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Human microbiome science is at a unique point in history: a solid 
foundation of basic biology and translational infrastructure has 
been created by the research community, and it remains to apply in 
therapeutic and prognostic settings. 

The microbiome has been strongly associated with health 
phenotypes from autism to cancer, but taking advantage of these 
associations to develop live cell therapies, microbially-derived 
bioactives, or ecological biomarkers of outcome or treatment 
response requires population-scale validation. 

Much as human genetic epidemiology has, thanks to public health 
research, begun to make the leap from academic research to 
commercial applications, microbiome epidemiology is approaching 
the same opportunity.

● Pioneering research by Harvard Chan faculty around the interplay of human  
 and microbial systems.

● Robust research platforms, including high-throughput microbiome sampling,  
 multi’omic data generation, immunoprofiling, a gnotobiotic facility, and the  
 computational Microbiome Analysis Core.

● Harvard’s Longitudinal Cohort Studies, a unique epidemiologic resource with  
 biennial participant data collected from more than 200,000 participants over  
 30+ years, including measures of lifestyle, behavior, and characterization of  
 over 60 diseases. These studies have generated more than 3.5 million   
 biospecimens, and make it possible to study links between lifestyle,   
 metabolism, genetic susceptibility, and disease.

The Harvard T.H. Chan Center for the Microbiome in Public Health (HCMPH) was thus created as 
an environment for academic-industry partnerships in this space – a resource for the entire life 
sciences ecosystem to realize these opportunities.  
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The HCMPH is home to the BIOM-Mass platform for population-scale 
microbiome studies, which has developed a standardized oral and gut 
microbiome sampling kit, dietary and environmental surveys to detail 
microbiome samples, and cost-e�ective means of collecting molecular and 
microbiological culture data from home-collected samples. 

The platform’s ongoing flagship collection comprises 25,000 stool and oral 
microbiome samples from a subset of cohort participants, with capacity to 
collect additional samples from targeted populations/phenotypes.

To facilitate a substantive, symbiotic relationship between academia and 
industry and to ensure that the School’s microbiome research platform is 
valuable across sectors, HCMPH is establishing the HCMPH Microbiome 
Consortium. 

Select partner companies will be invited to join the Consortium for a one-time 
membership fee of $1 million, funds that will fast-track the collection’s 
evolution into a scientific resource with maximum utility to academia and 
industry.  
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The Consortium model will provide a framework for data sharing, discovery, and project planning. 
Together, member companies and Harvard Chan faculty will identify ways in which the BIOM-Mass 
platform and Harvard cohorts can be leveraged to better understand disease predisposition, 
development, and progression, and suggest promising – and practical – research lines and 
projects. Through these exchanges, new opportunities will emerge for industry R&D, collaborative 
research projects, additional/more detailed collection from subcohorts, and novel basic research.  

Leverage the microbiome�s full research potential by connecting expertise from academia and the life sciences 

industry.
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Benefits of Consortium membership

Access to longitudinal metagenomic, metatranscriptomic, and metabolomic data 

(both raw and pre-processed) with exclusivity period

Input on the prioritization of sample profiling, creation of targeted collections, subcohorts, 

research inquiries, and other projects

Collaborative data sharing, discovery advancement and project planning with Harvard 

faculty

Unique partnership with the Harvard Chan School to advance research and development in 

the life sciences

The HCMPH Microbiome Consortium will: 

● Shotgun metagenomic and metatranscriptomic data generation 
for samples from subject phenotypes of interest to Consortium 
members. 

● Metabolomic profiling of a subset of samples, chosen based on 
disease phenotypes, environmental factors (e.g. diet), or (after 
receipt of initial metagenomic data) microbiome configurations.

● Follow-up metagenomic/metabolomic profiling of additional 
samples, cross-sectionally or  longitudinally. 

● Computational and biostatistical analysis of the data above, 
including data informatics, quality control, biological feature 
extraction (microbial taxonomic, functional, strain profiling, and 
assembly), and collaborative statistical epidemiology associating the 
microbiome with disease outcomes, cohort covariates (e.g. medical 
history, medications, demographics, biometrics, diet), and existing 
molecular data (e.g. genetics and serum metabolites).

Fast-track sample sequencing and further development of the microbiome platform.

The HCMPH Microbiome Consortium will: 
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Nurses’ Health Study: Micro N Kit 

User instruction trifold brochure, stool sample 

questionnaire, tongue swab questionnaire, 

toilet accessory, stool

accessory pack barcode labels, bio 

specimen bags with absorbent pads, stool 

collection kit with 95% ethanol,OMNIgene.-

GUT stool collection kit, anaerobic stool

collection kit, OMNIgene.ORAL tongue swab 

kit and air cushion
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● Intervention trials of pharmaceuticals, dietary compounds/supplements, or lifestyle modifications,   
 with microbiome samples collected and analysis conducted before, during, and/or after, spanning up  
 to several months each.

● Microbiological isolation, genetics, and functional characterization of individual strains, microbial   
 gene products, or small molecule metabolites implicated in chronic disease.

● Murine validation of microbiome-associated traits, including the humanization of gnotobiotic mice  
 based on specific human donors; dietary, small molecular, or microbial strain interventions; and host  
 immune and molecular profiling.

Consortium members will have the opportunity to help Harvard Chan prioritize the microbiome 
profiling process so that data generated are as scientifically valuable and immediately actionable 
as possible.  Member companies can also o�er valuable insights on further investments in 
infrastructure, how and to whom samples and sample data are accessible, and how to ensure the 
HCMPH is a user-friendly, robust scientific resource

Provide HCMPH with industry expertise and a translational perspective, inform priority setting and platform 

development, and ensure that the data generated is valuable, actionable, and comprehensive. 

Facilitate the development of therapeutics and diagnostics by connecting bench and bedside from the outset. 

Carried out collaboratively, microbiome research will open the door to innovation in disease 
prevention, diagnostics, early detection, therapeutics and chemoprevention, and precision 
medicine. Real-world application of these innovations will happen more quickly, more e�ectively, 
and more consistently when we forge close ties between academia and industry. To that end, we 
will seek input from consortium members on:
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The HCMPH is home to the BIOM-Mass platform for population-scale microbiome studies. The 

platform’s flagship collection comprises 25,000 stool and oral microbiome samples from a subset of 

cohort participants, with capacity to collect additional samples from targeted populations/phenotypes.

To facilitate a substantive, symbiotic relationship between academia and industry, HCMPH is 

establishing the HCMPH Microbiome Consortium. Select partner companies will be invited to join the 

Consortium for an initial membership fee of $1 million, funds that will fast-track the collection’s 

evolution into a scientific resource with maximum utility to academia and industry. 

Access to longitudinal metagenomic, metatranscriptomic, and metabolomic 
data (both raw and pre-processed) with exclusivity period

Input on the prioritization of sample profiling, creation of targeted collections, 
subcohorts, research inquiries, and other projects

Collaborative data sharing, discovery advancement and project planning with 
Harvard faculty

Unique partnership with the Harvard Chan School to advance research and 
development in the life sciences

Benefits of Consortium membership

The microbiome has been strongly associated with health phenotypes from autism to cancer, but taking 
advantage of these associations – to develop live cell therapies, microbially-derived bioactives, or ecological 
biomarkers of outcome or treatment response – requires population-scale validation. 

Much as human genetic epidemiology has, thanks to public health research, begun to make the leap from 
academic research to commercial applications, microbiome epidemiology is approaching the same opportunity.

Pioneering research by Harvard Chan faculty around the interplay of human and microbial systems.

Robust research platforms, including high-throughput microbiome sampling, multi’omic data generation, 

immunoprofiling, a gnotobiotic facility, and the computational Microbiome Analysis Core.

Harvard’s Longitudinal Cohort Studies, a unique epidemiologic resource with biennial participant data 

collected from more than 200,000 participants over 30+ years, including  measures of lifestyle, behavior, 

and characterization of over 60 diseases. 

THE HARVARD T.H. CHAN CENTER FOR THE MICROBIOME IN PUBLIC HEALTH (HCMPH) WAS THUS 

CREATED AS AN ENVIRONMENT FOR ACADEMIC-INDUSTRY PARTNERSHIPS IN THIS SPACE – A RESOURCE 

FOR THE ENTIRE LIFE SCIENCES ECOSYSTEM TO REALIZE THESE OPPORTUNITIES.  
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Distinct Actions of the Fermented Beverage Kefir on Host Behaviour,
Immunity and Microbiome Gut-Brain Modules in the Mouse

1Broad Institute of MIT and Harvard 2Harvard T.H. Chan School of Public Health
3Moorepark Teagasc Food Research Centre 4APC Microbiome Ireland 5University College Cork

Mounting evidence suggests a role for the gut microbiota in modulating 
brain physiology and behaviour through bi-directional communication along 
the gut-brain axis. As such, the gut microbiota represents a potential 
therapeutic target for influencing centrally-mediated events and host 
behaviour. It is thus notable that the fermented milk beverage kefir has 
recently been shown to modulate the composition of the gut microbiota in 
mice. It is unclear whether kefirs have differential effects on microbiota-gut-
brain axis and whether they can modulate host behaviour. To address this, 
two distinct kefirs (Fr1 and UK4) or unfermented milk control were 
administered to mice that underwent a battery of tests to characterise their 
behavioural phenotype. In addition, shotgun metagenomic sequencing of 
ileal, cecal and faecal matter was performed, as was faecal metabolome 
analysis. Fr1 ameliorated reward-seeking behaviour, while UK4 decreased 
repetitive behaviour. In the peripheral immune system, Fr1 reduced 
neutrophil levels, while UK4 increased IL-10 levels. Analysis of the gut 
microbiota revealed that both kefirs significantly changed the composition 
and functional capacity of the host microbiota. Furthermore, both kefirs 
increased the capacity of the gut microbiota to produce GABA, which was 
linked to an increased prevalence in Lactobacillus reuteri. Altogether, these 
data show that kefir can signal through the microbiota-gut-immune-brain 
axis and modulate host behaviour. In addition, different kefirs may direct the 
microbiota toward distinct immunological and behavioural modulatory 
effects. These results indicate that kefir can positively modulate specific 
aspects of the microbiota-gut-brain axis.

Aaron M. Walsh1,2,3,4,5, Marcel van de Wouw4,5, Fiona Crispie3,4, Lucas van Leuven4,  

Joshua M. Lyte4, Marcus Boehme4, Gerard Clarke4,5, Timothy G. Dinan4,5, John F. Cryan4,5, Paul D. Cotter3,4

Study design and methodology

 

 

 

Kefir altered  the composition of the
mouse gut microbiota

Kefir increased the abundance of a 
Lactobacillus reuteri strain with the 
potential to produce GABA

  

 

http://huttenhower.sph.harvard.edu

 

Kefir induced behavioural and 
immunological responses in mice

Both kefirs increased B. pseudolongum, E. plexicaudatum, and L. reuteri, while they decreased
B. amyloliquifaciens, Lachnospiraceae, and P. acnes.

Kefir modulated the functional potential
of the gut microbiome

PERMANOVA of pathway abundances (as measured by HUMAnN2) revealed that the  

dissimilarity between kefir- and milk-fed mice was significant.

Kefir enhanced the capacity of the 
microbiome to produce GABA

Gut-brain modules are 
microbial pathways that 
produce neurochemicals.

The abundance of GBMs 
was measured using 
Omixer-RPM.

LEfSe indicated that both 
kefirs significantly increased 
GABA synthesis III.

GABA sythesis III from L. reuteri was
significantly increased in the kefir groups

The abundance of L. reuteri correlated with
the concentrations of GABA-associated
compounds in the gut.
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12 mice per group: (i) no gavage control, (ii) milk gavage control, (iii) Fr1, and (iv) and UK4.

Behavioural tests: marble burying test (MB), 3-chamber social interaction test (3CT), elevate plus
maze (EPM), open field test (OF), tail suspension test (TST), saccharin preference test (SPT),
female urine sniffing test (FUST), stress-induced hyperthermia test (SIH), intestinal motility test
(IM), faecal water content assessment (FWC), appetitive Y-maze, fear conditioning (FC), and
forced swim test (FST).

Postmortem analyses: flow cytometry, shotgun metagenomics, and metabolomics.

Strain-level metagenomic analysis of L. reuteri was performed using StrainPhlAn 

(left) and PanPhlAn (middle), both of which indicated that the L. reuteri strain 

present in the gut of Fr1-, UK4-, and Milk-fed mice was most closely related to L. 

reuteri TD1.

Assembly-based metagenomic analysis of L. reuteri was performed as follows: (i) 

the metagenome was co-assembled with MEGAHIT; (ii) contigs were binned with 

MetaBAT 2; (iii) the quality of bins was determined with CheckM; (iv) bins were 

classified with Kaiju; (v) a metabolic model of the the recovered L. reuteri genome 

was built with CarveMe; and (vi) Flux Variability Analysis (FVA) was performed with 

COBRApy to simulate the metabolism of L. reuteri at 95% growth. The ranges of 

rates of consumption/secretion of metabolites is shown here (right). FVA indicated 

that the L. reuteri strain was capable of secreting GABA.

* = significantly higher than milk
$ = significantly higher than no gavage (NG)

UK4 significantly decreased repetitive 
behaviour in the marble burying test.

