORAL tongue swab microbiome with disease outcomes, cohort covariates (e.g. medical
it Elilel el EUSe history, medications, demographics, biometrics, diet), and existing
molecular data (e.g. genetics and serum metabolites).

Leverage the microhiome’s full research potential hy connecting expertise from academia and the life sciences
industry.

The Consortium model will provide a framework for data sharing, discovery, and project planning.
Together, member companies and Harvard Chan faculty will identify ways in which the BIOM-Mass
platform and Harvard cohorts can be leveraged to better understand disease predisposition,
development, and progression, and suggest promising — and practical — research lines and
projects. Through these exchanges, new opportunities will emerge for industry R&D, collaborative
research projects, additional/more detailed collection from subcohorts, and novel basic research.



Consortium members will have the opportunity to help Harvard Chan prioritize the microbiome
profiling process so that data generated are as scientifically valuable and immediately actionable
as possible. Member companies can also offer valuable insights on further investments in
infrastructure, how and to whom samples and sample data are accessible, and how to ensure the
HCMPH is a user-friendly, robust scientific resource

o Facilitate the development of therapeutics and diagnestics by connecting bench and hedside from the outset.

Carried out collaboratively, microbiome research will open the door to innovation in disease
prevention, diagnostics, early detection, therapeutics and chemoprevention, and precision
medicine. Real-world application of these innovations will happen more quickly, more effectively,
and more consistently when we forge close ties between academia and industry. To that end, we
will seek input from consortium members on:

() Intervention trials of pharmaceuticals, dietary compounds/supplements, or lifestyle modifications,
with microbiome samples collected and analysis conducted before, during, and/or after, spanning up
to several months each.

() Microbiological isolation, genetics, and functional characterization of individual strains, microbial
gene products, or small molecule metabolites implicated in chronic disease.

o Murine validation of microbiome-associated traits, including the humanization of gnotobiotic mice
based on specific human donors; dietary, small molecular, or microbial strain interventions; and host
immune and molecular profiling.

NHS2 CANCER INCIDENCE
FULL WITH BLOOD WITH CHEEK
ENDPOINTS |N=116429* |  SAMPLES** SWABS** CANCERSITE | 1989-2021
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MScases| 533 185 199 S CE] 1020
Melanoma 828
Breast cancer| 3203 964 159 Thyroid 584
Colorectal 672
Melanoma 609 202 200 Lung 554
IBDUC| 535 161 202 iy 286
Brain 173
RA disease 519 169 177 Connective Tissue 128
Pancreatic 154
Ovarian cancer 269 78 95 Bladder 157
Colon/rectal cancer | 292 92 97 e b 88

**Alive by the end of 2015 **Projected Total Through 2021
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The microbiome has been strongly associated with health phenotypes from autism to cancer, but taking
advantage of these associations — to develop live cell therapies, microbially-derived bioactives, or ecological
biomarkers of outcome or treatment response — requires population-scale validation.

Much as human genetic epidemiology has, thanks to public health research, begun to make the leap from
academic research to commercial applications, microbiome epidemiology is approaching the same opportunity.

THE HARVARD T.H. CHAN CENTER FOR THE MICROBIOME IN PUBLIC HEALTH (HCMPH) WAS THUS
CREATED AS AN ENVIRONMENT FOR ACADEMIC-INDUSTRY PARTNERSHIPS IN THIS SPACE — A RESOURCE
FOR THE ENTIRE LIFE SCIENCES ECOSYSTEM TO REALIZE THESE OPPORTUNITIES.

TnEe GENTER'S SCIENTIFIC FOUNDATION IS UNPARALLELED, COMPRISED OF:

® Pioneering research by Harvard Chan faculty around the interplay of human and microbial systems.

® Robust research platforms, including high-throughput microbiome sampling, multi'omic data generation,
immunoprofiling, a gnotobiotic facility, and the computational Microbiome Analysis Core.

@® Harvard’s Longitudinal Cohort Studies, a unique epidemiologic resource with biennial participant data
collected from more than 200,000 participants over 30+ years, including measures of lifestyle, behavior,
and characterization of over 60 diseases.

The HCMPH is home to the BIOM-Mass platform for population-scale microbiome studies. The
platform’s flagship collection comprises 25,000 stool and oral microbiome samples from a subset of
cohort participants, with capacity to collect additional samples from targeted populations/phenotypes.

To facilitate a substantive, symbiotic relationship between academia and industry, HCMPH is
establishing the HCMPH Microbiome Consortium. Select partner companies will be invited to join the
Consortium for an initial membership fee of $1 million, funds that will fast-track the collection’s
evolution into a scientific resource with maximum utility to academia and industry.

Benefits of Consortium membership

Access to longitudinal metagenomic, metatranscriptomic, and metabolomic
data (both raw and pre-processed) with exclusivity period

Input on the prioritization of sample profiling, creation of targeted collections,
subcohorts, research inquiries, and other projects

Collaborative data sharing, discovery advancement and project planning with
Harvard faculty

Unique partnership with the Harvard Chan School to advance research and
development in the life sciences
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%y Distinct Actions of the Fermented Beverage Kefir on Host Behaviour,
Immunity and Microbiome Gut-Brain Modules in the Mouse
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Mounting evidence suggests a role for the gut microbiota in modulating Kefir induced behavioural and Kefir increased the abundance of a
brain physiology and behaviour through bi-directional communication along . . . . . . . .
the gut-brain axis. As such, the gut microbiota represents a potential Immunological responses Iin mice Lactobacillus reuteri strain with the
therapeutic target for influencing centrally-mediated events and host -
behaviour. It is thus notable that the fermented milk beverage kefir has * = significantly higher than milk UK4 significantly decreased repetitive pOtentlaI tO prOduce GABA
recently been shown to modulate the composition of the gut microbiota in $ = significantly higher than no gavage (NG) behaviour in the marble burying test. Differentially abundant GBMS from L. reuteri
mice. It is unclear whether kefirs have differential effects on miCrObiOta-gUt- Marble burying test Saccharin preference test Both kefirs increased reward seeking Faeces: GABA synthesis Il lleum: GABA degradation
brain axis and whether they can modulate host behaviour. To address this, 2™ bef}aviours Fr1dincr8?aed _Saccharig _ Lt
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two distinct kefirs (Fr1 and UK4) or unfermented milk control were AR . D oractior: time in the fomala  Line GABA sythesis Il from L. reuteri was &' o
administered to mice that underwent a battery of tests to characterise their g . | S sniffing test. significantly increased in the kefir groups 53 i
behavioural phenotype. In addition, shotgun metagenomic sequencing of =5 - P Additionally, both kefirs elicited anti- The abundance of L. reuteri correlated with 5,/ p=0.008] I
lleal, cecal and faecal matter was performed, as was faecal metabolome T S ST — e . inflammatory responses: Fr1 the concentrations of GABA-associated & o ' | | °
analysis. Fr1 ameliorated reward-seeking behaviour, while UK4 decreased NS . 'decreaseddu_n?gtr()ph" levels and UK4 compounds in the gut. - Sl e— o $ o :
repetitive behaviour. In the peripheral immune system, Fr1 reduced hereased iL-1v. N & & | 2 o 0=
neutrophil levels, while UK4 increased IL-10 levels. Analysis of the gut Female rine sniffing test Circulating neutrophils Girculating IL-10 |
. . . . .« egs 150- @ 25- 30+ * Treatment ©¢ Fr1 © Milk ® UK4
microbiota revealed that both kefirs significantly changed the composition _ N 3] . °
and functional capacity of the host microbiota. Furthermore, both kefirs 2 100- r - | x 52 . Bn{ & . Garrolation analysis S
) . . ] . . T °9 e @ == — Milk 2-oxoglutarate Glutamic acid Succinic acid
increased the capacity of the gut microbiota to produce GABA, which was ? ] i £4 10, 2 o[~ [ ﬁ 5 R=-0.474, p=0.047 3 e R=-0.420, p=0.083 161 R=0.60, p=0.010 =
linked to an increased prevalence in Lactobacillus reuteri. Altogether, these : g - _L L1 i * % 2 ° 2
data show that kefir can signal through the microbiota-gut-immune-brain ° Water R TS S & ¢ : i e
axis and modulate host behaviour. In addition, different kefirs may direct the & S g, .
microbiota toward distinct immunological and behavioural modulatory §f | —— 1T 08
effects. These results indicate that kefir can positively modulate specific § | e o o * e
aspects of the microbiota-gut-brain axis. 7 041
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Behavioural tests: marble burying test (MB), 3-chamber social interaction test (3CT), elevate plus 0257 | [ | | | | ° | | | | | | Strain-level metagenomic analysis of L. reuteri was performed using StrainPhlAn
maze (EPM), open field test (OF), tail suspension test (TST), saccharin preference test (SPT), R R - R R (left) and PanPhlAn (middle), both of which indicated that the L. reuteri strain
female urine sniffing test (FUST), stress-induced hyperthermia test (SIH), intestinal motility test e m e e WL B DR present in the gut of Fri-, UK4-, and Milk-fed mice was most closely related to L.
(IM), faecal water content assessment (FWC), appetitive Y-maze, fear conditioning (FC), and :
forced swim test (FST). reuteri TD1.
PERMANOVA of pathway abundances (as measured by HUMANNZ2) revealed that the
Postmortem analyses: flow cytometry, shotgun metagenomics, and metabolomics. dlSSImllarlty between kefir- and milk-fed mice was Significant. Assemb|Y'based metagenomic ana|y5iS of L. reuteri was performed as follows: (l)
the metagenome was co-assembled with MEGAHIT; (ii) contigs were binned with
MetaBAT 2; (iii) the quality of bins was determined with CheckM; (iv) bins were
Kefir alte red the com OSitiOn Of the classified with Kaiju; (v) a metabolic model of the the recovered L. reuteri genome
p K f' h d th -t f th was built with CarveMe; and (vi) Flux Variability Analysis (FVA) was performed with
mouse gut microbiota ertir ennance e CapaCI y O e COBRApy to simulate the metabolism of L. reuteri at 95% growth. The ranges of
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Prioritization and annotation of novel bioactive small molecules
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Bioactive microbiome metabolites

Thousands of metabolites have been assayed from microbial communities, the

human gut microbiome in particular,

characterization or knowledge of their therapeutic potential.

but as yet with minimal biochemical

Here, we

developed a new approach, MACARRON (Metabolome Analysis and Combined
Annotation Ranks for pRediction of Novel Bioactives), for identifying potential
bioactives by integrating knowledge of known/standard compounds with
phenotypic or environmental indicators of bioactivity to annotate and prioritize
the unknown metabolites. We have applied this approach to identify novel
bioactives from the inflammatory bowel disease (IBD) metabolomes in the
Integrative Human Microbiome Project (HMP2) metabolomes.