Both kefirs increased reward seeking 
behaviours: Fr1 increased saccharin 
preference and UK4 increased 
interaction time in the female urine 
sniffing test.

Additionally, both kefirs elicited anti-
inflammatory responses: Fr1 
decreased neutrophil levels and UK4 
increased IL-10.



Prioritization and annotation of novel bioactive small molecules 
from the microbiome

Amrisha Bhosle1,2, Sena Bae3, Yancong Zhang1,2, Eunyong Chun3, Julian Avila-Pacheco1, Clary Clish1,

Ramnik Xavier1, Hera Vlamakis1, Eric A. Franzosa1,2, Wendy S. Garrett1,3*, Curtis Huttenhower1,2,3*

1Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 
2Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA

3Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA 

Guilt-by-association for Ecological and Biochemical properties

1

1

1
2

2

3
4

1

1

1

1
1

1

3

5

1

1

2

5

1

1

3
1

1
2

7
2

2
1

1

3

1

1

1

1

1

1

1

2
5

2
2

3
1

1

1
1

1

1

1

6
1

1
10

1

1 4

2

1

1
2

1

2

1

1

7

2

1

31

1

1

2

2

1

4

1
10

10

1

1

1

3

2

1

2

1

1

1

1−hydroxy−2−unsubstituted benzenoids
11Z

Alcohols and polyols
Alloxazines and isoalloxazines

Alpha hydroxy acids and derivatives
Amines

Amino acids peptides and analogues
Benzenediols

Benzoic acids and derivatives
Benzyl cyanides

Beta hydroxy acids and derivatives
Bile acids alcohols and derivatives

Bilirubins
Biphenyls and derivatives

Carbohydrates and carbohydrate conjugates
Carboximidic acids

Carboxylic acid derivatives
Ceramides

Dicarboxylic acids and derivatives
Diterpenoids

Fatty acid esters
Fatty acids and conjugates

Glycerophosphates
Glycerophosphocholines

Glycerophosphoethanolamines
Guanidines

Hybrid peptides
Hydroxysteroids

Imidazoles
Indolyl carboxylic acids and derivatives

Medium−chain hydroxy acids and derivatives
Methoxyphenols

N−arylamides
Nitrophenols

Phenylacetamides
Phosphosphingolipids

Polyols
Pregnane steroids

Purines and purine derivatives
Pyridinecarboxylic acids and derivatives

Pyrimidines and pyrimidine derivatives
Quaternary ammonium salts

Quinoline carboxylic acids
Ureas

Xylenes

1 1
2

1
3

1
4

1
5

0

1
5

9

1
7

2
5

5

2
9 3 3
0

3
1

3
2

3
5

3
6 4 4
5 5 5
2 6 7 7
1 9 9
3

Module ID

S
u

b
−C

la
s
s

To associate unknown compounds with known metabolites, we clustered features 

based on co-varying abundances: 47,913 features were distributed into 269 

modules of varying sizes and 16,259 features were observed as singletons. 83 

(~31%) of the 269 modules had at least one known metabolite. 

Bioactive microbiome metabolites
Thousands of metabolites have been assayed from microbial communities, the 

human gut microbiome in particular, but as yet with minimal biochemical 

characterization or knowledge of their therapeutic potential. Here, we  

developed a new approach, MACARRoN (Metabolome Analysis and Combined 

Annotation Ranks for pRediction of Novel Bioactives), for identifying potential 

bioactives by integrating knowledge of known/standard compounds with 

phenotypic or environmental indicators of bioactivity to annotate and prioritize 

the unknown metabolites. We have applied this approach to identify novel 

bioactives from the inflammatory bowel disease (IBD) metabolomes in the 

Integrative Human Microbiome Project (HMP2) metabolomes.

MACARRoN ranks features based on multiple quantitative annotations

The workflow contains 

modules for (a) data 

preprocessing and QC, 

(b) quantitative estimation of 

ecological, biochemical and 

epidemiological properties  

and (c) prioritization. 

For each feature, 

abundance and m/z are 

examined w.r.t a (known) 

reference with similar

abundance pattern, and 

differential abundance

q-value against a phenotype

is determined from a linear 

regression model. Ranks from

each of these properties are

integrated into a single

prioritization 'meta-rank'.

Quantitative metabolite annotations

We prioritize unknown compounds that are similarly abundant 

as compared to their co-clustered reference 

All features above the dotted line have abundances similar to (> x0.1) or higher than the reference

Prioritized metabolites

We prioritize unknown compounds that are potential biochemical derivatives of

their co-clustered reference

All features within the dotted lines have m/z similar to that of the reference

A mixed effect linear model is used for estimating phenotype association 

Metabolites highly prioritized by MACARRoN include classes previously

implicated in IBD as well as novel potential bioactives

Enriched metabolites

Depleted metabolites

Primary Bile Acids (q-value < 0.05) in Module 7

Putrescine metabolism (q-value < 0.05) in Modules 32 and 95

Short Chain Fatty Acids (q-value < 0.05) in Module 247

Conclusions and future work

Acknowledgements

MACARRoN integrates ecological, biochemical and epidemiological annotations 

to prioritize metabolites in the microbiome. In the HMP2 metabolomes, 

prioritization of classes such as bile acids and SCFA previously implicated in IBD 

validates the workflow. Novel highly prioritized compounds covary with known 

metabolites, have a high relative abundance and are significantly differentially 

abundant in the phenotype of interest. Metabolites with lesser known roles in IBD 

such as putrescine metabolites, medium-chain fatty acids and B vitamins were 

among the highly prioritized ones. MACARRoN is generalizable to other microbial 

communities ans is being developed as an open-source R package.

This work has been funded by NIH NIDDK grant R24DK110499

@hutlab

https://huttenhower.sph.harvard.edu
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MACARRoN is used to identify inflammation-associated compounds 

We applied the workflow to

prioritize compounds from the

metabolomes of IBD patients 

and nonIBD controls in the 

HMP2 (Lloyd-Price, 2019.

Overview of the HMP2 cohort and metabolomics study

Based on metabolite 

abundances, IBD and nonIBD, 

and dysbiotic and non-

dysbiotic metabolomes can be

distinguised.

We adopted the supervised 

prioritization approach to

identify bioactives linked to 

dysbiosis and inflammation.  

Bray-Curtis ordination using metabolite abundances

Applying MACARRoN on HMP2 metabolomes
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Effect size estimated outside of linear model

Medium Chain Fatty Acids and B vitamins (q-value < 0.05)

in Modules 255 and 191 respectively

Primary bile acids are 
metabolized by gut bacteria

into secondary bile acids. The
accumulation of primary bile
acids due to loss of bacterial

diversity is well understood
in IBD.

Gut bacteria encode enzymes 
that synthesize and degrade 
polyamines: putrescine and 

spermidine. A collective 
pathway which arises from the 

exchange of intermediates 
between species

could modulate host health. 
( Nakamura, 2019). 

SCFAs are produced in the 
gut via bacterial fermentation

of dietary fibre and are 
typically found to be reduced

in mucosa and stool of IBD
patients.

Production of MCFAs has 
been attributed to bacterial 

thioesterases. MCFAs activate 
GPR40 have been which

co-localizes with insulin
producing beta-cells

(Briscoe, 2003). 
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OPTIMISTI

Fusobacteriales

" Specific enrichment of Fn in CRC tissues identified by:

" Multiple techniques: mining cancer 8omics data for microbial signatures (PathSeq), 16S rRNA 

and metagenomic surveys, RNAseq-based approaches, fluorescent in situ hybridization, strain 

isolation (directly and from xenografts)

" Independent studies and researchers investigating both distinct patient populations and different 

stages of CRC

" Epidemiological associations link Fn load to certain CRC subtypes (e.g. MSI-high tumors) and poorer 

patient prognosis

" Growing experimental evidence in cell culture and mouse models suggests a causal role for Fn in CRC
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Modulation of the intestinal immune cell compartment by Fusobacterium nucleatum

in mice with a minimal complexity microbiota

Caitlin A. Brennan, Sydney L. Lavoie, Jessica K. Lang, Kathryn G. Rosinski, Sena Bae, Slater L. Clay and Wendy S. Garrett

Harvard T.H. Chan School of Public Health, Cancer Research UK OPTIMISTICC Team
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Abstract:

Colorectal cancer (CRC) is a multifaceted disease, influenced by host genetic and environmental factors. Growing evidence suggests that specific members of the microbiota mediate CRC development, growth and spread. One such microbe is

Fusobacterium nucleatum, a normal constituent of the human oral cavity, that has been largely studied for its role in shaping dental biofilms. Fusobacterium spp., while rare in the gut microbiota of healthy individuals, are enriched in human colorectal

adenomas and adenocarcinomas, compared to normal colonic tissues, and specifically associated with certain epidemiological subtypes of colorectal cancer. Further experimental evidence has suggested that F. nucleatum can potentiate tumorigenesis in

mouse models, influence immune-mediated killing of tumor cells, and promote resistance to chemotherapy drugs. Taken together, this research supports that a greater understanding of the biology underlying F. nucleatum in the gastrointestinal tract4both

before and during tumorigenesis4may provide insights into improving CRC diagnosis and treatment. To that end, we seek to understand how F. nucleatum modulates the intestinal immune cell environment. In previous works, F. nucleatum has been

shown to influence myeloid cell and T cell frequency in murine and human tumors, respectively. However, we do not yet understand how this oncomicrobe may shape different immune cell populations prior to tumorigenesis, potentially influencing the

conversion of healthy intestinal tissue into a pro-tumorigenic microenvironment. As F. nucleatum is a bacterium evolved to live in the oral cavity, we are leveraging gnotobiotic mouse models4in which F. nucleatum can become a stable member of the

intestinal microbiota4along with bacterial genetics and immunological approaches to disentangle the interactions at play among F. nucleatum, the colonic epithelium, and the immune system.

Fusobacterium nucleatum 4 symbiont, opportunist and oncobacterium

" Anaerobic, Gram-negative fusiform rod

" A member of the oral microbiota where it plays a role in oral biofilms 

important in periodontal and gingival health and disease

" Associated with myriad extra-oral diseases, including adverse 

pregnancy outcomes, inflammatory bowel disease, atherosclerosis, 

and, recently, colorectal cancer

" A distinct bacterial phylum, suggesting the potential for novel biology 

but limiting the application of tools developed for better studied 

organisms

Leveraging gnotobiotics to study Fn in the intestinal tract

C57Bl/6J

+ ASF

ASF ASF
+ Fn7.1

Fn7.1 

inoculation 

by gavage

Fecal sample for Fn load and 16S analyses 
Colonic lamina propria (LP) immune cell profiling

by flow cytometry
(d14)
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(Each bar represents normalized 16S reads for an individual mouse)

Mark Welch et al., 2016

Normal
Tumor

How does Fn colonize 

the intestinal tract?

How does Fn influence the immune environment in the 

intestinal tract prior to tumorigenesis?

How might Fn shape 

responses to preventative 

and therapeutic treatments?

Brennan and Garrett, 2018

Fn7.1 colonizes ASF mice to high abundance without affecting the proportion of other ASF members:

Why use mice colonized with a defined 

microbial community?

" Allows the reproducibility of gnotobiotic 

research while more adequately resembling 

specific pathogen-free mice than germ-free 

mice in terms of cecum size, immune cell 

development, reproduction, etc.

" Circumvents technical limitations to study 

important biological interactions: some 

microbes (like Fn) that cannot stably colonize 

SPF mice are able to maintain a niche in mice 

with a less complex microbiota

Fn influences colonic immune cell populations in ASF mice

Conclusions and future directions16S rRNA profiling of fecal microbiota 

Fn7.1 has only mild effects on myeloid cell subsets in the colonic LP, unlike in adenomas:
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Fn7.1 drives Th17 and ³´17 responses in the colonic lamina propria of healthy ASF mice:

Fn7.1 induces Il17a expression prior to tumor 

formation in a neonatal model of intestinal 

tumorigenesis:

Fn is associated with a Th17-like 

signature in models of intestinal 

tumorigenesis

Colonic LP Il17a expression
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Fn7.1-potentiated tumors show increased Th17 

cell numbers:
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" Gnotobiotic mice serve as an important tool for probing the role of Fn in 

the intestinal environment

" Fn modulates the intestinal and intratumoral environment by mediating a 

Th17-type immune response

" Convergent mechanism to promote tumorigenesis as another 

oncobacterium, enterotoxigenic Bacteroides fragilis?

" The SCFA receptor FFAR2 is important for Fn-potentiated immune cell 

responses in the ASF model

" Next steps: 

" Further delineate the immune cell changes in response to Fn

" Interrogate known immune and signaling pathways that may 

mediate the response to Fn, including defining the role of FFAR2

" Consider how characterizing and manipulating this interaction may 

inform CRC diagnosis and treatment

How might Fn influence these 

immune cell populations?