MACARRON ranks features based on multiple quantitative annotations

[ Compounds ]_[ Samples ]
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The workflow contains
modules for (a) data
preprocessing and QC,

(b) quantitative estimation of
ecological, biochemical and
epidemiological properties
and (c) prioritization.

For each feature,
abundance and m/z are
examined w.r.t a (known)
reference with similar
abundance pattern, and
differential abundance
g-value against a phenotype
IS determined from a linear
regression model. Ranks from
each of these properties are
iIntegrated into a single
prioritization 'meta-rank’.

MACARRON is used to identify inflammation-associated compounds
Overview of the HMP2 cohort and metabolomics study
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546 gut metabolomes
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We applied the workflow to
prioritize compounds from the
metabolomes of IBD patients
and nonIBD controls in the
HMP2 (Lloyd-Price, 2019.

Based on metabolite
abundances, IBD and noniIBD,
and dysbiotic and non-
dysbiotic metabolomes can be
distinguised.

We adopted the supervised
prioritization approach to

identify bioactives linked to
dysbiosis and inflammation.

Quantitative metabolite annotations

Guilt-by-association for Ecological and Biochemical properties

To associate unknown compounds with known metabolites, we clustered features
based on co-varying abundances: 47,913 features were distributed into 269
modules of varying sizes and 16,259 features were observed as singletons. 83
(~31%) of the 269 modules had at least one known metabolite.

Sub-Class

log10(Rel. Abun.)

Xylenes -

Ureas -

Quinoline carboxylic acids -

Quaternary ammonium salts -
Pyrimidines and pyrimidine derivatives -
Pyridinecarboxylic acids and derivatives -
Purines and purine derivatives -
Pregnane steroids -

Polyols -

Phosphosphingolipids -
Phenylacetamides -

Nitrophenols -

N-arylamides -

Methoxyphenols -

Medium—chain hydroxy acids and derivatives -
Indolyl carboxylic acids and derivatives -
Imidazoles -

Hydroxysteroids -

Hybrid peptides -

Guanidines -
Glycerophosphoethanolamines -
Glycerophosphocholines -
Glycerophosphates -

Fatty acids and conjugates -

Fatty acid esters -

Diterpenoids -

Dicarboxylic acids and derivatives -
Ceramides -

Carboxylic acid derivatives -
Carboximidic acids -

Carbohydrates and carbohydrate conjugates -
Biphenyls and derivatives -

Bilirubins -

Bile acids alcohols and derivatives -

Beta hydroxy acids and derivatives -
Benzyl cyanides -

Benzoic acids and derivatives -
Benzenediols -

Amino acids peptides and analogues -
Amines -

Alpha hydroxy acids and derivatives -
Alloxazines and isoalloxazines -

Alcohols and polyols -

11Z -

1-hydroxy—2-unsubstituted benzenoids -

1
1

1

— - N N

10

N N

Of the 83, most modules
had features belonfing to
1 the same chemical sub-
class. Modules with
compounds belonging to
2 >1 sub-class capture
2 sub-classes that co-vary
as a result of
2 co-occurrence in the bug/
1 biochemical pathway.

- E Picking a reference in
each module: Compound
1 (known metabolite if
; = present) with the highest
3 mean abundance in all
samples was chosen as the
reference.

Module ID

We prioritize unknown compounds that are similarly abundant
as compared to their co-clustered reference
All features above the dotted line have abundances similar to (> x0.1) or higher than the reference
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We prioritize unknown compounds that are potential biochemical derivatives of

their co-clustered reference

All features within the dotted lines have m/z similar to that of the reference
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A mixed effect linear model is used for estimating phenotype association

Significant (g-value < 0.05)

&d

differentially abundant
compounds (DACs):
enriched (enr) and
depleted (dep)

in the tested contrasts viz.
CD/UC v/s nonIBD
ysbiosis v/s non-dysbiosis
within CD and UC
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Most DACs were found in CD.dys v/s CD.nondys and UC v/s nonIBD
Effect size estimated outside of linear model
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Prioritized metabolites

Metabolites highly prioritized by MACARRON include classes previously
implicated in IBD as well as novel potential bioactives

Primary bile acids are
metabolized by gut bacteria
Into secondary bile acids. The
accumulation of primary bile
acids due to loss of bacterial
diversity is well understood

in IBD.

i |
i

Gut bacteria encode enzymes
that synthesize and degrade
polyamines: putrescine and
spermidine. A collective
pathway which arises from the
exchange of intermediates
between species

could modulate host health.

( Nakamura, 2019).

SCFAs are produced in the
gut via bacterial fermentation g
of dietary fibre and are
typically found to be reduced ¥ 1!
in mucosa and stool of IBD
patients.

Production of MCFASs has
been attributed to bacterial
thioesterases. MCFASs activate
GPR40 have been which
co-localizes with insulin
producing beta-cells

(Briscoe, 2003).

Enriched metabolites
Primary Bile Acids (g-value < 0.05) in Module 7
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chenodeoxycholate
glycocholate
glycochenodeoxycholate
glycourosodeoxycholate

30 condition
25 CD.dys

20 CD.nondys
15

10

5

0

log2(abundance)

Putrescine metabolism (g-value < 0.05) in Modules 32 and 95

!III |'|]l

MIJ!IHHJIHJ IH Hl H\

|
ﬂ

ll n |
| Il }I [l i

diagnosis

lll |] ' | agmatine

Depleted metabolites
Short Chain Fatty Acids (q-value < 0.05) in Module 247
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Conclusions and future work

MACARRON integrates ecological, biochemical and epidemiological annotations

to prioritize metabolites

iIn the microbiome.
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25 diagnosis
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20
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5

0
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In the HMP2 metabolomes,

prioritization of classes such as bile acids and SCFA previously implicated in IBD
validates the workflow. Novel highly prioritized compounds covary with known
metabolites, have a high relative abundance and are significantly differentially
abundant in the phenotype of interest. Metabolites with lesser known roles in IBD
such as putrescine metabolites, medium-chain fatty acids and B vitamins were
among the highly prioritized ones. MACARRON is generalizable to other microbial
communities ans is being developed as an open-source R package.
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Abstract:

Colorectal cancer (CRC) is a multifaceted disease, influenced by host genetic and environmental factors. Growing evidence suggests that specific members of the microbiota mediate CRC development, growth and spread. One such microbe is
Fusobacterium nucleatum, a normal constituent of the human oral cavity, that has been largely studied for its role in shaping dental biofilms. Fusobacterium spp., while rare in the gut microbiota of healthy individuals, are enriched in human colorectal
adenomas and adenocarcinomas, compared to normal colonic tissues, and specifically associated with certain epidemiological subtypes of colorectal cancer. Further experimental evidence has suggested that F. nucleatum can potentiate tumorigenesis in
mouse models, influence immune-mediated killing of tumor cells, and promote resistance to chemotherapy drugs. Taken together, this research supports that a greater understanding of the biology underlying F. nucleatum in the gastrointestinal tract—both
before and during tumorigenesis—may provide insights into improving CRC diagnosis and treatment. To that end, we seek to understand how F. nucleatum modulates the intestinal immune cell environment. In previous works, F. nucleatum has been
shown to influence myeloid cell and T cell frequency in murine and human tumors, respectively. However, we do not yet understand how this oncomicrobe may shape different immune cell populations prior to tumorigenesis, potentially influencing the
conversion of healthy intestinal tissue into a pro-tumorigenic microenvironment. As F. nucleatum is a bacterium evolved to live in the oral cavity, we are leveraging gnotobiotic mouse models—in which F. nucleatum can become a stable member of the
intestinal microbiota—along with bacterial genetics and immunological approaches to disentangle the interactions at play among F. nucleatum, the colonic epithelium, and the immune system.
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BACKGROUND

Long-term or short high intensity exercise induces cognitive-behavioral responses. Thus,
during training/competition, athletes generally presented mood disorders. Although the
concept of the microbiota-gut-brain axis is relatively new, it is suggested that the gut
microbiota influences psychological and behavioral aspects. Gut microbiota is able to secretes
serotonin, mainly in response to physical and emotional stress. Preliminary data showed that
probiotics and prebiotics intake can affect the hypothalamic-pituitary-adrenal (HPA) axis and
other pathways in athletes. However, this crosstalk between the gut and brain Is not
completed study in long-term endurance exercise, such as marathon .

o

g § O - -, cognitive-behavioral
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= -g % . disorders

- QO ' [ ‘
Metabolites

neurotransmitters

“ PROBIOTIC SUPPLEMENTATION ?

PURPOSE

The present study aimed to evaluate the effect of marathon running on mood aspects and
plasma serotonin levels after probiotic supplementation in athletes.

METHODS
0 Sample and Supplementation:
placebo 9

group ‘ \/ ‘ 2.0 g / day of corn starch

n=7 gelatinous

capsules
k )

|
30 days

s

10° Lactobacillus acidophilus LB-G80

probiotic s 5 billion CFU , ,
& - 10° Lactobacillus paracasei LPc-G110

rou f Iti- .
gn _ 7p ‘ gelatinous ‘ © ;rr;]il:] { ‘ 10° Lactococcus subp. lactis LLL-G25

capsules biofi 10° Bifidobacterium animalis subp. lactis BL-G101
probiotic 109 Bifidobacterium bifidum BB-G90
k )
|
30 days

9 Exercise protocol and experimental design:

2
1
BASELINE

PRE-EXERCISE

(24 hours before
the marathon

3
POST-EXERCISE

4

RECOVERY
(immediately after
the marathon)

(1 hour after
the marathon)

30 days of supplementation marathon
o
o
» Collection of » Collection of 30ml » Collection of 30ml  » Collection of
30ml of blood of blood of blood 30ml of blood
» Start of » Application of the » Application of the
supplementation BRUMS BRUMS

guestionnaire
(questionnaire to
assess mood)

9 Statistical analysis:

questionnaire
(questionnaire to
assess mood)

To verity differences between group and time, the ANOVA two-way with Tukey Post-hoc

was performed being considered p <0.05.

RESULTS

After the marathon, fatigue and mental
confusion increased and vigor reduced
(without significant difference between the
groups; p>0.05).

Moreover, no significant differences were
found in serotonin concentrations at different
times evaluated and between groups.

Serotonin

CONCLUSION

Probiotic supplementation for 30 days was not effective in altering mood parameters and plasma serotonin levels in this protocol. Thus, further studies are needed to understand
the possible effects of probiotic supplementation on psychobiological parameters in endurance long-term endurance exercises.
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The Microbiome Collection Core at the Harvard T.H. Chan School of Public
Health (HCMCC) was established in response to a strong demand among
the research community for validated microbiome sample collection kit
configurations and easy usability for in-home sampling. Under the umbrella
of the Harvard Chan Microbiome in Public Health Center (HCMPH),
HCMCC aims to support population-scale microbiome sample collection
and expand our understanding of the microbiome to improve population
health. The HCMCC has developed a multi carrier-compatible home stool
and oral sample collection kit that permits cost-effective multiomic
microbiome studies, leveraging the intellectual and infrastructure
foundation laid by the HMP2 (the 2nd phase of the NIH Human Microbiome
Project) and the MLSC (Massachusetts Life Sciences Center)-funded
MICRO-N (MICRObiome Among Nurses) collection. By providing this
customizable microbiome collection kit, we enable researchers to perform
multiple different molecular assays, as well as to tailor the kit configuration
and collection plan to study-specific needs.

HCMCC services

Consultation on microbiome sample
collection plan development

* Collection kit configuration
« Sample transport plan

« Sample processing and storage plan

Kit ordering & shipment

« Customization and implementation of the study-
specific collection kit

» Kit shipment through the preferred carrier to
selected clinical sites or participants

/ Kit tracking
« Returning samples via pre-paid shipment to the
\ BIOM-Mass platform for automated aliquoting

 Tracking samples throughout the collection,
return, storage process via barcodes

Streamlined post-collection assistance

» Short and long term -80°C storage offered by
the BiOS Freezer core

» Fast sample retrieval and shipment to
sequencing labs for meta’'omics and
metabolomic profiling
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The Microbiome Collection Core is a part of the Harvard

Chan Microbiome in Public Health Center (HCMPH).
Want to learn more? Visit https://hcmph.sph.harvard.edu

A scalable gut and oral microbiome
sample collection platform
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DEPENDING ON YOUR SAMPLE COLLECTION PLAN, YOUR KIT MAY CONTAIN ONE OR MORE
2, Blue labeled ethanol stool collection tubes

4. Orange labeled anaerobic stool collection ube:

5. Purple labeled OMNIgene-GUT stool collection tube:

inbeled oral coltoct
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This customizable microbiome sample collection kit avoids the need for
expensive, bulky, and inconvenient ice packs by providing several different room
temperature storage media that are also compatible with multiple different
molecular assays including any combination of amplicon (16S), metagenomic,
metatranscriptomic sequencing, metabolomics, and other molecular
assays. This kit further includes a collection method that uses anaerobic
transport media that yields live microbes for culture or gnotobiotic research.

Stool Sample Questionnaire . ‘
BIOM-Mass Microbiome Sample Collection

1 2. Date
WE collect ed
Month B : - _ - 5
Thank you for your participation in lhis sludy! By providing samples, you are helging o
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In addition to storage media, this sample collection kit includes user-friendly
instructions and toilet accessories to maximumly facilitate and smooth the in-
home stool sample collection experience. Standardized questionnaires, as
companions to collected samples, are included to capture recent medications,
diet, anthropometric measurements, and gastrointestinal health status
measured by the Bristol Stool Scale. The modularity of this kit allows
researchers to tailor kit components to study-specific needs and conduct cost-
effective microbiome research ranging from pilot studies to large-scale studies
involving 10,000s of participants.

HCMCC-supported study activities
within the BIOM-Mass platform

TR ORI

aa1

Pre-collection

 Enrollment
 Kit ordering
e Kit shipment

Collection

 Self-collection
* Kit return through
pre-paid shipment

Post-collection

e Sample aliquoting
via Hamilton STAR

automated liquid
handler

-80°C storage via
BiOS Freezer Core
Data generation
Data analysis via
Microbiome Analysis

) DENITRIFICATION-PWY: nitrate reduction | (denitrification)
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4 1

-

Samples (N=T793)

Microbiome population health
research opportunities

* Accessible microbiome population studies' data on BIOM-Mass Data Portal

. Integrative microbiome informatics and analysis via the Harvard Chan
Microbiome Analysis Core

« Long-term sample storage via the Harvard Chan BiOS Freezer Core

« Gnotobiotic mice experiments via the Harvard Chan Gnotobiotic Center for
Mechanistic Microbiome Studies

« Course offerings on microbial communities and human microbiome research
via the Harvard Chan Microbiome in Public Health Center

Special thanks to the the Massachusetts Life Sciences Center (MLSC), the
Harvard Chan Microbiome Platform Steering Committee, the Harvard Chan
BiOS Freezer Director Eric Rimm, the BWH/Harvard Cohorts Biorepository
Laboratory Manager Christine Everett, and the BiOS Freezer Core manager Isa
Berzansky.

Project Manager: Chengchen (Cherry) Li
Microbiome Analysis Core Director: Jeremy E. Wilkinson
Scientific Director: Curtis Huttenhower E
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https://hcmph.sph.harvard.edu/hcmcc %
https://huttenhower.sph.harvard.edu [=
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This customizable microbiome sample collection kit avoids the need for
expensive, bulky, and inconvenient ice packs by providing several different room
temperature storage media that are also compatible with multiple different
molecular assays including any combination of amplicon (16S), metagenomic,
metatranscriptomic sequencing, metabolomics, and other molecular
assays. This kit further includes a collection method that uses anaerobic
transport media that yields live microbes for culture or gnotobiotic research.

Stool Sample Questionnaire . ‘
BIOM-Mass Microbiome Sample Collection

1 2. Date
WE collect ed
Month B : - _ - 5
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4, Based o he right, what did the stool e
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Hard 1
Eal) S When you have completed collection for all samples in your study's
Wate coltection plan, place any included paperwork in the bottom of the box
4o ﬂ-‘ Next, place the sample-bags inskde the box, and than put the air cushion
i 1 :
7. In the past ye ve you used any of the following medications = in the bax on op of everything.
Past one
HHHHH mon 6 months
Injected antibiatics
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OC epcid, Taga
8. Compared to 6 month W W haracte
1 Cnce all ilems are nsice the o, peal the adheshe liner ol the Bos i
0% = cha ned =5 lbs iaing i Nof \
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In addition to storage media, this sample collection kit includes user-friendly
instructions and toilet accessories to maximumly facilitate and smooth the in-
home stool sample collection experience. Standardized questionnaires, as
companions to collected samples, are included to capture recent medications,
diet, anthropometric measurements, and gastrointestinal health status
measured by the Bristol Stool Scale. The modularity of this kit allows
researchers to tailor kit components to study-specific needs and conduct cost-
effective microbiome research ranging from pilot studies to large-scale studies
involving 10,000s of participants.

HCMCC-supported study activities
within the BIOM-Mass platform

TR ORI

aa1

Pre-collection

 Enrollment
 Kit ordering
e Kit shipment

Collection

 Self-collection
* Kit return through
pre-paid shipment

Post-collection

e Sample aliquoting
via Hamilton STAR

automated liquid
handler

-80°C storage via
BiOS Freezer Core
Data generation
Data analysis via
Microbiome Analysis

) DENITRIFICATION-PWY: nitrate reduction | (denitrification)

-— | : .
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Samples (N=T793)

Microbiome population health
research opportunities

* Accessible microbiome population studies' data on BIOM-Mass Data Portal

. Integrative microbiome informatics and analysis via the Harvard Chan
Microbiome Analysis Core

« Long-term sample storage via the Harvard Chan BiOS Freezer Core

« Gnotobiotic mice experiments via the Harvard Chan Gnotobiotic Center for
Mechanistic Microbiome Studies

« Course offerings on microbial communities and human microbiome research
via the Harvard Chan Microbiome in Public Health Center

Special thanks to the the Massachusetts Life Sciences Center (MLSC), the
Harvard Chan Microbiome Platform Steering Committee, the Harvard Chan
BiOS Freezer Director Eric Rimm, the BWH/Harvard Cohorts Biorepository
Laboratory Manager Christine Everett, and the BiOS Freezer Core manager Isa
Berzansky.

Project Manager: Chengchen (Cherry) Li
Microbiome Analysis Core Director: Jeremy E. Wilkinson
Scientific Director: Curtis Huttenhower E
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Background

Effects of 30 days Probiotic Supplementation on Monocytes function =3 HARVARD

after a Marathon Race. A randomized, double-blind-placebo study.

Edgar Tavares-Silval, Geovana S F Leite2, Helena A P Batatinha3, Ayane S Resende2, Antonio H Lancha Junior2, José C R Neto3, Ronaldo V

Marathon runs transiently harm the

probiotics supplementation on monocytes functions before and after marathon race.

Materials and Methods

Thirty runners were supplemented for 30 days, double-blind, with probiotics 10x109 — -
CFU of Lactobacillus Acidophilus LA-G80 and 10x10° CFU of Bifidobacterium E
animalis subsp. Lactis BL-G101 B
supplementation period (Baseline), 24 hours before the race (Pre), one hour after

(Post), and five days after the marathon (Recovery), blood was collected for the ‘
following analysis: Cellular functionality, verified through cellular exposure to 5000. .
Lipopolysaccharide - LPS and opsonized Zymozan. Cytokine analysis, hydrogen 1000. o [

or placebo

peroxide production, and phagocytic capacity of cells.

significance level of p < 5%.

Experimental Design

Marathon
Race
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Immune and gastrointestinal
Nutritional strategies are adopted to mitigate the damage caused by strenuous
exercises. This research investigates the possible protective effect of chronic T [ . T[ -

il 11 1a

(maltodextrin  59).

Before the 2000{ T

Immunophenotyping was [ 10-
also performed to analyze the monocytes populations. The data normality was %
verified using the Shapiro-Wilk test, and the Anova Two-Way applied with a

sysiems.
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24h 5D
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Results
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Monocytes functions at baseline, 24h before, 1h after and 5D after a marathon race. a.different from baseline. b. different
from 24h before. c. different from 1h after. p < 5%.

Conclusions

We conclude that 10x10° CFU supplementation of Lactobacillus Acidophilus LA-G80 and 10x10°
CFU of Bifidobacterium animalis subsp. Lactis BL-G101 was able to modify the cellular
functionality of monocytes, concerning phagocytic percentage after 30 days of supplementation.
However, these differences cannot be observed between the Placebo and Probiotic groups in
the other parameters evaluated. The monocytes population was equal, with no statistical
differences verified by the immunophenotyping. Several studies observed benefits with the
supplementation of these bacteria. Because of that, it is necessary to verify the time and dose
offered for this specific population of marathon runners.
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Infant nasal microbiomes
mature over the first year, but
remain distinct from mothers

Infants had a weak upward trend in alpha diversity over time.
They rapidly diverged from their species composition at birth,
but the rate of change slowed over time indicating stabilization
toward a more mature microbiome. Infants were more similar to
their own mother than to unrelated mothers at month 1 (PER-
MANOVA, p=0.005), although infant composition was distinct
from maternal composition at all months except 8 (p<0.05).