Fusobacteriales
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Short-chain fatty acids (SCFA) may 

mediate Fn immune cell modulation

Fn7.1 colonization increases SCFA concentrations in 

the ceca of ASF mice:

Loss of the SCFA receptor FFAR2 abrogates Fn-

associated immune cell responses: 
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Fusobacterial load is correlated with SCFA 

receptor expression in human tumors:

Fusobacterium

abundance

Host gene

relative 

expression

Kostic et al., 2013
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Effects of endurance exercise on mood state and serotonin levels after thirty days of 
probiotic supplementation: a pilot study
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BACKGROUND

CONCLUSION

Probiotic supplementation for 30 days was not effective in altering mood parameters and plasma serotonin levels in this protocol. Thus, further studies are needed to understand 
the possible effects of probiotic supplementation on psychobiological parameters in endurance long-term endurance exercises.

PURPOSE

The present study aimed to evaluate the effect of marathon running on mood aspects and
plasma serotonin levels after probiotic supplementation in athletes.

METHODS
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RESULTS

After the marathon, fatigue and mental
confusion increased and vigor reduced

(without significant difference between the
groups; p>0.05).

Moreover, no significant differences were

found in serotonin concentrations at different
times evaluated and between groups.

Sample and Supplementation:

placebo 
group
n = 7

2.0 g / day of corn starch
gelatinous 
capsules 

30 days

probiotic
group
n = 7

5 billion CFU 

of a multi-

strain 

probiotic

gelatinous 
capsules 

109 Lactobacillus acidophilus LB-G80
109 Lactobacillus paracasei LPc-G110
109 Lactococcus subp. lactis LLL-G25

109 Bifidobacterium animalis subp. lactis BL-G101
109 Bifidobacterium bifidum BB-G90

30 days

2

3

Exercise protocol and experimental design:

Statistical analysis:

To verify differences between group and time, the ANOVA two-way with Tukey Post-hoc
was performed being considered p <0.05.

4
RECOVERY
(1 hour after 

the marathon)

►Collection of 30ml 
of blood

►Application of the 
BRUMS 

questionnaire 
(questionnaire to 

assess mood)

2
PRE-EXERCISE
(24 hours before 

the marathon)

3
POST-EXERCISE
(immediately after 

the marathon)

30 days of supplementation marathon

►Collection of 30ml 
of blood

►Application of the 
BRUMS 

questionnaire 
(questionnaire to 

assess mood)

►Collection of 
30ml of blood

►Collection of 
30ml of blood
►Start of 

supplementation
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Metabolites
and 

neurotransmitters

PROBIOTIC SUPPLEMENTATION ?

cognitive-behavioral 
responses - mood 

disorders

Serotonin

Long-term or short high intensity exercise induces cognitive-behavioral responses. Thus,
during training/competition, athletes generally presented mood disorders. Although the

concept of the microbiota-gut-brain axis is relatively new, it is suggested that the gut
microbiota influences psychological and behavioral aspects. Gut microbiota is able to secretes

serotonin, mainly in response to physical and emotional stress. Preliminary data showed that
probiotics and prebiotics intake can affect the hypothalamic-pituitary-adrenal (HPA) axis and

other pathways in athletes. However, this crosstalk between the gut and brain is not
completed study in long-term endurance exercise, such as marathon .

2
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The Harvard T.H. Chan School of Public Health
Microbiome Collection Core

Chengchen Li1, Jeremy E. Wilkinson1, Curtis Huttenhower1,2,3

1Department of Biostatistics, Harvard T.H. Chan School of Public Health  2Broad Institute of MIT and Harvard

The Microbiome Collection Core at the Harvard T.H. Chan School of Public 
Health (HCMCC) was established in response to a strong demand among 
the research community for validated microbiome sample collection kit 
configurations and easy usability for in-home sampling. Under the umbrella 
of the Harvard Chan Microbiome in Public Health Center (HCMPH), 
HCMCC aims to support population-scale microbiome sample collection 
and expand our understanding of the microbiome to improve population 
health. The HCMCC has developed a multi carrier-compatible home stool 
and oral sample collection kit that permits cost-effective multi’omic 
microbiome studies, leveraging the intellectual and infrastructure 
foundation laid by the HMP2 (the 2nd phase of the NIH Human Microbiome 
Project) and the MLSC (Massachusetts Life Sciences Center)-funded 
MICRO-N (MICRObiome Among Nurses) collection. By providing this 
customizable microbiome collection kit, we enable researchers to perform 
multiple different molecular assays, as well as to tailor the kit configuration 
and collection plan to study-specific needs.

A scalable gut and oral microbiome 
sample collection platform

 
 

HCMCC-supported study activities 
within the BIOM-Mass platform

https://hcmph.sph.harvard.edu/hcmcc
https://huttenhower.sph.harvard.edu

 

This customizable microbiome sample collection kit avoids the need for 
expensive, bulky, and inconvenient ice packs by providing several different room 
temperature storage media that are also compatible with multiple different 
molecular assays including any combination of amplicon (16S), metagenomic, 
metatranscriptomic sequencing, metabolomics, and other molecular 
assays. This kit further includes a collection method that uses anaerobic 
transport media that yields live microbes for culture or gnotobiotic research. 
 

In addition to storage media, this sample collection kit includes user-friendly 
instructions and toilet accessories to maximumly facilitate and smooth the in-
home stool sample collection experience. Standardized questionnaires, as 
companions to collected samples, are included to capture recent medications, 
diet, anthropometric measurements, and gastrointestinal health status 
measured by the Bristol Stool Scale. The modularity of this kit allows 
researchers to tailor kit components to study-specific needs and conduct cost-
effective microbiome research ranging from pilot studies to large-scale studies 
involving 10,000s of participants.

 

  

Project Manager: Chengchen (Cherry) Li                                            

Scientific Director: Curtis Huttenhower

HCMCC services

Microbiome Analysis Core Director: Jeremy E. Wilkinson                                            

Accessible microbiome population studies' data on BIOM-Mass Data Portal

Microbiome population health 
research opportunities

  Special thanks to the the Massachusetts Life Sciences Center (MLSC), the 
Harvard Chan Microbiome Platform Steering Committee, the Harvard Chan 
BiOS Freezer Director Eric Rimm, the BWH/Harvard Cohorts Biorepository 
Laboratory Manager Christine Everett, and the BiOS Freezer Core manager Isa 
Berzansky.

3Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health

Integrative microbiome informatics and analysis via the Harvard Chan 
Microbiome Analysis Core

Long-term sample storage via the Harvard Chan BiOS Freezer Core

Gnotobiotic mice experiments via the Harvard Chan Gnotobiotic Center for 
Mechanistic Microbiome Studies

Course offerings on microbial communities and human microbiome research 
via the Harvard Chan Microbiome in Public Health Center

The Microbiome Collection Core is a part of the Harvard 
Chan Microbiome in Public Health Center (HCMPH). 
Want to learn more? Visit https://hcmph.sph.harvard.edu
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Background

Marathon runs transiently harm the immune and gastrointestinal systems.

Nutritional strategies are adopted to mitigate the damage caused by strenuous

exercises. This research investigates the possible protective effect of chronic

probiotics supplementation on monocytes functions before and after marathon race.

Materials and Methods

Thirty runners were supplemented for 30 days, double-blind, with probiotics 10x109

CFU of Lactobacillus Acidophilus LA-G80 and 10x109 CFU of Bifidobacterium

animalis subsp. Lactis BL-G101 or placebo (maltodextrin 5g). Before the

supplementation period (Baseline), 24 hours before the race (Pre), one hour after

(Post), and five days after the marathon (Recovery), blood was collected for the

following analysis: Cellular functionality, verified through cellular exposure to

Lipopolysaccharide - LPS and opsonized Zymozan. Cytokine analysis, hydrogen

peroxide production, and phagocytic capacity of cells. Immunophenotyping was

also performed to analyze the monocytes populations. The data normality was

verified using the Shapiro-Wilk test, and the Anova Two-Way applied with a

significance level of p ≤ 5%.

Experimental Design

Conclusions

We conclude that 10x109 CFU supplementation of Lactobacillus Acidophilus LA-G80 and 10x109

CFU of Bifidobacterium animalis subsp. Lactis BL-G101 was able to modify the cellular

functionality of monocytes, concerning phagocytic percentage after 30 days of supplementation.

However, these differences cannot be observed between the Placebo and Probiotic groups in

the other parameters evaluated. The monocytes population was equal, with no statistical

differences verified by the immunophenotyping. Several studies observed benefits with the

supplementation of these bacteria. Because of that, it is necessary to verify the time and dose

offered for this specific population of marathon runners.
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Staphylococcus aureus is a leading cause of healthcare- and community-asso-

ciated infections and can be difficult to treat due to antimicrobial resistance. 

About 30% of individuals carry S. aureus asymptomatically in their nares, a risk 

factor for later infection, and interactions with other species in the nasal micro-

biome likely modulate its carriage. It is thus important to identify ecological or 

functional genetic elements within the maternal or infant nasal microbiomes 

that influence S. aureus acquisition and retention in early life. We recruited 36 

mother-infant pairs and profiled a subset of monthly longitudinal nasal samples 

from the first year after birth (n=284) using shotgun metagenomic sequencing. 

The infant nasal microbiome was highly variable, particularly within the first 1-2 

months. It was weakly influenced by maternal nasal microbiome composition, 

but primarily shaped by developmental and external factors (e.g. daycare). In-

fants displayed distinctive patterns of S. aureus carriage, positively associated 

with Acinetobacter species, Streptococcus parasanguinis, Streptococcus sali-

varius, and Veillonella species and inversely associated with maternal Dolosig-

ranulum pigrum. Furthermore, we identified a gene family, likely acting as a tax-

onomic marker for an unclassified species, that was significantly anticorrelated 

with S. aureus in infants and mothers. In gene-content based strain profiling, 

infant S. aureus strains were more similar to maternal strains. This improved 

understanding of S. aureus colonization is an important first step toward devel-

opment of novel, ecological therapies for controlling S. aureus carriage.

(A) 36 mother-infant pairs gave 

nasal swabs monthly over the 

first year after birth. Culture test-

ing for S. aureus was performed 

on all samples and a subset 

(n=284) were profiled with shot-

gun metagenomic sequencing. 

 

(B) The percent of positive time 

points after S. aureus acquisi-

tion was not significantly differ-

ent between early and late ac-

quirers, likely due to the small 

sample size (n=28).

(C) Identification of S. aureus by 

culture and sequencing showed 

strong, although not complete, 

concordance. 

 

Infants display striking patterns 

of S. aureus carriage

Microbiome drivers of infant S. 

aureus phenotypes

Infants had a weak upward trend in alpha diversity over time. 

They rapidly diverged from their species composition at birth, 

but the rate of change slowed over time indicating stabilization 

toward a more mature microbiome. Infants were more similar to 

their own mother than to unrelated mothers at month 1 (PER-

MANOVA, p=0.005), although infant composition was distinct 

from maternal composition at all months except 8 (p<0.05).

Infant nasal microbiomes 

mature over the first year, but 

remain distinct from mothers

Determinants of S. aureus carriage in the developing 

infant nasal microbiome
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The landscape of novel lateral gene transfer events
in the human microbiome

1Broad Institute; 2Harvard T.H. Chan School of Public Health; 3Dalhousie University

Acknowledgments

Validating predicted LGT events

Overview of the WAAFLE algorithm

Lateral gene transfer (LGT) is an important mechanism for genome 

diversification in microbial communities, including the human microbiome. 

While previous efforts have cataloged LGT in human-associated microbial 

isolate genomes, directly identifying novel (and potentially recent) LGT 

events in human microbiomes is an open challenge. To address this, we 

developed a computational method (WAAFLE) to identify novel LGT 

events from assembled metagenomes.

WAAFLE uses homology-based search to identify metagenomic contigs 

that can�t be reasonably assigned to any single taxon, but which can be 

confidently assigned to a pair of taxa (a putative LGT). Downstream filters 

exclude alternative explanations, e.g. gene deletion and misassembly.

Novel LGT in the human microbiome
We applied WAAFLE to >2K diverse, assembled human metagenomes 

(HMP1-II), identifying >100K high-confidence, novel LGT events. Novel 

intergenus LGT was observed roughly once per 2K assembled genes.

Eric A. Franzosa1,2, Tiffany Y. Hsu1,2, Dennis Wong3, Chengwei Luo1, Robert G. Beiko3, Morgan Langille3, Curtis Huttenhower1,2 

This work was supported by an NSERC Discovery Grant to ML, by Alfred 

P. Sloan Foundation grant 8290 (Kevin Wymelenberg), and by NIH grants 

U54DE023798 (CH) and R24DK110499 (CH).

Finding novel LGT in metagenomes

WAAFLE is sensitive, specific, and robust to novel genes
Determinants of LGT rate among human microbiome clades

We validated 21 additional LGT events identified from healthy human gut 

metagenomes (HMP2) by PCR. 18 of these (86%) were supported by 

PCR amplification of one or both LGT junctions (see examples below).

http://huttenhower.sph.harvard.edu

http://huttenhower.sph.harvard.edu/waafle

Send questions to franzosa@hsph.harvard.edu

Functional enrichments among LGT-containing contigs
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We trained and evaluated WAAFLE 

using synthetic contigs built from 

single species (non-LGT controls) and 

from pairs of increasingly diverged 

species (mock LGTs). These contigs 
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novel sequence content.