1) Self-dissimilarity: birth 2) Self-dissimilarity: last timepoint
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Microbiome drivers of infant S.
aureus phenotypes

Infant Metadata
Infant Functions

Staphylococcus aureus is a leading cause of healthcare- and community-asso-
ciated infections and can be difficult to treat due to antimicrobial resistance.
About 30% of individuals carry S. aureus asymptomatically in their nares, a risk
factor for later infection, and interactions with other species in the nasal micro-
biome likely modulate its carriage. It is thus important to identify ecological or
functional genetic elements within the maternal or infant nasal microbiomes
that influence S. aureus acquisition and retention in early life. We recruited 36
mother-infant pairs and profiled a subset of monthly longitudinal nasal samples
from the first year after birth (n=284) using shotgun metagenomic sequencing.
The infant nasal microbiome was highly variable, particularly within the first 1-2
months. It was weakly influenced by maternal nasal microbiome composition,
but primarily shaped by developmental and external factors (e.g. daycare). In-
fants displayed distinctive patterns of S. aureus carriage, positively associated
with Acinetobacter species, Streptococcus parasanguinis, Streptococcus sali-
varius, and Veillonella species and inversely associated with maternal Dolosig-
ranulum pigrum. Furthermore, we identified a gene family, likely acting as a tax- — T T T T T T T T 1
onomic marker for an unclassified species, that was significantly anticorrelated Infant Metadata

. .. . - Mother Species
with S. aureus in infants and mothers. In gene-content based strain profiling,
iInfant S. aureus strains were more similar to maternal strains. This improved
understanding of S. aureus colonization is an important first step toward devel-
opment of novel, ecological therapies for controlling S. aureus carriage.

Infant Metadata
Infant Species
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Haemophilus influenzae =
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Alpha-diversity (Gini—Simpson index)

Time =
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Comparison of infants with:

Infants display striking patterns
of S. aureus carriage i
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Daycare -
SA gain -
Daycare -
SA gain =
SA culture =

Self at birth

Self at most recent
preceding timepoint

Breastfeeding -
SA culture =

SA cult or seq -
SA sequencing =
SA cult or seq -
SA sequencing —

Infant beta—diversity (Bray—Curtis dissimilarity)

SA early acquisition —
SA ever acquisition =
SA early acquisition =
SA ever acquisition —

Related mother

SA persistent carriage —
SA persistent carriage —

Metadata Variables Unrelated mothers

Yo SA positive time points —

o

Infant Acinetobacter unclas., S. parasanguinis, S. salivarius, and
Veillonella unclas. and maternal D. pigrum were positively asso-
ciated with infant S. aureus carriage.

(A) 36 mother-infant pairs gave (A)
nasal swabs monthly over the

first year after birth. Culture test-

ing for S. aureus was performed

on all samples and a subset
(n=284) were profiled with shot-

gun metagenomic sequencing.

Infants different SA status

Strain genotypes show similar-
ity in mother & infant S. aureus

Infant S. aureus strains were more similar to those of their own
mothers, compared to unrelated mothers or other infants.
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Finding novel LGT in metagenomes

Lateral gene transfer (LGT) is an important mechanism for genome
diversification in microbial communities, including the human microbiome.
While previous efforts have cataloged LGT in human-associated microbial
iIsolate genomes, directly identifying novel (and potentially recent) LGT
events in human microbiomes is an open challenge. To address this, we
developed a computational method (WAAFLE) to identify novel LGT
events from assembled metagenomes.

Overview of the WAAFLE algorithm

WAAFLE uses homology-based search to identify metagenomic contigs
that can’t be reasonably assigned to any single taxon, but which can be
confidently assigned to a pair of taxa (a putative LGT). Downstream filters
exclude alternative explanations, e.g. gene deletion and misassembly.

a gene within

If all genes have at least modest If not, and a pair of species has If neither condition is met, a contig
hits (>k,) to a single species, WAAFLE strong hits (>k,) over all genes, WAAFLE WAAFLE repeats this process -
assigns the contig to that species. considers a LGT between them. at the genus level (and so forth).
Contigs AgdA BB A A EDPEDPEDEPEPED - it to the gene
A — c— strong A — c— strong A — (homologous gene)
P T o = hits T c— o hits TR o— from Species C
2 g 3 ittt modest [~~~ "~~~ """ TTTToTe modest [~~~ """ """ TTTTT T
S |ToL e T T R hits | Genus G
2 1 weak/no weak/no Species A
WAAFLE call: hits WAAFLE call: hits WAAFLE call: | Species B
Contig assigned to LGT from Species B to Species A Contig assigned to Genus G |

WAAFLE is sensitive, specific, and robust to novel genes

optimizing ky  optimizing k, We trained and evaluated WAAFLE
one-clade two-clade/LGT ] . ] .
homology threshold homology threshold US|ng Synthet|C Con‘ngs bu”t from
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Taxonomic level of LCA for species involved in LGT

WAAFLE is highly sensitive to intergenus LGT and moderately sensitive
to intragenus LGT. WAAFLE was additionally highly specific, even in the
presence of a large fraction of novel sequences. False positives occurred

mostly in the form of spurious intragenus LGT calls.

Novel LGT in the human microbiome

We applied WAAFLE to >2K diverse, assembled human metagenomes
(HMP1-Il), identifying >100K high-confidence, novel LGT events. Novel

intergenus LGT was observed roughly once per 2K assembled genes.

Frequency of undirected intergenus LGT events (genus-level resolution)
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Determinants of LGT rate among human microbiome clades
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Such rate matrices can be additionally
realized as LGT networks. These networks
tended to exhibit “small world” behavior, with
abundant donor “hub” clades transferring

preferentially with phylogenetic neighbors.
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At the left, heatmaps
detail the rates of LGT

between major genera at

selected human body
sites (rates are
normalized to total joint
assembly size).
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LGT rates were higher
for clade pairs in which
1) the clades were more
phylogenetically similar
and 2) the donor clade
was more ecologically
abundant.
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Validating predicted LGT events

We validated 21 additional LGT events identified from healthy human gut
metagenomes (HMP2) by PCR. 18 of these (86%) were supported by
PCR amplification of one or both LGT junctions (see examples below).
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Functional enrichments among LGT-containing contigs

Novel LGTs were highly enriched for mobile elements (as expected),
along with methylation, transport, and uncharacterized Pfam domains.
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INTRODUCTION The Anti-Diabetic Effects of PAHSAs are Transmissible by
Fecal Microbiota Transplantation (FMT)
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Figure 1. Experimental Workflow. (A) 6-week old male C57bl6 chow-fed mice were treated once daily with oral vehicle or _ o _ _ _ _ _
5- and 9-PAHSAs (15mg/kg of each PAHSA) for 21 days. Cecal contents were collected for 16S rRNA and metagenome Figure 4. Beneficial Effects of FMT in HFD-GF Mice Conventionalized with Donor Feces From PAHSA-treated
sequencing. Terminal fecal pellets were used for FMT studies. (B) Feces collected from the same mice in (A) were used as Insulin Sensitive Mice. HFD-GF PAHSA-treated mice (A) gain less body weight, (B-C) are more glucose tolerant, and
EMT inoculum to conventionalize HED-fed GE male mice. (D) are more insulin sensitive compared to control HFD-GF mice conventionalized with vehicle-treated donor feces.

These PAHSA-mediated FMT effects are independent of (E) insulin secretion. *p<0.05 HFD-GF PAHSA-treated mice vs
HFD-GF VEH-treated control mice. #p<0.05 vs. HFD-GF VEH mice for the same time point. Statistics analyzed by

Chronic oral PAHSA treatment imprOves insulin repeated-measures 2-way ANOVA or t-test. n=8/group.
sensitivity in chow-fed mice

SUMMARY
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Figure 2. Daily Oral PAHSA Treatment Improves Insulin Sensitivity in Chow-fed Mice. Male C57bl6 mice treated with - have reduced glycemia 5-hours after food removal
vehicle or 5- and 9-PAHSAs (A) have elevated serum PAHSA levels and (B) no body weight change after 21 days of
treatment. (C) Mice treated with PAHSAs have improved insulin sensitivity after 13 days of treatment. *p<0.05 PAHSA vs.

vehicle. n=12/group. CONCLUSIONS

 PAHSASs have beneficial effects on the gut microbiome.
* The insulin-sensitizing effects of PAHSAs can be conferred by FMT to improve

A g. Bacteroides B _ I glucose homeostasis in recipient HFD-fed mice.
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The Microbiome Analysis Core at the Harvard T.H. Chan School of Public
Health was established in response to the rapidly emerging field of
microbiome research and its potential to affect studies across the
biomedical sciences. The Core's goal is to aid researchers with
microbiome study design and interpretation, reducing the gap between
primary data and translatable biology. The Microbiome Analysis Core
provides end-to-end support for microbial community and human
microbiome research, from experimental design through data generation,
bioinformatics, and statistics. This includes general consulting, power
calculations, selection of data generation options, and analysis of data
from amplicon (16S/18S/ITS), shotgun metagenomic sequencing,
metatranscriptomics, metabolomics, and other molecular assays. The
Microbiome Analysis Core has extensive experience with microbiome
profiles in diverse populations, including taxonomic and functional profiles
from large cohorts, qualitative ecology, multi'omics and meta-analysis, and
microbial systems and human epidemiological analysis. By integrating
microbial community profiles with host clinical and environmental
information, we enable researchers to interpret molecular activities of the
microbiota and assess its impact on human health.
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The Harvard Chan Microbiome Analysis Core supports microbiome analysis for a
variety of molecular data types in human populations or in model systems. Typical
analysis workflow steps include a) molecular data generation of a variety of types,
iIncluding but not limited to sequencing, which are b) bioinformatically processed
into biologically interpretable features and ¢) quality controlled per dataset. This
permits d) microbiome-tailored statistical methods to associate molecular features
with covariates and outcomes, and optionally e) meta-analysis of multiple data
types per project or across multiple projects. Finally, f) the Core can assist with
study design for downstream evaluation of statistical associations in in vivo or in

vitro model systems.
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(c) Assembly-based strain profiling
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Sequencing fragment

Contig  Gene call _—

C TGAT A

Haplotype calls

o D o '
é} @} 0 soon E _ - L~ | AGTATCGGACRA |
[ [ [ [
—D— I | |
B B < 0 ~ ~ 5 O~ < 2 - | TGTATCGGACTA |
Two controls ,'/ I I I I
\ —e— | | | |
~ ~ 3 \D\ 1 \n — | AGCATCCCACAA !
O— [ [ [ [
® [ [ [ [
0 B < ® ~ 3 ~ 5 1 n 2 {/\’I\ : TGCATCCCACTA :
Two cases b=+ bt s ===
R ; [ -6— ¢ + 4 A4 M4
Gene recruiting  Gene-level strain variation SNV-level Syntenic variation  Novel gene diversity SNV-level strain variation
sample reads  (phenotype-associated) strain variation (Phenotype-associated) (phenotype-associated)
d DT e
( ) D@{[ W _ _ _ multiomic ( ) Mechanisms of strain-level
Metagenomlc Metatranscrlptomlc Relative expression relative expression transcriptiona| variation
abundances (DNA) abundances (RNA) (RNA/DNA ratio) analysis
____________________________________ q)
— b5controls 5cases 5controls 5cases  5controls 5 cases © M ™ MNaw™ N
z PPN NN T g Ny LEEe 5
; _________________________________ “—
£ ~ Aglobally RNA-abundant feature o
g ! ___—_ E_—___ ___— ____________ ! explained by high DNA copy number - T
%)
by A globally under-expressed feature - T
é <_ H W ) (DNA abundance exceeds RNA abundance) o© T M M
n
. ©
g A globally over-expressed feature o
8 ( __N B BN B H ENOE ) (RNA abundance exceeds DNA abundance) Gene 2 over-expressed
o (up-regulated)
O a7 T T T T T T T T T T T EET oETETN A feature that is depleted in case RNA
@ ! ___— _______ —___ _________________ ! due to reduced case DNA copies ‘;‘J ™ ™
pust "
S : - ©
= B BN BEE PEE A feature that is depleted in case RNA O
..8 ( ) due to under-expression in cases Gene 2 under-expressed
g Afeature that i ched | RNA (down-regulated)
eature that is enriched in case
'% ( s e ) due to over-expression in cases ™ ™" ™uwT
8 3
= (@)
____DI0EBN [ _ N O e Gene 2 under-expressed
Low High  Low High DNA . RNA (not encoded by strain)
DNA DNA RNA RNA  favored =) favored

Shotgun metagenomic and metatranscriptomic sequence data are particularly
amenable to detailed computational analysis, including multiple complementary
methods for a) strain tracking or differential microbial expression. b) Reference-
based methods can identify strains using either single nucleotide or structural
(genomic) variants, and ¢) can be used in tandem with assembly-based methods

for novel microbial discovery.

d) Whole-community microbial

differential

expression can additionally be detected either in tandem with or in addition to
metagenomic copy number changes, and e) analyzed per gene, pathway,

microbe, or human individual.

Mallick, H. et al. Experimental design and quantitative analysis of microbial community multiomics. Genome Biology. 18:228 (2017).

Microbial community profiling

The first step In microbiome molecular data analysis is quality control
(KneadData) and profiling to transform raw data into biologically interpretable
features using a reproducible workflow (AnADAMAZ2). This includes identifying
microbial species (MetaPhlAn2) and strains (PanPhlAn/StrainPhlAn),
characterizing their functional potential or activity (HUMANNZ2, ShortBRED),
and integrating metagenomics with other data types (PICRUSt, MelonnPan),
among others.
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Downstream analysis and statistics

Once profiled, microbial communities are amenable to downstream statistics
and visualization much like other molecular epidemiology such as human
genetic or transcriptional profiles. Like these other data types, microbial
communities often require tailored statistics for environmental, exposure, or
phenotype association (LEfSe, MaAsLin) or for ecological interaction discovery
(BAnOCC). The Harvard Chan Microbiome Analysis Core also provides a
variety of tools for bioinformaticians working in the microbiome space.
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studies

Mclver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics, 34:7, 1235-1237 (2018).
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° Per-feature taxonomic differences within the gut microbiome of
S S—— patients with inflammatory arthritis mimic those observed in patients
—'. & o with IBD but with lower magnitudes. Mixed linear models were used
” ® HC to identify an enrichment in oral taxa in the gut microbiomes of
a NIJP patients with current inflammation as denoted by increased
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Functional profiles are more conversed across the human population than taxonomic profiles. However, we did find several
pathways and enzymes that have increased encoding across the gut microbiome of patients diagnosed with arthritis. Many of
these functions were associated with nutrient acquisition and processing within the gut ecosystem. Here we enumerate two of
these trends in folic acid metabolism (top) and iron savaging (bottom). Independent of methotrexate usage, a well-known
competitive inhibitor of folic acid metabolism, we identified a significant increase in the encoding of several pathways (top) and
enzymes within the folic acid metabolism pathway. This pathway lies upstream of DNA synthesis, production of choline, and
epigenetic methylation to name a few processes dependent on correct folic acid metabolism. Additionally, many enzymes
associated with the scavenging of iron were identified to have increased encoding in patients with inflammatory arthritis.
Patients with inflammatory arthritis often are concurrently diagnosed with anemia and previous work has found decreased
concentrations of folic acid, vitamin B, and iron in the serum of these patients. We have yet to elucidate if the increased
encoding of these pathways and enzymes within the gut communities are causal or in response to the changes within the host.
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Characterizing microbial community viability {08 100 128
using propidium monoazide
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Characterization of built environment (BE) microbiomes is of great importance PMA treatment SUCCGSSfU"y depletes relic DNA The effect of PMA'treatment Vari_ed by
different surface types in the built environment

Iven the associations between microbial exposure and human health in indoor - . g
Ssgettings. Although many studies have explored the taxonomic composition of In Synthetlc communltles ,
BE microbiomes using DNA sequencing, this method on its own suffers from Gowp1 Growp2 Group3 Groupd Grop5 Group6 Group7 Group8 Groupd Growp10 ] Samples  from Bpstons | Trw o] o ruar ] [ | o
an inability to discern viability. Here, we present our work to rigorously s BN T 3 subway - system did not CERRE ] oy
benchmark "PMA-seq" (propidium monoazide treatment followed by 16S rRNA : 2 0ol :esptond tcon3|stenly to PMA e - = e
amplicon sequencing) as a screen for microbial viability in both synthetic and L | _ | LE reatment. AN =_=ip= = Chie
environmental microbial communities. Our validation started with synthetic o ST e e B DR el TR S0 SR E h- j * All surface types were §= Loy -I_ e
mixtures of live and heat-killed E.coli and S.sanguinis in known proportions. S R e R P S PR P s i LI dominated by human e ST LT = s
PMA-seq successfully reconstruct the communities of simple mixed culture. 5 commensals;
We next evaluated the effects of community background on PMA-seq in § g » Seats and walls had larger
various community samples spiked with known concentrations of viable and f m compositional differences 5 - é

heat-killed E.coli. Against a realistically complex communities, viability was no § : - after PMA treatment; 5 D l e
longer accurately assessed, with the results largely affected by initial biomass | § Samples clustered by ‘:, i o A

and compositional diversity. Finally, we applied PMA-seq to swabs from the S - A A A - R - T S T e e e T E 5w « Source material for all &, H s - g| S
Boston subway system. Not all samples respond consistently to PMA S. sanguinis Ecoll Others 7 PuAfree ] PMA-treated samples and by PMA ’
treatment. Overall, we revealed that PMA-seq was effective in simple synthetic _ | = o | treatment for the seats | R
communities, but may be premature for viability assessment in realistically PMA treatment depletes relic DNA completely in groups containing pure live or dead and walls. R

bacterial culture (Group 2, 4 and 6);

*In mixed cultures (Group 5, 7 and 8), the average abundances of two Similar samp|es among different studies

microorganisms change in consistent trends with the mixed proportion.

complex community samples.

Peridium mohnoazide (PMA) treatment * These results agree with previous studies in pure cultures/simple microbial respond con3|stently to PMA treatment
. . communities, e.g. Nocker et al. 2007, Chen et al. 2011, and Kim and Ko 2012. 6. cteanmoom for Compursereon Computermouse MBTAsoat  MBTAwal  MTAGip  MBTAtouehscreor
for viability assessment Rl e = e = [ e [ F O F F F ™
Propidium monoazide is a DNA-intercalating dye that is membrane-excluded b s _ilifvs G . R e e = . .
foP . J & Y || Viability is not accurately assessed by PMA In P O U R e -
viable cells, but can be photoactivated to deplete unprotected DNA. To evaluate st - - - - - -
its performance in microbial communities, we first constructed ten synthetic synthetlcally sp|ked communitites R e E ; = - -
communities with live and heat-killed E.coli and S.sanguinis mixed in different o - _ e = . . e - &
- TS AT aliva o i 4 b : . - : =
Propo |"t|0n . Spike- Spike+ Spike- Spike+ Spike- Spike+ Spike- Spike+ B s ciront e N = . N R
PMA- | PMA+ PMA- | PMA+ PMA- = PMA+ PMA- = PMA+ PMA- | PMA+ PMA- = PMA+ PMA- | PMA+ PMA- = PMA+ 93\3352';3222:: e P R e 4
E.coli S. sanguinis Mixed proportion 100% > u u Taxa fg_ilbd”‘ - ? . - : _ -
(iveldead)  (live/dead) 1 2 3 4 5 6 7 8 9 10 s SR R T RN RN PR e i — T el ed’ edl” o ed’ e T T
o 75% = = - = | F= | = o_Sireptophyta S oda S S 3 S S a 3 33 S Sasg S Ssdoa S S 3 § §§§ S BS S S g S oS
+ 24 - § e st B fan " = - | ——
23 2 | | | | I-l o B | Pl | Comarassas Microbial taxa with apparent abundance changes (>= 0.01) after PMA treatment are
2 \ - -0 - = 7 eeksetacoce sometimes replicated in similar sources among different studies.
' ' ' & - N ERBREE st BRE oveiobactorscecs : :
We next evaluated the effects of microbial community background on the || ® \ ol e LB = . Corynebacterium, Bacillus and Staphylococcus have apparent abundance
performance PMA-seq in diverse natural communities from computer screens and . e PR L o Sreptcsees changes after PMA treatment in microbial communities from clean room floors,

mice, soil and human saliva. Swabs were collected in four biological replicates office built environment and Boston subway systems. By comparison, soil

and spiked with known concentrations of live and heat-killed E.coli culture. . communities are relatively stable to PMA-treatment.
PMA efficacy was o - .t | ¢I n ) ® -  The "PMA-reactive migrobes" in ’Fhe BE samples are mostly Com.mensa.ls from
calculated using the 'COI';‘ZEGC;'er;d) dsarrpusr seraan, mouss, soll sallve] §$D QQ = | - - human skin or oral cavity, suggesting that the abundant, human-derived microbes
absolute amount of 3 H o ﬁ o are present in non-viable forms
E.coli with and 4 N g QWP ’ : g éé I 4 KSQ N _
without ~ PMA a — 1 - « 4 . Q o Conclusions
treatment. B ey Overall, we revealed that PMA-seq was effective in simple synthetic communities,
Built environment microbiome were collected from Boston subway systems.  ,, o RN B B but may be premature for viability assessment in realistically complex community
Surfaces were swabbed from three seats, three walls, four touchscreens and four re———" o | | samples. In the next step, we will compare PMA-seq to RNA-based high-
grips on the Green Line E branch and from Park Street Station. PMA-seq does not accurately assess the viability of spiked community samples. throughput sequencing in determination of viability in BE microbiome.