WAAFLE is highly sensitive to intergenus LGT and moderately sensitive 

to intragenus LGT. WAAFLE was additionally highly specific, even in the 

presence of a large fraction of novel sequences. False positives occurred 

mostly in the form of spurious intragenus LGT calls.
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Novel LGTs were highly enriched for mobile elements (as expected), 

along with methylation, transport, and uncharacterized Pfam domains.

= Positive, statistically significant (FDR q<0.1) enrichment by Fisher�s exact test; = Additionally observed in 10+ LGT events

WAAFLE performed best when it was 

fairly lenient about assigning a contig 

to a single clade (k1 = 0.5) and fairly 

stringent about assigning a contig to a 

pair of clades (k2 = 0.8).



The Anti-Diabetic Effects of Palmitic Acid Hydroxy Stearic Acid (PAHSA) Lipids are 
Transmissible by Fecal Microbiota Transplantation (FMT) in Mice

Jennifer Lee, Kerry Wellenstein and Barbara B. Kahn

Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA

INTRODUCTION

OBJECTIVE: A newer class of lipids called PAHSAs have anti-diabetic effects in

high-fat diet (HFD)-fed mice and circulating PAHSA levels strongly associate with

insulin sensitivity in humans1. Whether the gut microbiome contributes to the

beneficial effects of PAHSAs on improving glucose homeostasis2 is unknown. We
aimed to determine whether the insulin-sensitizing properties of PAHSAs are

transmissible by fecal microbiota transplantation (FMT) in mice.

METHODS: Fecal pellets collected from male mice treated with insulin-sensitizing

PAHSAs or vehicle (50% PEG400, 0.5% Tween80 in water) for 21 days were used

for FMT into recipient germ-free (GF) HFD-fed male mice. Donor feces from PAHSA

or vehicle-treated mice were Dounce homogenized and resuspended in 100μL PBS

under anaerobic conditions. Recipient GF-HFD mice were conventionalized with two

oral doses of donor feces at days 0 and 28 and metabolically phenotyped. Cecal

contents from the same mice were used for metagenome sequencing and

metabolomics analyses.

Chronic oral PAHSA treatment improves insulin 
sensitivity in chow-fed mice

The Anti-Diabetic Effects of PAHSAs are Transmissible by 
Fecal Microbiota Transplantation (FMT)

PAHSAs have beneficial effects on the gut microbiome

SUMMARY
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• PAHSAs have beneficial effects on the gut microbiome.

• The insulin-sensitizing effects of PAHSAs can be conferred by FMT to improve 

glucose homeostasis in recipient HFD-fed mice. 

• Identifying PAHSA-mediated microbes and their metabolites that improve host 

metabolism may lead to novel therapeutic strategies to treat diet-induced obesity 
and insulin resistance.

• Once daily PAHSA treatment improves insulin sensitivity in chow-fed C57bl6 male 

mice as early as 13 days of treatment; this effect is independent of body weight.

• Abundance of Bacteroides (genus) is increased in PAHSA-treated chow-fed mice 

and Bacteroides thetaiotaomicron (species) is associated with improved insulin 

sensitivity.

• Compared to control mice, HFD-fed germ-free mice conventionalized with PAHSA 

donor feces: - gain less weight 

- are more glucose tolerant and insulin sensitive
- have reduced glycemia 5-hours after food removal
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Figure 4. Beneficial Effects of FMT in HFD-GF Mice Conventionalized with Donor Feces From PAHSA-treated 
Insulin Sensitive Mice. HFD-GF PAHSA-treated mice (A) gain less body weight, (B-C) are more glucose tolerant, and 

(D) are more insulin sensitive compared to control HFD-GF mice conventionalized with vehicle-treated donor feces. 

These PAHSA-mediated FMT effects are independent of (E) insulin secretion. *p<0.05 HFD-GF PAHSA-treated mice vs 

HFD-GF VEH-treated control mice. #p<0.05 vs. HFD-GF VEH mice for the same time point. Statistics analyzed by 

repeated-measures 2-way ANOVA or t-test. n=8/group.

Figure 1. Experimental Workflow. (A) 6-week old male C57bl6 chow-fed mice were treated once daily with oral vehicle or 

5- and 9-PAHSAs (15mg/kg of each PAHSA) for 21 days. Cecal contents were collected for 16S rRNA and metagenome 

sequencing. Terminal fecal pellets were used for FMT studies. (B) Feces collected from the same mice in (A) were used as 

FMT inoculum to conventionalize HFD-fed GF male mice.

Figure 2. Daily Oral PAHSA Treatment Improves Insulin Sensitivity in Chow-fed Mice. Male C57bl6 mice treated with 

vehicle or 5- and 9-PAHSAs (A) have elevated serum PAHSA levels and (B) no body weight change after 21 days of 

treatment. (C) Mice treated with PAHSAs have improved insulin sensitivity after 13 days of treatment. *p<0.05 PAHSA vs. 

vehicle. n=12/group.

Figure 3. PAHSA Effects on the Gut Microbiome. (A) Bacteroides (genus) levels are elevated in male C57bl6 mice treated 

once daily with PAHSAs for 17 days. (B) HUMAnN2 functional profiling of cecal contents identifies Bacteroides

thetaiotaomicron to be most strongly associated with the insulin-sensitizing effects of PAHSA lipids in mice. *p<0.05 PAHSA 

vs. VEH. n=12/group.
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Harvard T.H. Chan School of Public Health
Microbiome Analysis Core

Jeremy E. Wilkinson1, Lauren J. McIver1, Kelsey N. Thompson1,2, Chengchen Li1, Curtis Huttenhower1,2

1Department of Biostatistics, Harvard T.H. Chan School of Public Health  2Broad Institute of MIT and Harvard

The Microbiome Analysis Core at the Harvard T.H. Chan School of Public 
Health was established in response to the rapidly emerging field of 
microbiome research and its potential to affect studies across the 
biomedical sciences. The Core’s goal is to aid researchers with 
microbiome study design and interpretation, reducing the gap between 
primary data and translatable biology. The Microbiome Analysis Core 
provides end-to-end support for microbial community and human 
microbiome research, from experimental design through data generation, 
bioinformatics, and statistics. This includes general consulting, power 
calculations, selection of data generation options, and analysis of data 
from amplicon (16S/18S/ITS), shotgun metagenomic sequencing, 
metatranscriptomics, metabolomics, and other molecular assays. The 
Microbiome Analysis Core has extensive experience with microbiome 
profiles in diverse populations, including taxonomic and functional profiles 
from large cohorts, qualitative ecology, multi'omics and meta-analysis, and 
microbial systems and human epidemiological analysis. By integrating 
microbial community profiles with host clinical and environmental 
information, we enable researchers to interpret molecular activities of the 
microbiota and assess its impact on human health.

Microbial multi'omics

 
 

Microbial community profiling

https://hcmph.sph.harvard.edu/hcmac
http://huttenhower.sph.harvard.edu

 

The Harvard Chan Microbiome Analysis Core supports microbiome analysis for a 
variety of molecular data types in human populations or in model systems. Typical 
analysis workflow steps include a) molecular data generation of a variety of types, 
including but not limited to sequencing, which are b) bioinformatically processed 
into biologically interpretable features and c) quality controlled per dataset. This 
permits d) microbiome-tailored statistical methods to associate molecular features 
with covariates and outcomes, and optionally e) meta-analysis of multiple data 
types per project or across multiple projects. Finally, f) the Core can assist with 
study design for downstream evaluation of statistical associations in in vivo or in 
vitro model systems.

Mallick, H. et al. Experimental design and quantitative analysis of microbial community multiomics. Genome Biology. 18:228 (2017).

McIver, L. J. et al. bioBakery: a meta’omic analysis environment. Bioinformatics, 34:7, 1235-1237 (2018). 

 

Shotgun metagenomic and metatranscriptomic sequence data are particularly 
amenable to detailed computational analysis, including multiple complementary 
methods for a) strain tracking or differential microbial expression. b) Reference-
based methods can identify strains using either single nucleotide or structural 
(genomic) variants, and c) can be used in tandem with assembly-based methods 
for novel microbial discovery. d) Whole-community microbial differential 
expression can additionally be detected either in tandem with or in addition to 
metagenomic copy number changes, and e) analyzed per gene, pathway, 
microbe, or human individual.

Downstream analysis and statistics

 

  

Consultation for microbiome 
project development. 
This includes consultation on 
experimental design, sample 
collection and sequencing, grant 
proposal development, study power 
estimation, bioinformatics, and 
statistical data analysis.
 
Validated end-to-end meta’omic 
analysis of microbial community 
data.
Using open-source analytical methods 
developed in the Huttenhower 
laboratory and by other leaders in the 
field, we provide cutting-edge 
microbiome informatics and analysis.
 
Support fully-collaborative grant-
funded investigations.  
Includes preliminary data 
development, hypothesis formulation, 
grant narrative development, data 
analysis and inference, custom 
software development, and co-
authored dissemination of findings.

Director: Jeremy E. Wilkinson
Senior Software Developer: Lauren J. McIver
Postdoctoral Fellow and Data Analyst: Kelsey N. Thompson
Research Project Manager and Data Analyst: Chengchen (Cherry) Li
Scientific Director: Curtis Huttenhower

The first step in microbiome molecular data analysis is quality control 
(KneadData) and profiling to transform raw data into biologically interpretable 
features using a reproducible workflow (AnADAMA2). This includes identifying 
microbial species (MetaPhlAn2) and strains (PanPhlAn/StrainPhlAn), 
characterizing their functional potential or activity (HUMAnN2, ShortBRED), 
and integrating metagenomics with other data types (PICRUSt, MelonnPan), 
among others. 

Once profiled, microbial communities are amenable to downstream statistics 
and visualization much like other molecular epidemiology such as human 
genetic or transcriptional profiles. Like these other data types, microbial 
communities often require tailored statistics for environmental, exposure, or 
phenotype association (LEfSe, MaAsLin) or for ecological interaction discovery 
(BAnOCC). The Harvard Chan Microbiome Analysis Core also provides a 
variety of tools for bioinformaticians working in the microbiome space.

Core services
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The Harvard Chan Microbiome Analysis Core 
is a part of the Harvard Chan Microbiome in 
Public Health Center (HCMPH). Want to learn 
more? Visit https://hcmph.sph.harvard.edu
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Around 350 million people worldwide are thought to suffer from arthritis. While 

the etiology of arthritis is largely unknown, the gut microbiome is often 

implicated in autoimmune conditions. To investigate the role of the gut 

microbiome in arthritis, we used metagenomic shotgun sequencing of 327 

adults diagnosed with various forms of arthritis, as well as 69 control 

individuals. Approximately 2.9% of the variability in gut microbial taxonomic 

profiles was explained by patient diagnosis. Similar amounts (2.7%) were 

explained by diagnosis in functional profiles, indicating a reasonably close link 

between perturbed microbial community structure and function in the disease. 

We further identified increases in taxa normally characteristic of the oral cavity 

among patients with inflammatory arthritis, including several species from the 

genus Streptococcus. This strikingly mirrors similar findings regarding oral 

microbial enrichment in the gut during conditions such as IBD. Together, this 

represents the first in-depth study of the gut microbiome across different 

etiologies of arthritis using culture-independent techniques.
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Diagnosis, collection of a blood sample 

and assement for clinical covariates

Stool collection and diet survey collected

Whole DNA extraction and 

metagenomic sequencing

Study methodology

Taxonomic and functional assignment of 

metagenomes and downstream statistics 

and visualizations

Patient demographics

The human gut microbiome is altered 

in inflammatory arthritis

Patients with inflammatory arthritis 

exhibit consistent taxonomic differences 

DNA encoded pathways

DNA encoded enzymes

Taxonomy

Principal coordinates analysis of Bray-Curtis dissimilarity on filtered 

community features (taxonomy, DNA pathways and enyzmes 

(ECs)) at 0.01% abundance and 10% prevalence. Displayed by 

covariates of patient diagnosis (left) and Inflammation status (right) 

as defined by quartiles of crp (1st quartile = no inflammation, 2nd 

and 3rd quartiles = some inflammation, 4th quartile = inflammed).

We appreciate the valuable scientific contributions of Armaiti Batki and all 

members of the IAMC on this project. This work has been supported by 

supported by Arthritis Research UK. Methods used for analysis are available 

in the bioBakery at:

Univariate PERMANOVA on Bray-Curtis dissimilarity to 

quantify the amount of variance explained by 

environmental and clinical covariates in the adult cohorts 

with arthritis. Each covariate is corrected by sequencing 

batch (i.e. Bray-Curtis ~ batch + covariate). Where 

denoted, either by a BHM (RA cohort) or a OAS (AS 

cohort), only the patient samples from that cohort were 

used in the calculation. Many of the disease related 

covariates explain significant amounts of variation within 

the gut microbiome's structure and functional potential.

Increased nutrient uptake in the 

arthritis gut microbiome 

Experimental design for microbiome 

profiling in inflammatory arthritis

Per-feature taxonomic differences within the gut microbiome of 

patients with inflammatory arthritis mimic those observed in patients 

with IBD but with lower magnitudes. Mixed linear models were used 

to identify an enrichment in oral taxa in the gut microbiomes of 

patients with current inflammation as denoted by increased 

circulating c-reactive protein (CRP). Additionally, enrichment in the 

genus Ruminococcus was also identified, similar to IBD patients 

currently experiencing a dysbiotic event (top). Within the 

Ruminococcus gnavus clade we also identified a strain that was 

associated with only patients who were diagnosed with either RA or 

AS (left). Further, a decrease in the abundance of Faecalibacterium 

prausnitzii and the genus Alistipes were observed (top).  