Subway samples PMA For this study, we had a total of 190 . Ic;gvmvpbc;(;irgsrsmz S;,:gflelz,sl\;f:r?rég?r: eurl:,: e\:\v\;:irlgn:cr;?etrhi\;jelraergoegscehr\alggeisnlnthrglc;]ric;tr)::: Acknowledgments

w, 165 samples, comprising of thqse from biomass samples; We are grateful to the Boston MBTA and Transit Police for their E
¢y Ppure —cultures,  E.coli spike in + Samples were clusted by source material in all sample types and by PMA assistance with this research, particularly for ensuring that study —my

7 e

» ) experiments, the subway samples and treatment in low biomass samples from indoor office: personnel and subway passengers were safe and informed. This study
various - experimental and - technical . Calculating from the absolute amount of spiked E.coli, PMA treatment partially has been supported by the Alfred P. Sloan Foundation. Methods for the
controls | | depleted viable cells in computer screens, mice and soil samples, while analysis are available from the bioBakery workflows at:

16S rRNA qPCR was performed on the samples of synthetic cultures and spiked incompletely removed relic DNA from dead cells in saliva samples. http:”hUttenhOwer.Sph.harvard.edu

natural samples to determine bacterial mass.
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Abstract

The gastrointestinal tract contains high levels of proteases,
one of the most abundant of which is trypsin, which is
synthesized and secreted by pancreatic acinar cells. In
addition to its primary function in digestion, proteolytic
activity is also believed to play a role in mucus consistency
and mucosal antigen processing. Accumulated evidence
indicates that dysregulated proteolysis plays a pivotal role in
the pathophysiology of several disorders centered on the
colon. In our recent studies to investigate the effects of
early-life gut microbiota on T1D onset in the non-obese
diabetic (NOD) mouse model, we observed that the
perturbed early life gut microbiota may dysregulate mucosal
physiology through mucin genes muc2 and muc4. Therefore,
in this study, we aimed to evaluate intestinal trypsin
activities in cecal contents in germ-free and conventional
C57BL/6 mice, as well as in the single pulsed antibiotic
(1PAT)-exposed NOD mice. Using an enzymatic approach, as
expected, we found significantly higher trypsin activity in the
cecum of germ-free compared with conventional mice. We
also found that mice with antibiotic-perturbed microbiota
had increased fecal trypsin levels at the end of the antibiotic
treatment; however, the differences became reduced over
time. By tracking the occurrence and development of T1D,
we observed that the fecal trypsin levels in mice that
developed T1D were higher than the mice that did not
develop T1D. These results suggest that gut microbiota
perturbation may lead to increased distal gut trypsin activity,
which may have downstream effects on colonic luminal and
cell-surface proteins, affecting T1D pathogenesis.

Study Design

* NOD 1PAT Study Design

Non-acidified water (Control)

# Caecal and ileal collections
* Fecal microbiome collections

Therapeutic dose tylosin (PAT)

Diabetes Tracking

P5-P10 i i i | | |

1.7 2 4 5 6 7 10 30
# * # * #
% *

+ Age(weeks)

* p-NA concentration was measured as an indicator of active
trypsin concentration in each samples. Absorbances was
determined at OD=405nm using microplate readetr.

For more details, please contact: mz476@cabm.rutgers.edu
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Figure 1. Transcription of Muc2 and §
Muc4 in ileum and colon in early life. £ &
1PAT exposure reduced Muc2 and 573
Muc4 gene expression in P12 to P42 in 2 &
both tissues, as determined by RT- E E
qPCR. Statistical significance é

determined by the Mann Whitney test.
*p<0.05; **p<0.01; ***p<0.001; and
*x¥%*p<0.0001.
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Figure 2. Microbial status affect
cecal active trypsin level. Active
trypsin activity in the cecum of
germ-free mice is significantly
higher compared with conventional
mice. (A)Cecal active trypsin level
was determined by trypsin assay kit
(Abcam, Boston USA). Statistical
significance was determined by the
Mann Whitney test. **p < 0.01
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Figure 3. (A) Fecal active trypsin level in single pulse antibiotic (1PAT) - exposed NOD mice and

control mice. Antibiotic-perturbed microbiota increase the fecal trypsin level in the mice at the end *

of antibiotic treatment, but the change is transient. (B) Fecal trypsin levels after antibiotic and its
relationship to T1D development. Active fecal trypsin levels were detected in 4-week old mice

using the colorimetric assay. All mice were monitored for diabetes by weekly measurement of tail

blood glucose. Statistical significance was determi

ned by the Mann-Whitney test. *p < 0.05.
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male NOD mice. Statistical significance was
determined by the log-rank test. *p=0.019.
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Figure 5. Transfer of MomDO restored 1PAT-
induced gut microbiome structure. (A)
Alpha-diversity (phylogenic diversity (PD)) of
fecal microbiota in control-PBS, 1PAT-PBS
and 1PAT-MomDO over time. Significance
was determined by one-way-ANOVA
*¥***p<0.0001. (B) Beta-diversity, as
determined by unweighted UniFrac analysis
of control-PBS, 1PAT-PBS and 1PAT-MomDO
fecal microbiota over time, analyzed by
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all significant (*p<0.002), determined by
one-way-ANOVA with Tukey correction for
multiples comparisons

Figure 6. Level of active cecal trypsin level in

antibiotic-exposed NOD mice after receipt of
MomDO cecal transfer. P23 Active cecal trypsin

levels were measured using Trypsin assay kit
(Abcam, Boston USA). Statistical significance
was determined by the Mann Whitney test
*p<0.05, **p < 0.01.
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Conclusion

* Active trypsin in cecal contents was significantly increased in Germ-
free mice compared to control mice, thus microbiota neutralize trypsin

activity.

* Mice with an antibiotic-perturbed microbiota had increased fecal
trypsin levels at the end of the antibiotic treatment, with changes
lasting for at least 4 weeks (but not 10).

Fecal trypsin levels in week4 mice that developed T1D later are higher

than in the mice without T1D, suggesting a possible pathogenic role.
After receiving maternal cecal materials, active cecal trypsin activity
reverted to normal.-thus transfer restored microbiome function.



Changes in Intestinal Gene Expression in Antibiotic-Treated NOD Mice
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Background - Reuts N ____ Disusion |

Over the past decade, the incidence of Type 1 Diabetes
(T1D) has been globally on the rise!. Not only is the incidence
increasing, it is also developing earlier in life. Therefore, we
need to better understand childhood exposures!. Studies have
been done on this topic with non-obese diabetic (NOD) mice
which are a strain of mice that spontaneously develop T1D.
That research has demonstrated that NOD mice exposed to a
single course of antibiotics showed accelerated onset of T1D2.
Treatment with antibiotics changed the gut microbiome profile
of these mice?.

With this information, we sought to analyze how these
changes impact gene expression of proteins that play a role in
epithelial barrier function and innate immunity. The three
genes | focused on were REG3-y, F2RL1, and zonulin. REG3-y is
a gene that encodes an antimicrobial peptide that plays a role
in innate immunity®. F2RL1 is a G-protein coupled receptor
involved in inflammation®. Zonulin is a haptoglobin precursor
that functions in tight junction disassembly via an epidermal
growth factor-like motifs.

RT-qPCR:

lleum and colon samples were taken from control mice,
NOD mice treated with PAT (a single course of the macrolide
antibiotic, Tylosin) and NOD mice treated with PAT that were
given a gavage of their mother’s intestinal microbiome. The
intestinal samples from the pups were taken at postnatal days
23 and 42. In order to analyze changes in gene expression, RNA
was extracted, converted to cDNA, and expression was
analyzed using RT-gPCR using primers specifically designed for
each gene. Expression was normalized to the housekeeping
gene, GAPDH.

Protein Assay and ELISA:

A total protein assay and ELISA were performed to analyze
levels of zonulin gene expression. The protein assay was done
on ileal and colonic samples obtained from mice at day 23.
Samples were from the control, antibiotic-treatment, and
restoration groups. The protein assay was performed using the
Pierce BCA Protein Assay Kit and protocol. The ELISA was done
on the same samples using a MyBioSource Mouse Zonulin
ELISA kit and protocol.
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REG3-y:
There was a significant decrease in gene expression between the control and the treatment groups and between
the restoration and treatment groups at day 23. The difference between the control and treatment group
remained significant at day 42. There were also significant increases from P23 to P42 in gene expression within
each group (Figure 1). No significance was found for the colon samples (Figure 2).

REG) Nermaized bty Dute: REG) Normaized try Dute

REG_Neemalized by P23 REGY_Neemalized by P23

2 ) e

Figure 2: Colon REG3-y data normalized by each
date’s control (left) and by P23 controls (right)

Figure 1: lleal REG3-y data normalized by each
date’s control (left) and by P23 controls (right)
F2RL1:
No significant differences were found for the ileal samples (Figure 3). However, the colonic samples showed a
significant decrease between the treatment group and the control at day 23. This remained at day 42, as well as
a significant difference between the control and restoration (Figure 4).
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h Figure 4: Colon F2RL1 data normalized by each
date’s control (left) and by P23 controls (right)
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Zonulin:
There was no significant change in expression within either the ileal or colon samples.
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Figure 5: From left to right: data from ELISA on ileal and colon, total protein assay data, comparison of
zonulin to total protein.

REG3-y:

REG3-y may have an impact on the earlier onset of T1D since
it was significantly impacted by the antibiotic treatment. The
restoration treatment was successful since there was no
significant difference between the control and restoration
groups. The colon does not seem to be affected by antibiotic
treatment.

F2RL1:

F2RL1 expression does not seem to be affected by antibiotic
treatment in the ileum. F2RL1 in the colon may play a role in
the earlier onset of T1D since the expression was significantly
decreased in the treatment group compared to the control.
The restoration treatment was also successful.

Zonulin:

Zonulin gene expression may be too low to analyze via RT-
gPCR. According to the assay and ELISA results, zonulin does
not seem to have an impact on early T1D onset.

Future Direction

REG3-y and F2RL1:

In the future, it will be beneficial to research the regulation of
REG3-y and F2RL1. Researching how these genes are regulated
will help us understand what is being disturbed following
antibiotic treatment. It would also be useful to test intestinal
epithelial cells using RT-gPCR to analyze gene expression. This
would help us understand gene expression in epithelial cells
specifically rather than the tissue as a whole.

Zonulin:

| would like to test this gene again using a more sensitive
protein assay. It would also be beneficial to examine other
similar tight junction related genes such as zonula occuldens-1
(ZO-1). Additionally, | am interested in zonulin expression in
control mice compared to the NOD mice since studies have
shown that relatives of patients with T1D also have higher
levels of zonulin expression®. The question this raises is
whether there is a difference in expression due to antibiotic-
treatment or is the difference present beforehand?