Functional profiles are more conversed across the human population than taxonomic profiles. However, we did find several 

pathways and enzymes that have increased encoding across the gut microbiome of patients diagnosed with arthritis. Many of 

these functions were associated with nutrient acquisition and processing within the gut ecosystem. Here we enumerate two of 

these trends in folic acid metabolism (top) and iron savaging (bottom). Independent of methotrexate usage, a well-known 

competitive inhibitor of folic acid metabolism, we identified a significant increase in the encoding of several pathways (top) and 

enzymes within the folic acid metabolism pathway. This pathway lies upstream of DNA synthesis, production of choline, and 

epigenetic methylation to name a few processes dependent on correct folic acid metabolism. Additionally, many enzymes 

associated with the scavenging of iron were identified to have increased encoding in patients with inflammatory arthritis. 

Patients with inflammatory arthritis often are concurrently diagnosed with anemia and previous work has found decreased 

concentrations of folic acid, vitamin B, and iron in the serum of these patients. We have yet to elucidate if the increased 

encoding of these pathways and enzymes within the gut communities are causal or in response to the changes within the host.      

participants

Ruminococcus gnavus

Kimura 2-parameter distance



Characterizing microbial community viability
using propidium monoazide
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The effect of PMA-treatment varied by 
different surface types in the built environment
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We are grateful to the Boston MBTA and Transit Police for their 

assistance with this research, particularly for ensuring that study 

personnel and subway passengers were safe and informed. This study 

has been supported by the Alfred P. Sloan Foundation. Methods for the 

analysis are available from the bioBakery workflows at: 

Characterization of built environment (BE) microbiomes is of great importance 

given the associations between microbial exposure and human health in indoor 

settings. Although many studies have explored the taxonomic composition of 

BE microbiomes using DNA sequencing, this method on its own suffers from 

an inability to discern viability. Here, we present our work to rigorously 

benchmark "PMA-seq" (propidium monoazide treatment followed by 16S rRNA 

amplicon sequencing) as a screen for microbial viability in both synthetic and 

environmental microbial communities. Our validation started with synthetic 

mixtures of live and heat-killed E.coli and S.sanguinis in known proportions. 

PMA-seq successfully reconstruct the communities of simple mixed culture. 

We next evaluated the effects of community background on PMA-seq in 

various community samples spiked with known concentrations of viable and 

heat-killed E.coli. Against a realistically complex communities, viability was no 

longer accurately assessed, with the results largely affected by initial biomass 

and compositional diversity. Finally, we applied PMA-seq to swabs from the 

Boston subway system. Not all samples respond  consistently to PMA 

treatment. Overall, we revealed that PMA-seq was effective in simple synthetic 

communities, but may be premature for viability assessment in realistically 

complex community samples. 

Propidium monoazide (PMA) treatment 

for viability assessment
Propidium monoazide is a DNA-intercalating dye that is membrane-excluded by 

viable cells, but can be photoactivated to deplete unprotected DNA. To evaluate 

its performance in microbial communities, we first constructed ten synthetic 

communities with live and heat-killed E.coli and S.sanguinis mixed in different 

proportion.

PMA treatment depletes relic DNA completely in groups containing pure live or dead 

bacterial culture (Group 2, 4 and 6);

In mixed cultures (Group 5, 7 and 8), the average abundances of two 

microorganisms change in consistent trends with the mixed proportion.

These results agree with previous studies in pure cultures/simple microbial 

communities, e.g. Nocker et al. 2007, Chen et al. 2011, and Kim and Ko 2012.

Viability is not accurately assessed by PMA in 

synthetically spiked communitites
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No

Sample type
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Touchscreen

PMA treatment successfully depletes relic DNA 

in synthetic communities
Samples from Boston's 

subway system did not 

respond consistenly to PMA 

treatment.

All surface types were 

dominated by human 

commensals;

Seats and walls had larger 

compositional differences 

after PMA treatment;

Samples clustered by 

Source material for all 

samples and by PMA 

treatment for the seats 

and walls.

Similar samples among different studies 

respond consistently to PMA treatment 

PMA-seq does not accurately assess the viability of spiked community samples.

Low biomass samples from the built environment had larger changes in  microbial 

compositions after PMA treatment, while fewer were observed in the higher 

biomass samples;

Samples were clusted by source material in all sample types and by PMA 

treatment in low biomass samples from indoor office;

Calculating from the absolute amount of spiked E.coli, PMA treatment partially 

depleted viable cells in computer screens, mice and soil samples, while 

incompletely removed relic DNA from dead cells in saliva samples.
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Microbial taxa with apparent abundance changes (>= 0.01) after PMA treatment are 

sometimes replicated in similar sources among different studies. 

Corynebacterium, Bacillus and Staphylococcus have apparent abundance 

changes after PMA treatment in microbial communities from clean room floors, 

office built environment and Boston subway systems. By comparison, soil 

communities are relatively stable to PMA-treatment.

The "PMA-reactive microbes" in the BE samples are mostly commensals from 

human skin or oral cavity, suggesting that the abundant, human-derived microbes 

are present in non-viable forms

Conclusions
Overall, we revealed that PMA-seq was effective in simple synthetic communities, 

but may be premature for viability assessment in realistically complex community 

samples. In the next step, we will compare PMA-seq to RNA-based high-

throughput sequencing in determination of viability in BE microbiome.

We next evaluated the effects of microbial community background on the 

performance PMA-seq in diverse natural communities from computer screens and 

mice, soil and human saliva. Swabs were collected in four biological replicates 

and spiked with known concentrations of live and heat-killed E.coli culture.

PMA efficacy was 

calculated using the 

absolute amount of 

E.coli with and 

without PMA  

treatment.

Built environment microbiome were collected from Boston subway systems. 

Surfaces were swabbed from three seats, three walls, four touchscreens and four 

grips on the Green Line E branch and from Park Street Station.

For this study, we had a total of 190 

16S samples, comprising of those from 

pure cultures, E.coli spike in 

experiments, the subway samples and 

various experimental and technical 

controls

16S rRNA qPCR was performed on the samples of synthetic cultures and spiked 

natural samples to determine bacterial mass.
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The role of the microbiota in neutralizing trypsin activity in a mouse model of Type 1 diabetes
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Abstract

Results

Methods

The gastrointestinal tract contains high levels of proteases, 

one of the most abundant of which is trypsin, which is 

synthesized and secreted by pancreatic acinar cells. In 

addition to its primary function in digestion, proteolytic 

activity is also believed to play a role in mucus consistency 

and mucosal antigen processing. Accumulated evidence 

indicates that dysregulated proteolysis plays a pivotal role in 

the pathophysiology of several disorders centered on the 

colon. In our recent studies to investigate the effects of 

early-life gut microbiota on T1D onset in the non-obese 

diabetic (NOD) mouse model, we observed that the 

perturbed early life gut microbiota may dysregulate mucosal 

physiology through mucin genes muc2 and muc4. Therefore, 

in this study, we aimed to evaluate intestinal trypsin 

activities in cecal contents in germ-free and conventional 

C57BL/6 mice, as well as in the single pulsed antibiotic 

(1PAT)-exposed NOD mice. Using an enzymatic approach, as 

expected, we found significantly higher trypsin activity in the 

cecum of germ-free compared with conventional mice. We 

also found that mice with antibiotic-perturbed microbiota 

had increased fecal trypsin levels at the end of the antibiotic 

treatment; however, the differences became reduced over 

time. By tracking the occurrence and development of T1D, 

we observed that the fecal trypsin levels in mice that 

developed T1D were higher than the mice that did not 

develop T1D. These results suggest that gut microbiota 

perturbation may lead to increased distal gut trypsin activity, 

which may have downstream effects on colonic luminal and 

cell-surface proteins, affecting T1D pathogenesis. 

Study Design

" NOD 1PAT Study Design
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Figure 1. Transcription of Muc2 and 

Muc4 in ileum and colon in early life. 

1PAT exposure reduced Muc2 and 

Muc4 gene expression in P12 to P42 in 

both tissues, as determined by RT-

qPCR. Statistical significance 

determined by the Mann Whitney test. 

*p<0.05; **p<0.01; ***p<0.001; and 

****p<0.0001.

Figure 2. Microbial status affect 

cecal active trypsin level. Active 

trypsin activity in the cecum of 

germ-free mice is significantly 

higher compared with conventional 

mice. (A)Cecal active trypsin level 

was determined by trypsin assay kit 

(Abcam, Boston USA). Statistical 

significance was determined by the 

Mann Whitney test. **p < 0.01

Figure 3. (A) Fecal active trypsin level in single pulse antibiotic (1PAT) - exposed NOD mice and 

control mice. Antibiotic-perturbed microbiota increase the fecal trypsin level in the mice at the end 

of antibiotic treatment, but the change is transient. (B) Fecal trypsin levels after antibiotic and its 

relationship to T1D development. Active fecal trypsin levels were detected in 4-week old mice 

using the colorimetric assay. All mice were monitored for diabetes by weekly measurement of tail 

blood glucose. Statistical significance was determined by the Mann-Whitney test. *p < 0.05.

Figure 6. Level of active cecal trypsin level in 

antibiotic-exposed NOD mice after receipt of 

MomD0 cecal transfer. P23 Active cecal trypsin 

levels were measured using Trypsin assay kit 

(Abcam, Boston USA). Statistical significance 

was determined by the Mann Whitney test 

*p<0.05, **p < 0.01. 

Donor: MomD0

Control-PBS

1PAT-PBS

1PAT-MomD0

*

*p<0.002

Figure 4. Kaplan-Meier analysis of T1D incidence in 

male NOD mice. Statistical significance was 

determined by the log-rank test. *p=0.019.  
Figure 5. Transfer of MomD0 restored 1PAT-

induced gut microbiome structure. (A)

Alpha-diversity (phylogenic diversity (PD)) of 

fecal microbiota in control-PBS, 1PAT-PBS 

and 1PAT-MomD0 over time. Significance 

was determined by one-way-ANOVA 

****p<0.0001. (B) Beta-diversity, as 

determined by unweighted UniFrac analysis 

of control-PBS, 1PAT-PBS and 1PAT-MomD0 

fecal microbiota over time, analyzed by 

QIIME2. Inter-group UniFrac distances were 

all significant (*p<0.002), determined by 

one-way-ANOVA with Tukey correction for 

multiples comparisons 

Conclusion
" Active trypsin in cecal contents was significantly increased in Germ-

free mice compared to control mice, thus microbiota neutralize trypsin

activity.

" Mice with an antibiotic-perturbed microbiota had increased fecal

trypsin levels at the end of the antibiotic treatment, with changes 

lasting for at least 4 weeks (but not 10).

" Fecal trypsin levels in week4 mice that developed T1D later are higher

than in the mice without T1D, suggesting a possible pathogenic role.

" After receiving maternal cecal materials, active cecal trypsin activity

reverted to normal.-thus transfer restored microbiome function.

" p-NA concentration was measured as an indicator of active 

trypsin concentration in each samples. Absorbances was

determined at OD=405nm using microplate reader.

For more details, please contact: mz476@cabm.rutgers.edu

*



Discussion

Changes in Intestinal Gene Expression in Antibiotic-Treated NOD Mice
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Background

Methods
RT-qPCR: 

Ileum and colon samples were taken from control mice, 

NOD mice treated with PAT (a single course of the macrolide 

antibiotic, Tylosin) and NOD mice treated with PAT that were 

given a gavage of their mother9s intestinal microbiome. The 

intestinal samples from the pups were taken at postnatal days 

23 and 42. In order to analyze changes in gene expression, RNA 

was extracted, converted to cDNA, and expression was 

analyzed using RT-qPCR using primers specifically designed for 

each gene. Expression was normalized to the housekeeping 

gene, GAPDH.

Protein Assay and ELISA:

A total protein assay and ELISA were performed to analyze 

levels of zonulin gene expression. The protein assay was done 

on ileal and colonic samples obtained from mice at day 23. 

Samples were from the control, antibiotic-treatment, and 

restoration groups. The protein assay was performed using the 

Pierce BCA Protein Assay Kit and protocol. The ELISA was done 

on the same samples using a MyBioSource Mouse Zonulin

ELISA kit and protocol.

Future Direction
REG3-³ and F2RL1:

In the future, it will be beneficial to research the regulation of 

REG3-³ and F2RL1. Researching how these genes are regulated 

will help us understand what is being disturbed following 

antibiotic treatment.  It would also be useful to test intestinal 

epithelial cells using RT-qPCR to analyze gene expression. This 

would help us understand gene expression in epithelial cells 

specifically rather than the tissue as a whole.

Zonulin: 

I would like to test this gene again using a more sensitive 

protein assay. It would also be beneficial to examine other 

similar tight junction related genes such as zonula occuldens-1 

(ZO-1). Additionally, I am interested in zonulin expression in 

control mice compared to the NOD mice since studies have 

shown that relatives of patients with T1D also have higher 

levels of zonulin expression5. The question this raises is 

whether there is a difference in expression due to antibiotic-

treatment or is the difference present beforehand?
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Results
REG3-³: 

There was a significant decrease in gene expression between the control and the treatment groups and between 

the restoration and treatment groups at day 23. The difference between the control and treatment group 

remained significant at day 42. There were also significant increases from P23 to P42 in gene expression within 

each group (Figure 1). No significance was found for the colon samples (Figure 2).