Acknowledgements

| would like to thank Dr. Xue-Song Zhang, Dr.Martin Blaser and
the rest of the Blaser lab for all their support and guidance this
summer.




Discovery of new bioactive microbial metabolites in Inflammatory Bowel Disease
Sena Bae?, Amrisha Bhosleb<, Eunyoung Chun?, Yancong Zhang®<, Julian Avila-Pacheco ¢, Jessica K. Lang?, Kathryn G. Rosinski?, Clary Clish¢, Ramnik Xavier¢, Hera Vlamakis®,

Eric A. Franzosa®¢ , Curtis Huttenhower®®<* and Wendy Garrett®<*

a®PDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
bDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, 02115, USA

“Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

Abstract

The gut microbiota and associated bioactive compounds have been
implicated as causal and as protective factors in gastrointestinal
disorders, including the inflammatory bowel diseases (IBD). Both
host immune interactions with gut microbes and microbial small
molecule products are likely responsible for these bioactivities.
Several gut microbial metabolites, e.g. short-chain fatty acids and a
subset of omega-3 fatty acids depleted in GI inflammation, have
demonstrated therapeutic potential in IBD by attenuating gut
inflammation. However, discovery of new bioactive compounds
from the gut microbiome relevant to IBD or inflammation is
challenging due to the vast numbers of uncharacterized metabolites
produced by the microbiome.

To address this challenge, we investigated two IBD cohorts with
integrated metagenomic and metabolomic profiles of the gut
microbiome: PRISM, the Prospective Registry in IBD Study at
MGH, and the Integrative Human Microbiome Project (HMP2).
Putrescine and a potentially novel family of metabolites microbially
derived from it were among the ~10,000 metabolites differentially
abundant (PRISM n=8,792 and HMP2 n=9,444) during gut
inflammation, of which only ~100 were characterized (PRISM
n=157 and HMP2 n=99). We validated the dependence of these
putrescine derivatives on the gut microbiome and their bioactivity in
vivo by treating germ-free, gnotobiotic and conventional mice with
dietary putrescine, which induced changes in immune system
activity in a microbial community-dependent manner. This included
that putrescine selectively affects host colonic and ileum M2
macrophage cell populations only in conventional mice. These
results underscore the power of combined computational and
experimental approaches for identifying microbially derived
metabolites with general immunomodulatory activity and specific
relevance for IBD patient care.

Introduction

Validation of MACARRON

Figure 1. Hierarchical clustering of
differentially abundant metabolomic
associations (n=8,792) from the PRISM
metabolomics dataset. The yellow box
represents groups of metabolites that are
enriched (n=6,400) in IBD patients and the
blue box represents depleted groups of
metabolites (n=2,392) that are classified into
the same group using MACARRON.
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Screen high-priority metabolites in vivo
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Figure 5. Lamina propria flow cytometry of colonic and ileal M2 macrophage cells,
MMR+CD11b*CD11¢'Gr-1- cells out of CD45* cells, from GF, ASF, and SPF mice fed
putrescine or control. Data shown as the mean £ SEM *p <0.05, two-tailed t-test.
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Figure 6. Heatmap representing DA metabolites from fecal and cecal untargeted LC-MS
metabolomics in response to putrescine treatement. The rows display metabolites that are
differentially abundant metabolites in respect to putrescine treatment and the column represents
individual sample.

Future Directions

Although there are highly effective IBD therapies that directly target
the immune system, many IBD patients do not achieve durable
remission, lose responsiveness to treatment over time, or suffer from
the broad immuno-suppressive effects of such treatments. Despite
the strong association of gut microbiome configurations with IBD
and advances in taxonomical profiling of the gut microbiome, the
effective translation of specific mechanisms of host-microbiota
signaling and microbial metabolites for IBD clinical care remains
largely elusive.

Disease 3 .
(CD) Metabolites met datasets used for this

project and IBD cohorts.
Number of identified and
unidentified metabolites in
each data set.

'{" " ot e Nontargeted Identified Table 1. IBD metabolomic

PRISM 34 68 48,000 628

HMP2 27 67 ’1 81,000 597

Human fecal metabolomics, using untargeted high-resolution liquid
chromatography-mass  spectrometry (LC-MS), can provide
comprehensive functional readouts of gut microbial activity and
host-microbial interactions. Untargeted LC-MS techniques profile
tens of thousands of metabolites in individual human stool samples;
however, our understanding of their bioactivity is limited to ~<1%
(Table 1). Thus, an in silico technique to prioritize these metabolites
1s a critical unmet medical need for realizing the potential of
microbial metabolites for IBD treatment. We identified new IBD-
associated uncharacterized metabolites using two publicly available
IBD metabolomic datasets, PRISM and IBD, by MACARRoN and
tested its biological function in vivo.

Objective : (1) to demonstrate that the uncharacterized metabolites
could be generated in vivo from a chemical precursor in a gut
microbiota dependent process and (2) to evaluate a change in the
host immune system in response to the precursor in a gut microbiota
dependent manner.

C57BL/6 : 6-7wks

ASF SPF
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n=6
@ b 1% putrescine dihydrochloride
in drinking water
n=6 n=12
| | | |
Duration (weeks) | I I |
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Metabolite profiling Fecal content *
(untargeted LC-MS) © racal content +
] lleum epithelial cell +
Gene expression
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lleurn lamina propria +
Immune response
(flow cytometry) Colon lamina propria +

Figure 4. Schematic of the experimental design.

We employed mice with distinct gut microbiota communities, germ
free (GF), Altered Schaedler Flora (ASF, a minimal microbiota of 8
species), and SPF C57BL/6] mice, in the presence or absence of
putrescine and profile their microbial activities, host gut barrier
function, and immune cell phenotypes.

*  Characterize the chemical structure of the microbially-
associated new bioactive metabolites followed by metabolite
synthesis.

* Determine the efficacy of the bioactive metabolites in IBD
preclinical mouse models.

* Identify bacterial species that generates the bioactive
metabolites.

Conclusion

e  Putrescine selectively affects host colonic and ileum M2
macrophage cell populations in a gut microbiota- dependent
manner.

*  The bioinformatically-prioritized uncharacterized metabolites of
the putrescine group from the IBD cohort data are also
differentially abundant features in the mouse metabolomes in the
presence of a gut microbiota.
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We present SparseDOSSA2, a hierarchical model of microbial
community count observations, suitable for simulation of such data at
population scale. Our model has specialized components targeting
characteristics unique to microbiome data, including sparsity, joint
effects of biological and sequencing variation, and ecological feature
dependencies, and is capable of simulating mock microbial counts that
recapitulate the population structures in training template communities.
We hope that these methods and findings will be of broad applicability
iIn human transcriptional and microbial epidemiology, and will inform
future population study designs and analysis practices.

The SparseDOSSA2 model for
microbial abundance observations

Abs. abundance Rel. abundance Count

2000 1.00 200000

1500 0.75 150000

1000 0.50

)
|
| |

— | 0.00 | ™

100000
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l. ==
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The SparseDOSSAZ2 model hierarchy is motivated by the data generation
mechanism of microbial sequencing count measurements. Absolute
abundance of microbial taxonomic and functional features, unmeasured
with sequencing technology only, give rise to compositional relative
abundances. Sequencing count measurements accurately approximate
such values with enough sequencing depth.

(7717“170-%) (Trphu’pva-zz)) ()
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The hierarchical model is setup according to the same mechanism.
Unobserved absolute abbundances (A) are generated according to zero-
inflated log normal distributions (parameters pi, mu, sigma, and Omega).
They then give rise to the relative abundances (X) and sequencing counts
(C).

SparseDOSSA2 recapitulates
microbial community structures

We evaluated SparseDOSSAZ2's fitting performance on datasets with
different microbial community population structures. In both continuous
(healthy and inflammatory bowel disease stool gut mucosal) and discrete
(heathy human vaginal) communties, "mock" samples generated from
SparseDOSSAZ2 closely follows the distribution of the original real samples,
as evidenced by ordination visualization as well as PERMANOVA
guantitative evaluation.

Healthy stool Healthy vaginal Diseased mucosal
R2 =0.026 R2 = 0.011 R2 =0.012
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Per-feature relative abundances also have similar distributions between
original datasets and SparseDOSSAZ2 simulation samples. Agreeing with
overall population structure, the stool samples display gradients of relative
abundances, whereas vaginal samples are often characterized by the

dominating taxa.
U

log 10 abundance
—5-4-3-2-1

HMP1-Il Stool | SparseDOSSA
I

HMP1-Il Vaginal ; SparseDOSSA

SparseDOSSA2 generates new
microbial features similar to originals

Prevalence

Mean abundance Variance

H HMP1-lI Stool
SparseDOSSA

Per-feature prevalence, mean, and variance parameters are estimated in the
SparseDOSSA2 model, and then used to generate new microbial features
that follow similar distributions as the original dataset.

Metadata and feature-feature
association spike-in

SparseDOSSA2 can simulate spiked-in associations with metadata for,
e.g., benchmarking purposes. Differences in mean relative abundances
between two classes of a simulated binary sample property (metadatum)
along with the empirical inter-quartile range of all features as contrasted
between metadatum levels (a). For continuous data, correlation of one

feature into which an association to a sample metadatum has been spiked
with that metadatum’s value (b).

(b) Validation of continuous metadata
spike-in and detection

(a) Validation of binary metadata
spike-in and detection

0.06

%)
@ Detected positive association

- Detected negative association
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All synthetic features Synthetic (continuous) metadatum value

SparseDOSSA2 can also simulate associations between microbial
features. The pairwise (absolute) Pearson correlations based on raw
counts between microbial features in the PRISM cohort (above the
diagonal) and in the SparseDOSSAZ2 fit to this dataset (below the
diagonal) are similar (a). Pairs of features that are targeted to be
correlated with each other (above the diagonal) and pairwise Pearson
correlations in the resulting modified dataset (below the diagonal) also
agree (b).

Feature-feature correlations:
Synthetic spike-in versus target

(a) Feature-feature correlations: (b)
real data versus synthetic null

PRISM Dataset
Target of Spiked Synthetic Data

Null Synthetic Data

0 0.2 |[ 0.4 0.6 0.8 1I
Pearson Correlation
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The microbiome plays a role in metabolic health and is modulated by host diet. The specific
Interactions between microbial enzymes and dietary compounds are not yet known. To
understand this mechanism, we assess the relationship between dietary compounds and
metabolic pathways that are carried and transcribed by individual species. Here, we report on

Metatranscriptional ecology
A)

Species diversity of pathway distribution and transcription

Gaussian process models for
time-series microbiome analysis
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Chronic Systemic Inflammation
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Higher intake of dietary fiber is associated with a decreased risk of IndiVidual miCI’Obial members are POtentiaI biOChemicaI COntribUtOrs

inflammatory diseases such as diverticulitis and inflammatory bowel disease.