F2RL1:

No significant differences were found for the ileal samples (Figure 3). However, the colonic samples showed a 

significant decrease between the treatment group and the control at day 23. This remained at day 42, as well as 

a significant difference between the control and restoration (Figure 4).

Zonulin: 

There was no significant change in expression within either the ileal or colon samples.

Over the past decade, the incidence of Type 1 Diabetes 

(T1D) has been globally on the rise1. Not only is the incidence 

increasing, it is also developing earlier in life. Therefore, we 

need to better understand childhood exposures1. Studies have 

been done on this topic with non-obese diabetic (NOD) mice 

which are a strain of mice that spontaneously develop T1D. 

That research has demonstrated that NOD mice exposed to a 

single course of antibiotics showed accelerated onset of T1D2. 

Treatment with antibiotics changed the gut microbiome profile 

of these mice2.

With this information, we sought to analyze how these 

changes impact gene expression of proteins that play a role in 

epithelial barrier function and innate immunity. The three 

genes I focused on were REG3-³, F2RL1, and zonulin. REG3-³ is 

a gene that encodes an antimicrobial peptide that plays a role 

in innate immunity3. F2RL1 is a G-protein coupled receptor 

involved in inflammation4. Zonulin is a haptoglobin precursor 

that functions in tight junction disassembly via an epidermal 

growth factor-like motif5.

Figure 1: Ileal REG3-³ data normalized by each 

date9s control (left) and by P23 controls (right)

Figure 2: Colon REG3-³ data normalized by each 

date9s control (left) and by P23 controls (right)

Figure 3: Ileal F2RL1 data normalized by each 

date9s control (left) and by P23 controls (right)

Figure 4: Colon F2RL1 data normalized by each 

date9s control (left) and by P23 controls (right)

Figure 5: From left to right: data from ELISA on ileal and colon, total protein assay data, comparison of 

zonulin to total protein.

REG3-³:

REG3-³ may have an impact on the earlier onset of T1D since 

it was significantly impacted by the antibiotic treatment.  The 

restoration treatment was successful since there was no 

significant difference between the control and restoration 

groups. The colon does not seem to be affected by antibiotic 

treatment.

F2RL1:

F2RL1 expression does not seem to be affected by antibiotic 

treatment in the ileum. F2RL1 in the colon may play a role in 

the earlier onset of T1D since the expression was significantly 

decreased in the treatment group compared to the control. 

The restoration treatment was also successful.

Zonulin: 

Zonulin gene expression may be too low to analyze via RT-

qPCR. According to the assay and ELISA results, zonulin does 

not seem to have an impact on early T1D onset.



Abstract

The gut microbiota and associated bioactive compounds have been

implicated as causal and as protective factors in gastrointestinal

disorders, including the inflammatory bowel diseases (IBD). Both

host immune interactions with gut microbes and microbial small

molecule products are likely responsible for these bioactivities.

Several gut microbial metabolites, e.g. short-chain fatty acids and a

subset of omega-3 fatty acids depleted in GI inflammation, have

demonstrated therapeutic potential in IBD by attenuating gut

inflammation. However, discovery of new bioactive compounds

from the gut microbiome relevant to IBD or inflammation is

challenging due to the vast numbers of uncharacterized metabolites

produced by the microbiome.

To address this challenge, we investigated two IBD cohorts with

integrated metagenomic and metabolomic profiles of the gut

microbiome: PRISM, the Prospective Registry in IBD Study at

MGH, and the Integrative Human Microbiome Project (HMP2).

Putrescine and a potentially novel family of metabolites microbially

derived from it were among the ~10,000 metabolites differentially

abundant (PRISM n=8,792 and HMP2 n=9,444) during gut

inflammation, of which only ~100 were characterized (PRISM

n=157 and HMP2 n=99). We validated the dependence of these

putrescine derivatives on the gut microbiome and their bioactivity in

vivo by treating germ-free, gnotobiotic and conventional mice with

dietary putrescine, which induced changes in immune system

activity in a microbial community-dependent manner. This included

that putrescine selectively affects host colonic and ileum M2

macrophage cell populations only in conventional mice. These

results underscore the power of combined computational and

experimental approaches for identifying microbially derived

metabolites with general immunomodulatory activity and specific

relevance for IBD patient care.

Validation of MACARRoN

Screen high-priority metabolites in vivo

1. Franzosa. et al. Gut Microbiome Structure and Metabolic Activity in Inflammatory 

Bowel Disease, Nature Microbiology (2019)

2. Lloyd-Price. et al. Multi-omics of the gut microbial ecosystem in inflammatory 

bowel diseases. Nature (2019)
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4. NIH NIDDK grant R24DK110499

Conclusion

References & Funding

Discovery of new bioactive microbial metabolites in Inflammatory Bowel Disease
Sena Baea, Amrisha Bhosleb,c, Eunyoung Chuna, Yancong Zhangb,c, Julian Avila-Pacheco c, Jessica K. Langa, Kathryn G. Rosinskia, Clary Clishc, Ramnik Xavierc, Hera Vlamakisc , 

Eric A. Franzosab,c , Curtis Huttenhowera,b,c* and Wendy Garretta,c*

aDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
bDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, 02115, USA

cBroad Institute of MIT and Harvard, Cambridge, MA 02142, USA

Table 1. IBD metabolomic

datasets used for this

project and IBD cohorts.

Number of identified and

unidentified metabolites in

each data set.

Future Directions

• Characterize the chemical structure of the microbially-

associated new bioactive metabolites followed by metabolite

synthesis.

• Determine the efficacy of the bioactive metabolites in IBD

preclinical mouse models.

• Identify bacterial species that generates the bioactive

metabolites.

Figure 6. Heatmap representing DA metabolites from fecal and cecal untargeted LC-MS

metabolomics in response to putrescine treatement. The rows display metabolites that are

differentially abundant metabolites in respect to putrescine treatment and the column represents

individual sample.

Although there are highly effective IBD therapies that directly target

the immune system, many IBD patients do not achieve durable

remission, lose responsiveness to treatment over time, or suffer from

the broad immuno-suppressive effects of such treatments. Despite

the strong association of gut microbiome configurations with IBD

and advances in taxonomical profiling of the gut microbiome, the

effective translation of specific mechanisms of host-microbiota

signaling and microbial metabolites for IBD clinical care remains

largely elusive.

• Putrescine selectively affects host colonic and ileum M2

macrophage cell populations in a gut microbiota- dependent

manner.

• The bioinformatically-prioritized uncharacterized metabolites of

the putrescine group from the IBD cohort data are also

differentially abundant features in the mouse metabolomes in the

presence of a gut microbiota.

Figure 4. Schematic of the experimental design.

Heatmap representing abundance of prioritized IBD-associated metabolites, putrescine group,

that enriched in IBD patients with known metabolites in the same group between CD, UC and

non-IBD individuals. Each column represents abundance of metabolites from individual.

Introduction

Human fecal metabolomics, using untargeted high-resolution liquid

chromatography-mass spectrometry (LC-MS), can provide

comprehensive functional readouts of gut microbial activity and

host-microbial interactions. Untargeted LC-MS techniques profile

tens of thousands of metabolites in individual human stool samples;

however, our understanding of their bioactivity is limited to ~<1%

(Table 1). Thus, an in silico technique to prioritize these metabolites

is a critical unmet medical need for realizing the potential of

microbial metabolites for IBD treatment. We identified new IBD-

associated uncharacterized metabolites using two publicly available

IBD metabolomic datasets, PRISM and IBD, by MACARRoN and

tested its biological function in vivo.

Figure 2. Preliminary validation of our

computational pipeline, MACARRoN. (A)

A dendrogram depicting hierarchical

clustering result of differentially abundant

glycocholic acid cluster. The newly

identified microbially-associated bile acid

conjugate metabolites (inside of red box),

phenylalanocholic, tyrosocholic and

leucocholic acid, were clustered with the

known bile acid conjugate metabolite

using MACARRoN. (B) Abundance of

the four bile acid conjugate metabolites in

CD, UC, and non-IBD individuals. The

chemical structure of the 4 metabolites

and chemical modifications are shown in

red).

Figure 3. Partial list of

differentially abundant (DA)

known metabolites used to

assign uncharacterized

metabolites to chemical

classes by hierarchical

clustering. The yellow box

represents of enriched

known metabolites that are

enriched and the blue box

represents of depleted

metabolites in IBD patients.

Objective : (1) to demonstrate that the uncharacterized metabolites

could be generated in vivo from a chemical precursor in a gut

microbiota dependent process and (2) to evaluate a change in the

host immune system in response to the precursor in a gut microbiota

dependent manner.

Figure 5. Lamina propria flow cytometry of colonic and ileal M2 macrophage cells,

MMR+CD11b+CD11c-Gr-1- cells out of CD45+ cells, from GF, ASF, and SPF mice fed

putrescine or control. Data shown as the mean ± SEM *p <0.05, two-tailed t-test.

We employed mice with distinct gut microbiota communities, germ

free (GF), Altered Schaedler Flora (ASF, a minimal microbiota of 8

species), and SPF C57BL/6J mice, in the presence or absence of

putrescine and profile their microbial activities, host gut barrier

function, and immune cell phenotypes.

Figure 1. Hierarchical clustering of

differentially abundant metabolomic

associations (n=8,792) from the PRISM

metabolomics dataset. The yellow box

represents groups of metabolites that are

enriched (n=6,400) in IBD patients and the

blue box represents depleted groups of

metabolites (n=2,392) that are classified into

the same group using MACARRoN.
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We present SparseDOSSA2, a hierarchical model of microbial 
community count observations, suitable for simulation of such data at 
population scale. Our model has specialized components targeting 
characteristics unique to microbiome data, including sparsity, joint 
effects of biological and sequencing variation, and ecological feature 
dependencies, and is capable of simulating mock microbial counts that 
recapitulate the population structures in training template communities. 
We hope that these methods and findings will be of broad applicability 
in human transcriptional and microbial epidemiology, and will inform 
future population study designs and analysis practices.

The SparseDOSSA2 model for
microbial abundance observations

SparseDOSSA2 recapitulates 
microbial community structures

The hierarchical model is setup according to the same mechanism. 
Unobserved absolute abbundances (A) are generated according to zero-
inflated log normal distributions (parameters pi, mu, sigma, and Omega). 
They then give rise to the relative abundances (X) and sequencing counts 
(C).

Contact

Metadata and feature-feature 
association spike-in

 

http://huttenhower.sph.harvard.edu

SparseDOSSA2 can also simulate associations between microbial 
features. The pairwise (absolute) Pearson correlations based on raw 
counts between microbial features in the PRISM cohort (above the 
diagonal) and in the SparseDOSSA2 fit to this dataset (below the 
diagonal) are similar (a). Pairs of features that are targeted to be 
correlated with each other (above the diagonal) and pairwise Pearson 
correlations in the resulting modified dataset (below the diagonal) also 
agree (b).

SparseDOSSA2 can simulate spiked-in associations with metadata for, 
e.g., benchmarking purposes. Differences in mean relative abundances 
between two classes of a simulated binary sample property (metadatum) 
along with the empirical inter-quartile range of all features as contrasted 
between metadatum levels (a). For continuous data, correlation of one 
feature into which an association to a sample metadatum has been spiked 
with that metadatum’s value (b).

We evaluated SparseDOSSA2's fitting performance on datasets with 
different microbial community population structures. In both continuous 
(healthy and inflammatory bowel disease stool gut mucosal) and discrete 
(heathy human vaginal) communties, "mock" samples generated from 
SparseDOSSA2 closely follows the distribution of the original real samples, 
as evidenced by ordination visualization as well as PERMANOVA 
quantitative evaluation. 

Per-feature relative abundances also have similar distributions between 
original datasets and SparseDOSSA2 simulation samples. Agreeing with 
overall population structure, the stool samples display gradients of relative 
abundances, whereas vaginal samples are often characterized by the 
dominating taxa. 

SparseDOSSA2 generates new 
microbial features similar to originals

Per-feature prevalence, mean, and variance parameters are estimated in the 
SparseDOSSA2 model, and then used to generate new microbial features 
that follow similar distributions as the original dataset. siyuanma@g.harvard.edu
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GPs associate folate to Ruminococcus obeum, but folate is not associated with 

Ruminococcus bromii. A positive log2 Bayes Factor (l2BF) indicates favorable 

goodness of fit and a negative l2BF indicates poor fit. The GP model that 

contains a folate prediction term is preferred to the model that excludes folate 

when predicting R. obeum. Inclusion of folate in the model predicting R. bromii is 

less fit than the null model.

Associations between specific nutrients
and microbiome features 

The microbiome plays a role in metabolic health and is modulated by host diet. The specific 

interactions between microbial enzymes and dietary compounds are not yet known. To 

understand this mechanism, we assess the relationship between dietary compounds and 

metabolic pathways that are carried and transcribed by individual species. Here, we report on 

the gut microbiome of 307 participants from the Health Professionals Follow-Up Study, a 

prospective cohort designed to relate nutrition to health outcomes. The gut metagenome of 

each participant was surveyed at four timepoints with short (1-3 days) and long (6 month) 

time intervals. Metatranscriptomes were also generated for 96 participants. These data were 

complemented with seven-day dietary recalls and long-term dietary histories from food 

frequency questionnaires. Taxonomic profiling and metabolic reconstruction were performed 

using MetaPhlAn2 and HUMAaN2, respectively. We integrated the profiled taxonomy and 

metabolic pathways with dietary compounds using a multivariate linear model (MaAsLin2). 

We revelaed a "core" set of pathways encoded by many species, and a variably transcribed 

set that consists of specialized pathways. Dietary fiber was associated with metagenomic 

pathways such as nucleotide and amino acid biosynthesis, in addition to the carbohydrate 

fermenter, Collinsella aerofacians. A Gaussian process model is applied to assess the 

longtudinal relationship between microbiome features and dietary variables. Our findings 

could help us understand the direct mechanism by which bioavailability impacts microbial 

metabolism.

Functional Category

Amino Acid Biosyn.
Amino Acid Deg.
Carbohydrate Biosyn.
Carbohydrate Deg.
Cell Structure Biosyn.
Cofactor Biosyn.

mentation
Glycolysis
Lipid Biosyn.
Nucleotide Biosyn.
Other
2nd Metabolite Biosyn.

Metagenome

Metat anscriptome
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Correlation of DNA vs. RNA pathway contributions
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A) Comparison of pathways encoded vs. transcribed in the gut microbiome. These 

include a continuum from housekeeping processes near-equally transcribed by all 

encoding microbes, to niche metabolic modules rarely expressed by the few organisms 

that carry them. B) Similarly, housekeeping processes are rarely differentially 

expressed, whereas context-specific pathways are differentially regulated among 

human hosts.
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implemented in MaAsLin2. B) Left: Nucleotide biosynthesis, specifically 

uridine monophosphate, is positively associated with dietary fiber 
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Gaussian process models for
time-series microbiome analysis

Gaussan processes (GPs) are a 
family of probabilistic models that 
flexibly capture time dependence. 
They can be used to associate 
changes in microbial community 
features over time with exposures 
(such as diet) or outcomes (such 
as disease).

Latent Gaussian process

Actual observations

GPs more specifically link dietary
nutrients to microbial responses

UMP biosynthesis
superpathway of purine nucleotides de novo biosynthesis
superpathway of L-lysine, L-threonine and L-methionine biosynthesis
L-lysine biosynthesis II
L-proline biosynthesis II (from arginine)
superpathway of glucose and xylose degradation
aspartate superpathway
L-ornithine biosynthesis
inosine-5'-phosphate biosynthesis
inosine-5'-phosphate biosynthesis III
lactose and galactose degradation 

GP tool credit: Jason Lloyd-Price
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0
1

10
85

372

7
134

14
153
929Sample Count
˟

˟
˟
˟

Men’s Lifestyle Validation Study

6 months 48h

2 pairs of stool samples

48h

n = 308

DNA RNA

Shotgun metagenomics and

metatranscriptomics

Functional

profiling

(HUMAnN2)

Compound1

Compound3

Compound2Compound4

EC1.2.3.4

EC2.3.4.5

EC5.2.4.4

EC3.2.5.8

Gene familiesEnzymesPathways

Food Frequency Questionnaire,

parallel with 2nd pair of stools

Stool self-collection, data generation and profiling

Associate components of

the microbiome with diet

Fiber

Protein

Carbs

Fat

Iron

Choline

B12

Alcohol

Folate

mg/day

DNA RNA

NutrientsObserved

P
re

d
ic

te
d

-l
o
g
1

0
(P

v
a
lu

e
s
)

AssociationDistribution of diet

variables

Integrate microbiome features

with diet variables

1Department of Systems Biology, Harvard Medical School, Boston, MA, 2Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 3Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 4Clinical & Translational Epidemiology Unit, 

Massachusetts General Hospital and Harvard Medical School, Boston, MA, 5Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 6Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 7Broad Institute of MIT and Harvard, Cambridge, MA, 
8Department of Food Sciences & Technology, University of Nebraska, Lincoln, NE, 9Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 10Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical 

School, Boston, MA, 11Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 12Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, 13Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA

Tobyn A. Branck1,2, Jason Lloyd-Price2,7, Long H. Nguyen2,3,4, Dong D. Wong2,5, Mingyang Song3,4,5, Yin Cao6, Wenjie Ma3,4, 

David Drew3,4, Raaj S. Metha3,4, Cesar Arze2, Galeb Abu-Ali2, Himel Mallick2,7, Gholamali Rahnavard2,7, Yan Yan2, Amit D. 

Joshi3,4, Kerry Ivey5, Jacques Izard8, Wendy S. Garrett7,12,13, Eric Rimm5, Andrew T. Chan*3,4,7,13 & Curtis Huttenhower*2,7

A)

B)

A)

B)
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Dietary Fiber Intake, the Gut Microbiome, and 

Chronic Systemic Inflammation 

Higher intake of dietary fiber is associated with a decreased risk of

inflammatory diseases such as diverticulitis and inflammatory bowel disease.

Dietary fiber may abrogate the chronic systemic inflammation induced by

factors including dysbiotic gut communities. Data regarding the detailed

influences of long-term and recent intake of differing fiber sources in human

populations are lacking. This study analyzed gut microbiome data profiled by

shotgun metagenomic sequencing, long- and recent dietary fiber intake, and

plasma levels of C-reactive protein (CRP). A greater intake of dietary fiber

was associated with shifts in gut microbiome composition in particular

Clostridiales and functions in carbohydrate utilization such as polysaccharide

degradation. The microbial influences of fiber were varying according to food

sources. In addition, circulating CRP was associated with differences in

microbial composition. Last, gut microbial composition, primarily via

Prevotella copri, modifies the association between dietary fiber and CRP. Our

findings offer human population evidence supporting a fiber-gut microbiota

interaction relevant to chronic systemic inflammation and related diseases.

Study design
Study population: 307 participants in the Men9s Lifestyle Validation Study

Dietary fiber intake: 

v Recent: 7-day dietary records 

v Long-term: Validated semi-quantitative food frequency questionnaires every 4 years 

since 1986

Circulating inflammatory biomarker: High-sensitivity CRP

Gut microbiome: Shotgun metagenomic and metatranscriptomic sequencing on 

repeated collected fecal samples (1-4 samples for each participant)

Fiber and Bristol score are associated 

with overall microbiome structure

v Both recent and long-term dietary fiber intake 

were associated with shifts in diverse species 

(e.g., Clostridiales)

v Greater microbial differences were 

associated with fiber from fruits and pectin 

compared to cereals or vegetables

Individual microbial members are 

associated with fiber intake and CRP

The inverse association between

dietary fiber and CRP was stronger

in participants who did not have

Prevotella copri, suggesting that

microbiome structure, primarily via

P copri carriage, is a mediator

between fiber intake and CRP.

Conclusion
Our findings support a fiber-gut microbiota interaction on chronic

inflammation. Findings regarding P. copri need further investigations

and may inform personalized, microbiome-based dietary intervention.
Acknowledgements & Funding sources: We thank the participants in this research. This work 
was supported by MGH ECOR Tosteson and Fund for Medical Discovery Postdoctoral 

Fellowship Award, NIH grants U54DE023798, UM1CA167552, U01CA152904, R01HL35464, 
R01CA202704, R01DK101495 and K24DK098311, and by the Starr Center Consortium. 

Potential biochemical contributors 

to microbe-specific selection 

pressures from dietary fiber

Top species associated with dietary fiber

Statistical Analysis
MaAsLin2: Arcsine square root transformed, zero-inflated generalized 
linear mixed models 

Random effect: Participant membership
Taxonomy: 139 species  (>10% prevalence and 0.01% abundance)

Covariates: Age, recent antibiotics, and caloric intake; model for CRP 
was further adjusted for body mass index

Gut microbial composition modifies 

the fiber-CRP relationship
P-interaction=0.01
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Microbiome Differential Abundance Analysis by Quantile-Based Method
Wodan Ling, Michael C. Wu

Fred Hutchinson Cancer Research Center

Background

Objective

Conclusion

Type I Error and Power in Simulation

• Based on a real genus-level gut microbiota dataset

• 150 taxa, 531 samples each, repeat 1000 times

• Adjusted analysis with clinical condition:  HBP (0=No, 1=Yes)

• Recurring objective of microbiome studies is to identify 

differentially abundant taxa

• Normalization affects the performance of existing methods

• Microbiome data is complex:  heavy-tailed, heterogeneous and 

high-dimensional

• Quantile regression:

▪ Distribution-free:  robust for any normalization, 

flexible to address hundreds of various taxa

▪ Detects higher order associations:  over the entire 

distribution of abundance 

To improve the power to detect differentially abundant taxa while 

controlling Type I error, regardless of the normalization method

• Quantile-based method increases the power by detecting higher 

order associations in addition to mean effect 

• Approach is robust for any normalization method 

• Some fine tuning of the grid of quantile levels may be necessary

Two-Part Quantile Regression Model 

▪ ��ýÿā ÿ � > 0 � = �⊤� + Ā�
▪ Ā� � �, � > 0) = �⊤� � + ÿ � �

Where

• Y:  the transformed abundance by any method

• C:  the key condition (e.g. health/disease status),

• Z:  the remaining covariates including the intercept

• If Y is a count variable:Ā� � �, � > 0) = �⊤� � + ÿ � �
where W = � + �,� ∼ �(0, 1)

Zero-Inflated Quantile Rank-Score Based Test

• Hypotheses testing:

▪ �0: Ā = ÿ � = 0, � ∈ �, 1 2 �
▪ �1: �ā/�ÿ�ÿĀ�

• To test Ā = 0:  any valid test in logistic regression 

• To test ÿ � = 0, � ∈ �, 1 2 � :

▪ A grid of quantile levels: � f �1 < ⋯ < �� f 1 2 �
▪ Quantile rank-score test: on positive abundance

▪ Addressing undersampling biases: correct zero-

inflation in rank-score’s covariance matrix 
• Combine p-values by MinP / Cauchy procedures

Rarefying without Replacement 

Normalization by CSS
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Real Data Analysis

• A gut microbiota dataset:  149 genus-level taxa, from 531 samples
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• Outcome:  read counts with zero-inflation rate 0 – 74.6%
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Metagenomics of the stool microbiome in CRC populations. a) size and 
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Colorectal cancer (CRC) most often occurs sporadically (as compared to 

genetic forms of the disease) and is one of the leading causes of cancer-

related death worldwide. Environmental factors contribute substantially to 

CRC risk and development, particularly the intestinal microbiota. Recent 

meta-analyses of gut microbial profiles in CRC have identified multiple 

taxa (including Fusobacterium) reproducibly associated with late-stage 

cancers across populations. However, neither the causal mechanisms nor 

corresponding microbial strains and small molecule products have been 

pinpointed for CRC, particularly among subsets of non-Fusobacterium 

clades newly associated with the disease. We leveraged stool 

metagenomic profiles from 352 CRC patients, 143 with pre-cancerous 

adenomas, and 312 healthy controls from seven recent CRC microbiome 

studies in combination with our integrated metagenomic and 

metatranscriptomic data from the Integrative Human Microbiome Project, 

Nurses’ Health Study, and Health Professionals Follow-Up Study. Within 

CRC-associated species, we assessed strain-specific gene carriage and 

sub-species phylogenetic enrichments via gene- and variant-based 

culture-independent profiling. The former identified gene families carried 

significantly more or less frequently by individual strains during disease, 

and the latter called out subclades with significant phylogenetic 

associations with carcinogenesis. In some cases, these genes and 

nucleotide variants also corresponded with transcriptional changes. This 

study adds further evidence to the hypothesis that strain-level genomic 

variation in gut microbes may be a major driver in the initiation or 

development of colorectal cancer.
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Identifying novel bioactive microbial gene products 
in inflammatory bowel disease

Computational prioritization workflow

 

 

Many protein families are uncharacterized, 

but can be assigned new annotations

Uncharacterized proteins implicated in 

bioactivity are prioritized

 

This work has been supported by NIH NIDDK grant R24DK110499.
MetaWIBELE is coming out soon and will be available at https://hutten-

hower.sph.harvard.edu/biobakery/

 http://huttenhower.sph.harvard.edu

 

Many uncharacterized proteins are prioritized 

 - 90% of prioritized proteins were depleted in disease-active state

 - half of prioritized proteins were uncharacterized with 23% novel proteins

  � 39% of them expanded the pangenomes of common gut taxa

  � 90% of the remainder were assigned at least one putative annotation 

The gut microbiome and associated bioactive compounds are often 

disrupted in gastrointestinal conditions such as the inflammatory 

bowel diseases (IBD). Since more than one-third of all proteins in the 

gut microbiome are uncharacterized, we prioritized potentially bioac-

tive novel proteins from the metagenomes in the Integrative Human 

Microbiome Project (HMP2). Remarkably, >340,000 protein families 

are specifically prioritized as potentially bioactive by integrating crite-

ria based on ecological properties and host disease phenotypes. 