Dietary fiber may abrogate the chronic systemic inflammation induced by aSSOCiated Wlth fiber intake and CRP tO minObe'SPeCifiC SeleCtion

factors including dysbiotic gut communities. Data regarding the detailed
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Colorectal cancer (CRC) most often occurs sporadically (as compared to
genetic forms of the disease) and is one of the leading causes of cancer-
related death worldwide. Environmental factors contribute substantially to
CRC risk and development, particularly the intestinal microbiota. Recent
meta-analyses of gut microbial profiles in CRC have identified multiple
taxa (including Fusobacterium) reproducibly associated with late-stage
cancers across populations. However, neither the causal mechanisms nor
corresponding microbial strains and small molecule products have been
pinpointed for CRC, particularly among subsets of non-Fusobacterium
clades newly associated with the disease. We leveraged stool
metagenomic profiles from 352 CRC patients, 143 with pre-cancerous
adenomas, and 312 healthy controls from seven recent CRC microbiome
studies Iin combination with our integrated metagenomic and
metatranscriptomic data from the Integrative Human Microbiome Project,
Nurses’ Health Study, and Health Professionals Follow-Up Study. Within
CRC-associated species, we assessed strain-specific gene carriage and
sub-species phylogenetic enrichments via gene- and variant-based
culture-independent profiling. The former identified gene families carried
significantly more or less frequently by individual strains during disease,
and the latter called out subclades with significant phylogenetic
associations with carcinogenesis. In some cases, these genes and
nucleotide variants also corresponded with transcriptional changes. This
study adds further evidence to the hypothesis that strain-level genomic
variation in gut microbes may be a major driver in the initiation or
development of colorectal cancer.

a. Stool sample, data generation and profiling CRC populations

Stool samples from nice CRC populations

ﬁ n=1340

Meta-analysis of CRC metagenome

DNA DA
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Taxonomical profiling (MetaPhlAn2)
bioBakery v3.0

Functional profllmg (HUMANNZ2)
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b. Data analysis
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Metagenomics of the stool microbiome in CRC populations (n=1340). a)
Samples were metagenomically shotgun sequenced to yield taxonomic
and functional profiles. b) Features of the microbiome were associated
with  CRC outcomes using meta-analysis modeling, in addition to
phylogenomic association with CRC outcomes.

Consistent taxonomic microbioal
biomarkers of CRC
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Effect size

Pooled effect sizes for the 30 significant features with the largest effect
size, calculated using a random effects model on expanded MetaPhlAn2
species abundance.

1340 CRC shotgun metagenomes from
nine populations
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Metagenomics of the stool microbiome in CRC populations. a) size and
characteristics of the large scale CRC metagenomic datasets. b)
Performing batch (study) effect adjustment in CRC microbial features.c)
Principal coordinate analysis (PCoA) of stool metagenomic species. d)
Typical of western populations, gradients of Bacteriodetes and
Firmicutes dominance are seen across populations.

E.coli strain genomes associated with CRC
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The selected 68 functional genes of highest effect size within E. coll
enriched in the each of CRC phenotype.

Strain variants associated with CRC
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CRC outcomes R2

PERMANOVA showed CRC disease accounted for variance for some
of the CRC-associated species.
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Antibiotic-induced perturbations of the gut microbiota alter ileal microRNA
expression profiles in non-obese diabetic mice

N\

Background: Disruptions to the intestinal microbiota in early life increase
the risk for autoimmune diseases, such as type 1 diabetes (T1D). A single
course of antibiotic treatment (1PAT) from 5-10 days of life accelerated T1D
development in male non-obese diabetic (NOD) mice, inducing substantial
changes in gut microbial composition and ileal gene expression. MicroRNAs
(miRNAs) are important post-transcriptional regulators of gene expression,
and recent findings suggest an association of particular miRNAs with T1D
pathogenesis. Here we investigated the role of ileal miRNAs in microbiota-
mediated regulation of host protein-encoding genes.

Methods: We treated NOD mice of 5-10 days of age with 1PAT only or with
no antibiotics (Control), and a group of 1PAT-mice were given cecal
microbiota from healthy donors, as a restorative (Restore). lleal mMRNA and
MiRNA gene expression were evaluated by RNA-Seq and NanoString,
respectively, with further quantitation using RT-gPCR. We then employed a
computational approach to predict the interactions between differentially
expressed mRNAs and miRNAs.

Results: Receiving cecal microbiota transfer rescued the antibiotic-induced
acceleration of T1D in NOD mice. Unsupervised hierarchical clustering of
MRNA and miRNA expression showed restorative effects of the cecal
microbiota transfer at a global level. Among 599 miRNAs measured, 59 had
significantly differential expression between treatment groups, including six
major miRNAs that responded to both antibiotic exposure and microbiota
restoration. These six mMiRNAs were predicted to target 432 significantly
differential MRNAs, many related to host defenses and inflammation.
Particular miRNAs also were identified to regulate critical antimicrobial
genes via multiple signaling pathways.

Conclusion: These findings provide evidence that perturbations of the gut
microbiota alter ileal miRNA expression profiles which further impact mRNA
gene expression. Signaling from both the 1PAT-perturbed and the cecally
transplanted restored microbiota involve specific miRNA expression
differences to affect ileal mMRNA expression. Further investigations of the
identified miRNAs and their targeted mRNA genes will deepen insights into
the role of miRNAs in mediating microbiota-host interactions and T1D
development.

Introduction

Type 1 diabetes is a chronic condition in which the body produces little or
no insulin. The incidence of T1D has sharply risen globally in the past few
decades. Genetic changes alone cannot explain this dramatic change —
environmental and lifestyle changes leading to altered microbiome have
played an important role.
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Exposing male NOD mice to 1PAT early in life induced gut microbiota
perturbations and ileal gene expression alterations, which interfered with
the development of host immunity and significantly accelerated T1D onset.

Yue (Sandra) Yin, Xue-Song Zhang, Martin J. Blaser
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854
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Receiving cecal microbiota transfer from MomDO increased 1PAT mice
survival rate at W30 and tended to rescue the 1PAT accelerated T1D
development. It restored the 1PAT-induced alteration of ileal mMRNA and
MIRNA gene expression, which now closely resemble the expression

profiles in control mice.
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Linear regression of miR-21 vs. Reg3y
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A linear relationship was observed between miR-21 and Reg3y. miR-21
activates the mTOR signaling pathway, potentially up-regulating Reg3y.
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Conclusion

Differential analyses of mMRNA and miRNA gene expression provide
evidence that antibiotic-induced perturbations of the gut microbiota alter
ileal miIRNA expression which further impact mRNA gene expression.

The close resemblance of mMiIRNA and mRNA gene expression profiles
between control mice and mice receiving microbiota transfer suggest
that receiving cecal materials from healthy dams early in life can
potentially restore 1PAT-accelerated T1D development and reshape
iImmunity.

A key miRNA miR-21 was identified to regulate important intestinal gene
Reg3y via the mTOR signaling pathway. Additional six major miRNAs
were found through the miRNA-mRNA interaction network, targeting
432 significantly differential mMRNAs.

Further investigations of the identified miRNAs and their targeted mRNA
genes will provide new insights into the role of miRNAs in mediating
microbiota-host interactions and T1D development.
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Effect of the Moro and Pera orange juice intake on
gut microbiota composition in obese individuals
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INTRODUCTION

Citrus juices contain greater quantities of bioactive compounds as flavones, flavonols, anthocyanins, and flavanones. The blood

RESULTS AND DISCUSSION

oranges are a pigmented sweet orange and the most common types of blood orange are varieties Moro, Tarocco, and Sanguinello. A Ruminococcaceae_unclassified genus B Lachnospiraceae_unclassified genus C Erysipelotrichaceae_unclassified genus
In recent years, there was an increase of interest in blood orange varieties because of their higher content of anthocyanins 80" : » Nt " 107 5 )
compared with non-pigmented variants (Pera, Navel, Valencia, and Ovale). Many studies have been described blood orange juice, s i m Pre-POJ 45 i m Pre-POJ S i m Pre-POJ
: : : L : : : : : : : C - | _ = J iy = _ | :
especially variety Moro with antioxidant, antimutagenic, and anti-obesity properties. These are all bioactive compounds in juice, §4° . - iOSt MP&J 3 L1 _ iOSt h/TCiJJ g | — iOSt |\/F|>cc>)j
_ . . . . . . . = i : 3 Fre - 3 10 o : o re - S ' [ Pre-
and it is health benefits may be mediated by the synergic effects of its compounds. It has been demonstrated that obese individuals g .. - ]: = Post-MOJ  § . =il | ooposovos F 3 Post - MO
have a disrupted gut microbiota. This altered gut microbiota is related to the metabolic disorders contributing to the development 2 A B LN TE B 2
: , , , . [ o 0 [ o e B o [
of type 2 diabetes, metabolic syndrome, cardiovascular diseases, and certain cancers. = = 2l o i T = i
0 ..... | I I 0_ I I I I .....
Group A Group B Group A Group B Group A Group B

OBJECTIVE

The objective of this study was to evaluate the effect of orange juice intake and the order of treatment in the modulation of
gut microbiota of obese individuals with insulin resistance.

METHODS

A crossover clinical trial was conducted with 22 adults between 40 and 60 years old classified as obese according to BMI and
insulin resistance by HOMA-IR. Microbiome analysis: New generation sequencing techniques of 16S rRNA genes. Statistical analysis:
data are expressed as means = SEM. The data were analyzed using a Mann-Whitney t-test for comparison between two groups. A
value of P < 0.05 was considered statistically significant.
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Figure 1. Relative abundance of Ruminococcaceae (A), Lachnospiraceae (B) and Erysipelotrichaceae (C) unclassified genus by time and order the
treatment. Significant difference between group A and B, Pre-PQOJ (*); post-MOJ (#).

Our results suggests that phenolic compounds found on MOJ could directly stimulate the growth of a specific bacteria. This
difference can be explained by the phenolic compounds found in both juice types associated with synergistic effects that are
dependents on the order of the treatment. The Ruminoccocaceae and Lachnospiraceae families have been linked to the
production of short-chain fat acid, an important energy source for colonic epithelial. In addition, the Lachnospiraceae family has
been associated with improved insulin resistance, lipid metabolism, reduction of body weight, and antioxidant effects.
Erysipelotrichaceae, as well as Lachnospiraceae family, were associated with inflammation reduction and improved insulin

sensitivity in mice. CONCLUSION

Our data suggest that MOJ followed by POJ intake may improve the dysbiosis associated with obesity through the stimulus of
bacterial growth - especially the bacteria that: (a) metabolize bioactive compounds and (b) enhance the synthesis of beneficial
metabolic products protecting gut homeostasis.
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08 0 8 Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate FRIE
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