Strikingly, ~23% of them were novel proteins, 36% of which expand-

ed the pangenomes of common gut taxa and >90% of the remainder 

were assigned at least one putative biochemical annotation. Our 

analysis methods are generalizable to other microbial communities 

and human disease phenotypes, and we provide an open source im-

plementation as MetaWIBELE (Workflow to Identify novel Bioactive 

Elements in the microbiome). The prioritized results provide thou-

sands of new microbial genes likely to interact with host immunity in 

IBD and gut inflammation, expanding our understanding of bioactive 

gene products in chronic disease states.

MetaWIBELE: assembly-based workflow to prioritize potentially bioactive 

microbial gene products 

 - identify characterized and uncharacterized protein families

 - assign functional and taxonomic annotations to protein families 

 - prioritize protein families by combining evidences from abundance-based

   and sequence-based annotations

~70% of protein families are uncharacterized

 - a catalog of 1.6M protein families was assembled

   from 1,595 metagenomes in HMP2

 - uncharacterized proteins were identified with global

   homolog search

Strong homology to characterized known proteins

Strong homology to uncharacterized known proteins

Remote homology to known proteins

Non homology to known proteins

Uncharacterized pro-

teins are assigned new 

annotations 

 - biocheminal annota-

   tions were predicted 

   by MetaWIBELE

 - only ~3% were still  

   functionally and taxo-

   nomically unknown

Uncharacterized proteins are 

classified into phylogenetic 

clades

 - uncharacterized proteins   

   covered common gut taxa

 - some novel proteins domi-

   nated in some clades
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Receiving cecal microbiota transfer from MomD0 increased 1PAT mice 

survival rate at W30 and tended to rescue the 1PAT accelerated T1D 

development. It restored the 1PAT-induced alteration of ileal mRNA and 

miRNA gene expression, which now closely resemble the expression 

profiles in control mice.   

Abstract Methods

Introduction

Acknowledgements

I would like to thank Dr. Martin J. Blaser and Dr. Xue-Song Zhang for 

their guidance and unwavering support. 

Background: Disruptions to the intestinal microbiota in early life increase 

the risk for autoimmune diseases, such as type 1 diabetes (T1D). A single 

course of antibiotic treatment (1PAT) from 5-10 days of life accelerated T1D 

development in male non-obese diabetic (NOD) mice, inducing substantial 

changes in gut microbial composition and ileal gene expression. MicroRNAs 
(miRNAs) are important post-transcriptional regulators of gene expression, 

and recent findings suggest an association of particular miRNAs with T1D 

pathogenesis. Here we investigated the role of ileal miRNAs in microbiota-

mediated regulation of host protein-encoding genes. 

Methods: We treated NOD mice of 5-10 days of age with 1PAT only or with 
no antibiotics (Control), and a group of 1PAT-mice were given cecal 

microbiota from healthy donors, as a restorative (Restore). Ileal mRNA and 

miRNA gene expression were evaluated by RNA-Seq and NanoString, 

respectively, with further quantitation using RT-qPCR. We then employed a 

computational approach to predict the interactions between differentially 
expressed mRNAs and miRNAs. 

Results: Receiving cecal microbiota transfer rescued the antibiotic-induced 

acceleration of T1D in NOD mice. Unsupervised hierarchical clustering of 

mRNA and miRNA expression showed restorative effects of the cecal 

microbiota transfer at a global level. Among 599 miRNAs measured, 59 had 
significantly differential expression between treatment groups, including six 

major miRNAs that responded to both antibiotic exposure and microbiota 

restoration. These six miRNAs were predicted to target 432 significantly 

differential mRNAs, many related to host defenses and inflammation. 

Particular miRNAs also were identified to regulate critical antimicrobial 
genes via multiple signaling pathways.

Conclusion: These findings provide evidence that perturbations of the gut 

microbiota alter ileal miRNA expression profiles which further impact mRNA 

gene expression. Signaling from both the 1PAT-perturbed and the cecally 

transplanted restored microbiota involve specific miRNA expression 
differences to affect ileal mRNA expression. Further investigations of the 

identified miRNAs and their targeted mRNA genes will deepen insights into 

the role of miRNAs in mediating microbiota-host interactions and T1D 

development. 

Type 1 diabetes is a chronic condition in which the body produces little or 

no insulin. The incidence of T1D has sharply risen globally in the past few 

decades. Genetic changes alone cannot explain this dramatic change 3

environmental and lifestyle changes leading to altered microbiome have 

played an important role.  

Schematic of long-term restoration (LTR) experiment

Antibiotic-induced perturbations of the gut microbiota alter ileal microRNA 

expression profiles in non-obese diabetic mice

Yue (Sandra) Yin, Xue-Song Zhang, Martin J. Blaser

Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854

Results
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Log2FC > 0.5, p < 0.05
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Log2FC > 0.5, p < 0.05
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miR-

125
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Conclusion

Differential analyses of mRNA and miRNA gene expression provide 

evidence that antibiotic-induced perturbations of the gut microbiota alter 

ileal miRNA expression which further impact mRNA gene expression. 

The close resemblance of miRNA and mRNA gene expression profiles 
between control mice and mice receiving microbiota transfer suggest 

that receiving cecal materials from healthy dams early in life can 

potentially restore 1PAT-accelerated T1D development and reshape 

immunity. 

A key miRNA miR-21 was identified to regulate important intestinal gene 

Reg3³ via the mTOR signaling pathway. Additional six major miRNAs
were found through the miRNA2mRNA interaction network, targeting

432 significantly differential mRNAs. 

Further investigations of the identified miRNAs and their targeted mRNA 
genes will provide new insights into the role of miRNAs in mediating 

microbiota-host interactions and T1D development. 
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Exposing male NOD mice to 1PAT early in life induced gut microbiota 

perturbations and ileal gene expression alterations, which interfered with 

the development of host immunity and significantly accelerated T1D onset. 
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Citrus juices contain greater quantities of bioactive compounds as flavones, flavonols, anthocyanins, and flavanones. The blood

oranges are a pigmented sweet orange and the most common types of blood orange are varieties Moro, Tarocco, and Sanguinello.

In recent years, there was an increase of interest in blood orange varieties because of their higher content of anthocyanins

compared with non-pigmented variants (Pera, Navel, Valencia, and Ovale). Many studies have been described blood orange juice,

especially variety Moro with antioxidant, antimutagenic, and anti-obesity properties. These are all bioactive compounds in juice,

and it is health benefits may be mediated by the synergic effects of its compounds. It has been demonstrated that obese individuals

have a disrupted gut microbiota. This altered gut microbiota is related to the metabolic disorders contributing to the development

of type 2 diabetes, metabolic syndrome, cardiovascular diseases, and certain cancers.

A crossover clinical trial was conducted with 22 adults between 40 and 60 years old classified as obese according to BMI and

insulin resistance by HOMA-IR. Microbiome analysis: New generation sequencing techniques of 16S rRNA genes. Statistical analysis:

data are expressed as means ± SEM. The data were analyzed using a Mann-Whitney t-test for comparison between two groups. A

value of P < 0.05 was considered statistically significant.

Our results suggests that phenolic compounds found on MOJ could directly stimulate the growth of a specific bacteria. This

difference can be explained by the phenolic compounds found in both juice types associated with synergistic effects that are

dependents on the order of the treatment. The Ruminoccocaceae and Lachnospiraceae families have been linked to the

production of short-chain fat acid, an important energy source for colonic epithelial. In addition, the Lachnospiraceae family has

been associated with improved insulin resistance, lipid metabolism, reduction of body weight, and antioxidant effects.

Erysipelotrichaceae, as well as Lachnospiraceae family, were associated with inflammation reduction and improved insulin

sensitivity in mice.

Our data suggest that MOJ followed by POJ intake may improve the dysbiosis associated with obesity through the stimulus of

bacterial growth - especially the bacteria that: (a) metabolize bioactive compounds and (b) enhance the synthesis of beneficial

metabolic products protecting gut homeostasis.

B CA

Figure 1. Relative abundance of Ruminococcaceae (A), Lachnospiraceae (B) and Erysipelotrichaceae (C) unclassified genus by time and order the

treatment. Significant difference between group A and B, Pre-POJ (*); post-MOJ (#).

METHODS

The objective of this study was to evaluate the effect of orange juice intake and the order of treatment in the modulation of

gut microbiota of obese individuals with insulin resistance.
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Abstract

Group 3 innate lymphoid cells (ILC3s) sense environmental signals that
are critical for gut homeostasis and host defense. However, the
metabolite-sensing G-protein-coupled receptors that regulate colonic
ILC3s remain poorly understood. We found that colonic ILC3s expressed
Ffar2, a microbial metabolite-sensing receptor, and that Ffar2 agonism
promoted ILC3 expansion and function. Deficiency of Ffar2 in ILC3s
decreased their in situ proliferation and ILC3-derived interleukin-22 (IL-
22) production. This led to impaired gut epithelial function characterized
by altered mucus-associated proteins and anti-microbial peptides and
increased susceptibility to colonic injury and bacterial infection. Ffar2
increased IL-22+CCR6+ILC3s and influenced ILC3 abundance in colonic
lymphoid tissues. Ffar2 agonism differentially activated AKT or ERK
signaling and increased ILC3-derived IL-22 via an AKT and STAT3 axis.
Our findings suggest that Ffar2 regulates colonic ILC3 proliferation and
function, and they identify an ILC3-receptor signaling pathway
modulating gut homeostasis and pathogen defense.
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Ffar2 regulates colonic ILC3 proliferation and ILC3-derived IL-22. (A) Heatmap represents
relative expression of select ILC3 signature genes. (B) Colonic ROR�t+ ILC3s from Rorc-cre
Ffar2fl/fl (Ffar2&Rorc) or control Ffar2fl/fl mice. (C) ROR�t and AHR expression in colonic ILC3s from
Ffar2&Rorc or Ffar2fl/fl mice. (D) Ki-67 expression in colonic ILC3s from Ffar2&Rorc or Ffar2fl/fl mice. (E)
BrdU+ colonic ILC3s from Ffar2&Rorc or Ffar2fl/fl mice. (F) IL-22+ and IL-17A+ colonic ILC3s from
Ffar2&Rorc or Ffar2fl/fl mice. (G) Colonic ILC3 subsets in Ffar2&Rorc or Ffar2fl/fl mice. (H) IL-22+ CCR6+

ILC3s from Ffar2&Rorc or Ffar2fl/fl mice.*p< 0.05, **p< 0.01, ***p< 0.001

C

Ffar2 regulates colonic ILC3-derived IL-22 via AKT and STAT3 activation or partially ERK and
STAT3 activation. (A) Il22 mRNA expression in sorted ILC3s cultured with acetate, propionate or
Ffar2 agonist. (B) Il22 mRNA expression in sorted ILC3s cultured with Gi/o inhibitor (PTX) or Gq

inhibitor (YM-254890) under the Ffar2 agonist or propionate activation. (C) AKT, ERK, or STAT3
activation in sorted ILC3s cultured with the Ffar2 agonist or propionate.*p< 0.05, ***p< 0.001

Ffar2 influences colonic ILC3 expansion in colonic
lymphoid tissues. (A) Distribution of colonic ILC3s in colonic
patches and colonic SILTs from Ffar2&Rorc or Ffar2fl/fl mice. (B)
Number of colonic patches and SILTs. (C) Quantification of
Ffar2-expressiong colonic ILC3s in colonic lymphoid
tissues.*p< 0.05, **p< 0.01

B

A B C

Ffar2-expressing ILC3s contribute to protection against colonic inflammation and bacterial
infection. (A) Gene expression in epithelial cells from Ffar2&Rorc or Ffar2fl/fl mice. (B-F) DSS model
in Ffar2&Rorc or Ffar2fl/fl mice. (B) Body weight changes. (C) Colitis score. (D) Colonic IL-22+ ILC3s.
(E-F) DSS model in WT mice treated with Ffar2 agonist. (E) Body weight changes. (F) Colitis score.
(G-K) Citrobacter rodentium model in Ffar2&Rorc or Ffar2fl/fl mice. (G) Body weight changes. (H)
Colitis score. (I) Colonic IL-22+ ILC3s. (J-K) Citrobacter rodentium model in WT mice treated with
Ffar2 agonist. (J) Body weight changes. (K) Colitis score. *p< 0.05, **p< 0.01, ***p< 0.001

" Ffar2 agonism regulates 
colonic ILC3 expansion and 
function (IL-22 production)

" Ffar2 regulates colonic ILC3 
proliferation and ILC3-
derived IL-22 in a cell-
intrinsic manner. 

" Ffar2-deficient ILC3s 
enhance susceptibility to 
colonic inflammation and 
infection. 

" Ffar2 agonism controls ILC3-
derived IL-22 via AKT and 
STAT3 activation, or 
partially ERK and STAT3 
activation.

Ffar2 agonism selectively promotes colonic ILC3
expansion and function. (A) Ffar2 mRNA expression in
mouse colonic immune cells. (B) Colonic ROR�t+ ILC3s
from mice fed SCFAs or a synthetic Ffar2 agonist. (C) IL-
22 production in colonic ILC3s from mice fed SCFAs or
the synthetic Ffar2 agonist.*p< 0.05, **p< 0.01, ***p<
0.001, **** p< 0.0001
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